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Abstract

Let F(X, Y) be an absolutely irreducible polynomial with coefficients in an algebraic number field K.
Denote by C the algebraic curve defined by the equation F(X, Y) = 0 and by K[C] the ring of regular
functions on C over K. Assume that there is a unit <p in K[C] — K such that 1 — <p is also a unit. Then we
establish an explicit upper bound for the size of integral solutions of the equation F(X, Y) = 0, defined
over K. Using this result we establish improved explicit upper bounds on the size of integral solutions to
the equations defining non-singular affine curves of genus zero, with at least three points at 'infinity', the
elliptic equations and a class of equations containing the Thue curves.

1991 Mathematics subject classification (Amer. Math. Soc): primary 11D41, 11G30.

1. Introduction

Let K be an algebraic number field, OK its ring of integers and K an algebraic closure
of K. Let F(X, Y) be an absolutely irreducible polynomial in K[X, Y]. Denote
by C the algebraic curve defined by the equation F(X, Y) = 0 and by K[C] the
ring of regular functions on C. We shall call a unit <p in K[C] — K exceptional,
if 1 — <p is also a unit. The ring of regular functions of a wide class of algebraic
curves contains exceptional units. For instance the Thue curves ([7, p. 144]) and the
modular curves X(N) ([6, ch. 8], [5]) have this property. In this paper we assume
that K[C] contains an exceptional unit and we calculate an explicit upper bound on
the size of solutions (x, y) e Oj, to the equation F(X, Y) — 0. This result enables
us to establish improved explicit upper bounds on the size of integral solutions to the
equations defining non-singular affine curves of genus 0, with at least three points at
'infinity', the elliptic equations and a class of equations containing the Thue equations.
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146 Dimitrios Poulakis [2]

In Section 2 a particular effective version of Hilbert's Nullstellensatz and an upper
bound for the solutions of the linear equation in algebraic integers of bounded norm,
permit us to establish an explicit upper bound on the size of integer points on curves
which the ring of regular functions has an exceptional unit <p. This bound depends
on the polynomial F(X, Y), the field K and the function (p. In the next sections we
give some applications. In Section 3 we prove that the ring of regular functions of
a non-singular affine curve of genus 0, with at least three points at 'infinity', has an
exceptional unit and we deduce an explicit upper bound on the size of their integer
points, improving on the bound given in [14]. In Section 4, using 'multiplication by
2' on an elliptic curve, we reduce the problem of calculating an explicit upper bound
on the size of integral solutions of an elliptic equation to the same problem for a curve
having an exceptional unit. Thus we deduce an explicit upper bound on the size of
integral solutions of the elliptic equation, improving on Schmidt's estimate [17]. In
Section 5 we consider the class of irreducible curves of the form

(X - ax Y)(X - a2Y)(X - a3Y)f(X, Y) + b = 0,

where/(X, Y) e K[X, Y], ai,a2,a3,b e K and the elements a\, a2, a3 arepairwise
distinct. We prove that the curves of this class have exceptional units. Thus we deduce
an upper bound on the size of their integer points. We note that the Thue curves belong
to this class.

Let C be a non-singular model of C. We denote by £ the set of poles of the function
defined by X on C. If K[C] has an exceptional unit <p, then we easily deduce that
the rank of the group of E-units on C is > 2. Therefore, [1, Theorem IB] gives an
effective bound for the size of 5-integer solutions of the equation F(X, Y) = 0, over
K (see also [2]). This bound is not in completely explicit form and does not depend on
the unit <p. Furthermore, in [1], effective bounds are given, not in completely explicit
form, for the size of 5-integer points on the affine models of curves of genus 0, with
at least three points at 'infinity' and Thue curves. In the case of integer points, our
estimates are sharper than those of [1].

NOTATION. Throughout this paper we denote by d, DK and NK respectively the
degree of K, the discriminant of K and the norm from K to the field Q of rationals. By
an absolute value we will always understand an absolute value that it extends either
the standard absolute value of Q or a p-adic absolute value | • \p of Q. Let M(K) be
a set of symbols v such that with every v e M{K) there is associated precisely one
absolute value | • !„. We denote by dv the local degree of | • \v. Let x = (x0 : • • • • xn)
be a point in a projective n-space P"(K) over K. We define the field height of x to be

veM(K)
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[3] Integer points on algebraic curves 147

and its absolute height to be H(\) = HK(\)]/d. For x e K we define HK(x) =
HK{(\ : x)) and H{x) = / / ( ( I : x)). Let G be a polynomial in one or several
variables and with coefficients in K. We define the field height HK(G) and the
absolute height / / (G) of G to be respectively the field height and the absolute height
of a point in a projective space having as coordinates the coefficients of G (in any
order). Given v £ M{K), we denote by \G\V the maximum \c\v over all the coefficients
c of G. For an account of the properties of heights see [18, ch. VIII] and [9, ch. 3].
Finally, for a positive real number z, we let log *z = max{ 1, log z}-

2. Curves with exceptional units

In this section we calculate an explicit upper bound for the size of integer points on
curves having exceptional units. Let F(X, Y) be an absolutely irreducible polynomial
in K[X, Y] of degree N > 2 and C the algebraic curve defined by the equation
F(X, Y) = 0. Denote by K[C] the ring of regular functions of C defined over K. We
shall prove the following result:

THEOREM 1. Let F(X, Y) and C be as above. Suppose that there exists an excep-
tional unit <p in K[C] — K. Let f(X, Y) be a polynomial in K[X, Y] representing the
function <p on C. Put A = max{deg / , N] and let A be a point in a projective space
having as coordinates 1 and the coefficients of the polynomials f(X, Y) and F(X, Y)
(in any order). Then all solutions x,y € OK of the equation F(X,Y) = 0 satisfy

max[HK(x), HK(y)} < exp{n,(rf, A)\DK\(\og*\DK\)2d\og*HK(A)},

where £2,(d, A) < A6dlld+1381</+9.

The following results will be useful for the proof of Theorem 1.

L E M M A 1. Leta],... ,an e K. Thenthereis fS e OK suchthat pa^, ..., f$an e OK

and

HK(P) < \DK\[/2HK(A),

where A is a point in a projective space having as coordinates 1 and a\, ...,an.

PROOF. Consider the polynomial f(X) = anX" + • • • + a^X + 1 and a positive

integer m > 2. By [19, Lemma 2.(i)], we deduce that there is f3 e OK such that

pf(X)eOK[X]and

HK(Ym - /? / (*) ) < \DK\"2HK(Ym -
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148 Dimitrios Poulakis [4]

Then

HK(fi) < HK(Ym-flf{X)) < \DK\"2HK(A).

LEMMA 2. Let the polynomials P, R e OK[X, Y] — K have no common zero in
K2. Assume that the degrees of P and R are at most D > 2. Denote by $ a point in
a projective space having as coordinates the coefficients of P and R. Then there are
polynomials A, B € OK[X, Y] and c € OK, c ^ O , satisfying

AP + BR = c,

such that

degA, degB <4D2 + 2D

and for every archimedean absolute value \ • \v of K

\A\v,\B\v,\c\v<(49D4)\\<t>CD\

PROOF. By [3, Theorem 1], there are polynomials A, B e K[X, Y] satisfying
AP + BR = 1, such that deg A, deg B < AD2 + ID. Write

A

P

a,a

= ^ AjjX'
i=O,j=O

P.P'

= ^ PjjX1

i=O,j=O

Yj, B

Yj, R

b,b'

= V"
i=Q,j=O

r.r'

= Y
i=O,j=O

Then

s=O,t=O \i+k=s,j+l=t

where 5 = max{a + p, b + r) and T = max{a' + p', b' + r'}. It follows that the
numbers Au (i = 0 , . . . , a, 7 = 0 , . . . , a'), B{j (i =0,...,b, j = 0 , . . . , b') and 1
are a solution of the homogeneous linear system

i+k=s,j+l=l

-̂ oo -Poo + ^oo^oo — Z = 0,

in unknowns Xtj (i = 0, . . . , a, j = 0, . . . , a'), Ytj (i = 0 , . . . , b, j = 0 , . . . , b')
and Z. There are at most 1 + 49D4 equations and at most 75D4 unknowns. By
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[5] Integer points on algebraic curves 149

the proof of [11, p. 442, Lemma 4], there is a non-trivial solution y,7 (i = 0 , . . . , a,
7 = 0 , . . . , a'), €tj (i = 0 , . . . , b, j = 0 , . . . , b') and c in OK, such that c ^ 0 and
for every archimedean absolute value | • \v of K

\YijU, k o L \c\v < (49£>4)!|<D|r)4,

where <J> is a point in a projective space having as coordinates the coefficients of P
and R. Moreover the polynomials

a.a' b.b'

r = J2 YUX'YJ and E = Yl €UX'YJ

i=0.y=0 i=0,j=0

satisfy FP + ER = c.

LEMMA 3. Assume d > 2. Let a, b be two non-zero elements of K with absolute
heights at most A > e. Let M be a positive integer. Then all solutions x, y € OK — {0}
of the equation aX + bY = 1, such that max{NK (x), NK(y)} < M, satisfy

max{HK(x), HK(y)} < exp{V(d)\DK\(log*\DK\)2"-1

where

PROOF. There exists a positive constant SK, depending on K, such that for every
a e K — {0} which is not a root of unity we have log H(a) > SK/d. It follows from
[20] that we can take SK = 2/(log 3d)3. Let RK be the regulator of AT. By [10],

RK < 1 / 2 / 1

where

(l + l/log\DK\)d+ld^ 5d
Ci id) =

Let x, y € OK — {0} with max{NK(x), NK(y)} < M satisfying ax + by = 1. By
[4, Corollary] there is a unit e in OK such that

max{//(e;c), H(€y), H(e)} < exp{C2(d)RK(log *RK)(RK + log(MA))},

where

C2(d) < \8i
lr

2d32d+2Sd*d+n.
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150 Dimitrios Poulakis [6]

We easily deduce S1^ < 3^"'dM~x and

RK(\og*RK)(RK+\og(MA)) < 33^10^|(log*|^|)M-'log(MA).

Then combining the above inequalities, we get

max{H(ex), H(€y), H{€)} < exp{C3(d)\DK\(log*\DK\)2d~l log(MA)},

where C3(d) < (Udud+nW+1)/2.
We have

H(x) = H(x€/e) < H(x€)H(e'1) < H(xe)H(<s).

Similarly H(y) < H(ye)H(€). Thus we deduce

max{HK(x), HK(y)} < exp{vI/(^)|Z>^|(log*|Z>^j)2^"1 log(MA)},

where vj/(j) < \\dud+l3%ld+1.

LEMMA 4. Let F(X) be a polynomial in K[X] — {0}. If a is an algebraic number
such that F(a) = 0, then we have H(a) < 2H(F).

PROOF. Write F(X) = c0X" + dX-1 + • • • + cn. Then F(a) = coa
n + cxa

n~x +
• • • + cn = 0. Let | - 1̂  be an absolute value of K(a). When | • |« is non-archimedean,
we have

max{l, \a\v] < maxflct/coU,..., \cn/c0\v, 1}

and when | • \v is archimedean, [13, Corollary 2] gives

m a x { l , \a\v} < 1 +max{\c]/c0\v, . . . , \cn/c0\v, 1}.

Thus we obtain

HKW{d)

LEMMA 5. Let f(X, Y), g(X, Y) be non-zero polynomials in K[X, Y] - K and
R(X) the resultant of f (X, Y), g(X, Y) considered as polynomials with coefficients
in K[X]. Put degYf = nu degxf = m{, degYg = n2, degxg = m2- Assume
R(X) # 0. Then

H(R) < (n, +«2)!(m, + \)^{m2 + I)"
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[7] Integer points on algebraic curves 151

PROOF. Write f(X, Y) = fni(X)Y"' +••• + fo(X) and g(X, Y) = gn2(X)Yn^ +

••• + go(X), where f,(X), gj(X) e K[X] (i = 0 , . . . , nu j = 0 , . . . , n2). The

polynomial R(X) is homogeneous of degree n2 in /„, (X),..., /o(X) and of degree
n\ ingn2(X),..., go(X) with rational integer coefficients. If |- !„ is a non-archimedean
absolute value, then we get \R\V < |/|"21 •?!"'• Let | • \v be an archimedean absolute
value. If M{X) is a monomial of degree n2 in /„, (X) , . . . , fo(X) and of degree n\ in
gni{X),..., go(X), then we deduce

\M(X)\V < (ffl, + i r ( m 2 + I)"1 \f\7\g\n
v'.

Thus we obtain

l*l» < («i +n2)!(m, + \T{m2 + l)n'\f\n
v
2\g\n

v'•

Therefore

PROOF OF THEOREM 1. By Lemma 1, there is S e OK such that the polynomials
MX, Y) = Sf(X, Y) and FdX, Y) = SF(X, Y) have all their coefficients in OK.
Further, the height of S satisfies

HK(S) < \DK\"2HK{A),

where A is a point in a projective space having as coordinates 1 and the coefficients
of f(X, Y) and F(X, Y) (in any order). Put A = maxfdeg / , deg F}. By Lemma
2, there are polynomials A(X, Y), B(X, Y) e OK[X, Y] and a non-zero algebraic
integer c of K, satisfying

NK(c) < (49A4)!//^(A)49A4,

such that

A(X, Y)MX, Y) + B(X, Y)Fi(X, Y) = c.

Let x, v € OK such that F(X, Y) = 0. It follows that A(x,y)Mx,y) = c.
Since A(x, y) and f\(x, y) are algebraic integers of K, we deduce that the integer
NK(/\(X, y)) divides NK(c). Thus we obtain

NK(Mx,y)) < (49A4)!//Jf(A)49A4.

Put gi(X, Y) = 8- MX, Y). Similarly we obtain

NK(gi(x,y)) < (49A 4 ) ! / /K(A*) 4 9 A \
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152 Dimitrios Poulakis [8]

where A* is a point in a projective space having as coordinates the coefficients of the
polynomials g,(X, Y)/S = 1 - f(X, Y) and F(X, Y). We have //(A*) < 2//(A).
Hence the algebraic integers / , (x, y) and g\ (x, y) satisfy

jMx,y) + -rgdx,y) = l
0 0

and

NK(fdx, y)), NK(gl(x, v)) < (50A4//(A))4<WA\

Put A = max{e, \DK\I/2HK(A)} and M = (50A4H(A))49dA\ By Lemma 3,

max{HK(Mx, y)), HK(gdx, v))} < expl*^) !^Klog+ID^I)^ 1 log(MA)}.

Then

mnxiHsifiix, y)), HK(gs(x, y))} < exp{C(d, M

where

So (x,y) is a solution to the equation

G(X, Y) = MX,

where F is an algebraic integer of K, having

HK{T) < exp{C(J,

The height of G(X, Y) satisfies H(G) < 2H(A)H(8)H(T).
Let R(X) be the resultant of the polynomials F(X, Y) and G(X, Y), considered as

polynomials with coefficients in K [X]. If R(X) = 0, then there exist two polynomials
S(X, Y) and T(X, Y) with degy S < deg,, G and degy T < degK F such that

S(X, Y)F(X, Y) = T(X, Y)G(X, Y).

The polynomial F(X, Y) is irreducible and degK T < degK F. Then F(X, Y) divides
G(X, Y). It follows that the function <p is a constant, which is not true. Hence
R(X) # 0. Since F(x, y) = 0 and GQc, y) = 0, we have fl(» = 0. By Lemmas 4
and 5, we get

< 2H(R) < (2A(A + 1))
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Then

H(x) < (2A(A + l))2A(2H(A)2H(F)H(S))A.

The same argument with the roles of x and y interchanged shows that the above bound
holds for H{y). Therefore we obtain

max{HK(x), HK{y)} < exp{Ql(d, A)\DK\(log*\DK\)2d\og*HK(A)},

where £2,(rf, A) < A 6 ^ l l d + 1 3 81 d + 9 .

3. Curves of genus 0

Let F(X, Y) be an absolutely irreducible polynomial in K[X, Y] of degree N.
Assume that the affine plane curve C defined by the equation F(X, Y) = 0 is non-
singular. Let K(C) be the function field of C and Hoc the set of discrete valuation
rings U of K(C) such that K C U and U ("I K(X) is the discrete valuation ring
of K(X) defined by l/X. In this section we prove that if C has genus 0 and SQO
contains at least three distinct elements, then the ring of regular functions of C has an
exceptional unit. Thus Theorem 1 implies an explicit upper bound for their integer
points, improving on previous estimates given in [14] and in [1, Theorem 5B].

THEOREM 2. Let F(X, Y) and C be as above. Suppose that C has genus 0 and the
set Eoo contains at least three {distinct) elements. Then every solution x, y e OK of
the equation F(X, Y) = 0 satisfies

mm{HK(x), HK(y)} < exp{Q2(d, N)\DK\4NiHK(Fy46N"},

where Q2(d, N) < (2N)2muNndUdNi+u.

Let £ be the set of discrete valuation rings U of K(C) such that K c U. A divisor
D on the curve C is a formal sum

D = OlVi + --- + a, Vs,

where a\,..., as are rational integers and Vu ... ,VS elements of E. Given / e K{C)
and V e E, let ordv (/) denote the order of the function / at V. Let L(D) be the set
of functions / e K(C) having ordv,(/) > —at and ordy(/) > 0 for every V e E,
with V ^ Vj (i = 1 , . . . , s). Then L(D) is a finite-dimensional vector space over K
(see [8]).
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154 Dimitrios Poulakis [10]

LEMMA 6. Assume that the curve C has genus 0 and N > 2. Let V £ E^. Then
there are polynomials g(X, Y) andq(X) satisfying

degq < N2, degx g < AN2, degK g < N,

H(q) < (6N3H(F))2N\ H(Z) < (9N4H(F))366N",

where Z is a point in a projective space having as coordinates 1 and the coefficients
ofg(X, Y), such that the fraction g(X, Y)/q(X) represent a function <p in L(V) — K.
The leading coefficient of q(X) is 1 and the coefficients of g(X, Y) and q(X) lie in
an algebraic number field L, having L O K, [L : K] < N and discriminant DL

satisfying

LetU € EM - V. Then there is u e K with H(u) < (9N4H(F))316N", such that the
function (f> — u has a zero at U. Furthermore, there is an algebraic number field M,
with M 2 K, [M : K] < N and discriminant DM satisfying

such that u lies in the composite LM of the fields L and M.

PROOF. By the Riemann-Roch Theorem, the space L(V) has dimension 2. Theorem
A2 of [16] implies that there are polynomials q(X), g,(X, Y) (i = 1, 2), such that the
fractions g,(X, Y)/q(X) (i = 1, 2) represent a basis of the vector space L(V). By [15,
Lemma 1.1], the divisor V is defined over a field L having L 2 K, and [L : K] < N.
Furthermore, the discriminant DL of L satisfies

\DL\ < (2Nf65dN2'\DK\NHK{Ff%N".

Then [16, Theorem B2] implies that the polynomials gt{X, Y) (i = 1, 2) and q(X)
have their coefficients in L.

Let FY(X, Y) be the partial derivative of F(X, Y) with respect Y. We denote
by R(X) the resultant of F(X, Y) and FY(X, Y) with respect to Y. By Lemma 6,
H(R) < (3N3H(F))2N-1. Let D(X) be the discriminant of F(X, Y) considered as
polynomial with coefficients in K[X]. By [16, Theorem A2], deg<? < N(N - I) and
the roots of q(X) are among the roots of D(X). Furthermore, we can assume that
the leading coefficient of q(X) is 1. Let q(X) = (X - a,) • • • (X - ar). Since D(X)
divides R(X), we have /?(«,-) = 0 (i = 1 , . . . , r). By Lemma 4,

H(ai)<2H(R) (i = l , . . . , r ) .
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Then [18, Theorem 5.9, p. 211], gives

H(q)<2NiN'l)H(al)---H(ar).

Combining the above inequalities we deduce

H(q) < (4H(R))N{N-l} <4N(N-l)(3N3H(F))N(N-l)(2N-l) < ( 6 J V 3 H ( F ) ) 2 " ' .

By [16, Theorem A2], deg* gt < AN1. Let F(X, Y) = ao(X)Yn + al(X)Y"~l +
• • • +an(X). Following the notation of [16], we have

n

g,(X, Y) = ^bIJ(X)yJ(X, Y) (i = 1, 2),

where 3;, (X, Y) = land

yj(X, Y) = aa{X)Yi~x + ax{X)Y^2 + •••+ aj.2{X)Y (j=2,...,n)

and bij(X) € L[X]. From [16, pp. 204, 209 and 196], we get

with v < 37V2. By [16, Lemma 26], the vector 5, = {Sijp}l<j<n,o<p<v has absolute
height//(d,) < (9N4H(F))365N". We have

= bn(X) + (bi2a0(X) + ••• + bin(X)an.2(X))Y + ••• + bin{X)a»{X)Yn-x.

By the proof of [ 16, Theorem C2], we can choose a vector <$, such that one of the Sijp

is 1. Let Z, be a point in a projective space having as coordinates 1 and the coefficients
of gi (X, Y). We can suppose without loss of generality that one of the coefficients of
F(X, F) is 1. Then we obtain

H(Zi) < 6N4H(Si)H(F) < (9N4H(F))i66N".

Since the dimension of the space L(V) is 2, one of the fractions gt(X, Y)/q(X) (i =
1, 2) represents a non-constant function on C. Denote this function by (j>.

Let y be an algebraic function (in an algebraic closure of K (X)) such that F(X, y) =
0. By the proof of [15, Lemma 1.1], the coefficients of a Puiseux expansion of the
function y at U generate over K an algebraic number field M with degree [M : K] <
N. Furthermore, the discriminant DM of M has
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Let e be the ramification index at U. Put Xv — l/Xl/e. The function </> has a unique
pole at V. Then ordj/(0) > 0. So the Puiseux expansion of <p at U is given by a series
of the form

<j> — u0 + wiXu H .

It follows that the function (/> — uQ has a zero at U. By [16, Theorem C2] (or more
precisely by the proof of this theorem), the coefficients uo,uu... are elements in
LM. Furthermore, the same theorem yields H(u0) < (9N4H(F))316N".

LEMMA 7. Let A(X, Y), B(X, Y) e K[X, Y] be such that the fraction A(X, Y)/
B{X, Y) defines a regular function <p on C. Put

p = deg A + max{deg F, deg B] + 16max{deg B, deg F}4.

Then the function <j> is represented by a polynomial P(X, Y) e K[X, Y] on C,
satisfying

deg P < p - max{deg F, deg B} and H(Tl) < ( p 2 ) ! / / ( * / ,

where W is a point in a projective space having as coordinates the coefficients of
A(X, Y), B(X, Y), F(X, Y) and T\ is a point in a projective space having as coordin-
ates 1 and the coefficients of P(X, Y).

PROOF. Since the fraction A(X, Y)/B(X, Y) defines a regular function on C, there
are polynomials P(X, Y) and R(X, Y) in K[X, Y] such that

A(X, Y) = P(X, Y)B(X, Y) + R(X, Y)F(X, Y).

By [12, Appendix], we can take

deg P, deg R < deg A + 16 maxfdeg B, deg F}4

(the result of [12, Appendix] is given for the case K = Q, but as one can easily see
its proof remain the same when K is an arbitrary algebraic number field). Write

a,a

A(X, Y) = J^ AUX

i=o.y=o

P.P'

P(X,Y)= J^ PUX

1=0,7=0

r'YJ, B(X,Y)

'Yj, R(X,Y)

b,y

= ^2
i=0,;=0

r,r'

= ^
j=0.j=0
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and F(X, Y) = Etl.J=0 FUX'YK Then

S.T

\ j I j=0./=0

where

S = max{p + b,r + m,a] and T = max{p + b',r'+ n,a'}.

Put n = deg A + 16 max{deg B, deg F}4. We have

S,T <n + max{deg F, deg B}.

Consider the homogeneous linear system

J2 (XIJBkl + YljFkl)-ZAsl=0 (s = 0,...,S,t=0,...,T),
i+k=s,j+l=t

in unknowns X,y (i = 0, . . . , p, j = 0 , . . . , p'), Ytj (i = 0, . . . , r, j = 0 , . . . , r')
and Z. There are at most 1 + ST equations. The numbers />,, (i = 0,..., p, j =
0,..., p')t Rjj (i = 0 , . . . , r, y = 0, . . . , r ' ) and 1 are a solution of the above system
in K. By the proof of [11, Lemma 4, p. 442] there is a non-trivial solution of the
system in K, ntj (i =0,...,p, j = 0 , . . . , /?'), 9U (k = 0, . . . , r, I = 0 , . . . , r')
and t, ̂  0, such that

for every u e M(K). The quantity u((Sr)!) is equal to (ST)\ if n corresponds to an
archimedean absolute value and 1 otherwise.

The polynomials

E(X,Y)= Y^{nij/^)XiYi and @(X, Y) = ]T (fy/O*1'^
,=0.;=0 i=0J=O

satisfy

A(X, Y) = E(X, Y)B(X, Y) + 0(Z, y)F(X, Y).

Furthermore, denote by ̂  a point in a projective space having as coordinates the
.coefficients of A(X, Y), B(X, Y), F(X, Y) and 4> a point in a projective space having
as coordinates 1,7T,7/£ ( / = 0 , . . . , / ? , y = 0, . . . , />') and #,•_,•/£ (i = 0 , . . . , r, 7 =
0 , . . . , r ' ) . Then we deduce

https://doi.org/10.1017/S1446788700000628 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700000628


158 Dimitrios Poulakis [14]

PROOF OF THEOREM 2. According to our assumptions, the set Loo contains three
distinct elements, say V\, V2 and V3. By Lemma 6, there are polynomials g(X, Y)
and q (X) satisfying

degq < N2, degj-g < AN2, degK g < N

and

H(q) < (6N3H(F))2N\ H(Z) < (9N4H(F))366N",

where Z is a point in a projective space having as coordinates 1 and the coefficients
of g(X, Y), such that the fraction g(X, Y)/q(X) represents a function 4> of the space
L(V|) - K. The leading coefficient of the polynomial q(X) is 1. Furthermore, there
are u2, M3 e K with

H(ui) < (9N4H(F))376N",

such that the function (f> — M, has a zero at Vt (i = 2, 3). The elements u2, W3 and the
coefficients of g(X, Y) and q(X) lie in an algebraic number field M, having M ~2 K
and [M : K]<N3. The discriminant DM of M has

\DM\

Suppose u2 = u3. Then the function <p — u2 has zeros at V2 and V3 and a unique pole
at V\ of order 1, a contradiction. Hence u2 ^ M3.

The function \}r = (</> — «2)/(«3 — u2) has a unique pole at V] of order 1 and a zero
at V2. It follows that \jr has no other pole at any U e E — T,oc. Hence \j/ is a unit in U,
for every ( J e E - Eoo- Since the affine curve C is non-singular, the discrete valuation
rings of E — Eoo are exactly the rings of regular functions VP at the points P of the
affine curve C. Then \jr is a unit in VP, for every P e C. It follows that i/r is a unit in
the ring f^\PeC VP = K[C]. Furthermore, the function I — \jr has a unique pole at V,
of order 1 and a zero at V3. Similarly we obtain that 1 — \j/ is a unit in ^ [ C ] . Hence V'
is an exceptional unit and therefore we can apply Theorem 1. By Lemma 7, there is
a polynomial P(X, Y) with coefficients in M, such that the function \j/ is represented
by P(X, Y) on C. Furthermore, deg P < 17N* and H(U) < (2$9Nl6H(@))2*9N'\
where FI is a point in a projective space having as coordinates 1 and the coefficients
of P(X, Y) and 0 a point in a projective space having as coordinates the coefficients
of g(X, Y) — u2q(X), (u2 — u3)q(X) and F(X, Y). We may assume, without loss of
generality, that one of the coefficients of F(X, Y) is 1. Since the leading coefficient
of q(X) is 1, we get

H(@) < 4H(Z)H(q)2H(F)H(u2)
2H(u3) < (9N4H(F)) 1495W1
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Therefore H(U) < (9N*H(F))432056Nl1. Letx, y e OK such that F(x, y) = 0. Then
Theorem 1 gives

max{HK(x), HK(y)} < exp{C(J, N)\DK\AN*H

where C(d, N) < (2N)26OOdN2'dlidNi+l\ (To conclude this bound we have used the
inequality log *n < mnl/m for every positive integers n and m.)

4. Elliptic equations

In this section we obtain an explicit upper bound for the height of integral solutions
to the elliptic equations, reducing this problem to the same problem for curves having
an exceptional unit. Then Theorem 1 implies a bound for the height of integral
solutions to the elliptic equations, improving on the estimate obtained recently by
Schmidt in [17].

THEOREM 3. Suppose f(X) = X3 +aX +b has coefficients in OK and discriminant
A(/) = -(4a3 + 27b2) ^ 0. Then all solutions (x, y) e O\ to the equation
Y2 = f(X) satisfy

msn[HK(x), HK(y)} < exp{^3W)|£>J,|
25|^(A(/))|27 log*HK(f)},

where Q3(d) < IO 5 8 5 ^ 4 6 ^ 3 1 2 ^ 1 3 .

COROLLARY 1. Suppose f(X) = X3 + aX2 + bx + c has coefficients in OK and
discriminant A( / ) = -(4a3c + 4fc3 + 27c2 - ISabc - a2b2) ^ 0. Then all solutions
(x, y) e O\ to the equation Y2 = f(X) satisfy

max{HK{x), HK(y)} < exp{n4(d)\DK\25\NK(A(f))\27log*HK(f)},

where Q4(d) < io74(W+48J312d+13.

PROOF OF THEOREM 3. We shall use an argument that goes back to an idea of
Chabauty (see [7, p. 140]). Consider the elliptic curve

E : Y2 = X3 + aX + b.

Let (x, y) be a point on E with coordinates in K, such that 2(x, y) ^ 0. Then
2(x, y) = (0(JC, y), f(x, y)), where

a n d x/r(x, y ) = - y + y ^ J ( * -
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Let S and T be algebraic functions, in an algebraic closure of the function field K{E)
of E, such that X = <p(S, T) and Y = ^(S, T). Setting U = {3S2+a)/{2T), we get

1 c2 i

X = -2S + U2 and Y = — + U(3S - U2).

Eliminating 5 we deduce the equation

<J>(X, Y, U) = U4- 6XU2 - &YU - 3X2 - Aa = 0.

Let (x, y) G O\ be an integer point on the elliptic curve E, with y ^ 0. Let u be
a non-zero root of the equation O(x, y, U) = 0. Then u is an algebraic integer. Put
s = (u2 — x)/2. Substituting —2s + u2 for x in 4>(x, y, u) = 0, we get

, 3s2 + a ,
x = —2s + M and y = h M(3S — u ).

2M

Substituting this in y2 = x3 + ax + b, we deduce

GO, M) = 9s4 - 4u V + 6as2 - Aasu2 - Abu2 + a2 = 0.

Replacing M2 by 2s + x we obtain

0(x, s) = s4 - Axs3 - 2as2 - Aaxs - %bs - Abx + a2 = 0.

It follows that s is an algebraic integer.
hetet,e2,e3 be the roots of the equation S3 + aS + b = 0. Consider the polynomial

G(S, U) = -AU2(S3 + aS + b) + 954 + 6aS2 + a2.

Since (954 + 6aS2 + a2)/(S3 + aS + b) is not a square in ^(5), it follows that
the algebraic curve G(S, U) = 0 is irreducible. Let et be a root of the polynomial
954 + 6aS2 + a2 = (3S2 + a)2. Then ef is a double root of the polynomial S3 + aS + b
which is not true. Thus, S3 + aS + b and 9S4 + 6aS2 + a2 have no common root. If
the regular function 5 - et on the affine curve G(S, U) = 0 had a finite zero, then the
polynomials S3 + aS + b and 9S4 + 6aS2 + a2 would have a common root, which
is a contradiction. Thus 1/(5 - <?,) is a regular function on G(S, U) = 0. Therefore
the functions S — e, (/ = 1, 2, 3) are units in the ring of regular functions of the curve
G(S, U) = 0. Since

we obtain that the function (5 — e{)/{e2 — ex) is an exceptional unit.
Let L = K{u). The equality x = —2s + u2 implies s e L. Since u satisfies

the equation <£(x, y, U) = 0, we have [L : K] < 4. Let P(U) be the irreducible
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polynomial of u over K and A(P) the discriminant of P(U). Since u is an integer in
L, A(P) is an integer in K and the discriminant ideal DL/K of L over K divides A(P).
Further, P(U) divides 4>(x, y, U). The discriminant of the polynomial 4>(x, v, U) is
2I2A(/). It follows that DL/K divides 212A(/) (in 0*). Hence

Then the discriminant DL of L satisfies

\DL\ < \DK\4\NK{DL/K)\ < 2™\DK\4\NK(A(f))\.

Denote by M the field generated over L by et, e2 and e3. Let Q (X) be the irreducible
polynomial of ex over L and A(g) the discriminant of Q(X). Then A(Q) divides
A(/) . Since ex is an algebraic integer, the discriminant ideal DL(ei)/L of L(ei) over L
divides A(Q). Thus DL(ei)/L divides A(/ ) . Hence

|£>L(,,,I < \DL\3\NL(DLlei)/L)\ < \DL\3\NL(A(f))\ = \DL\3\NK(A(f))\\

Similarly we get

\DM\ < \DLM\2\NK(A(f))\u.

Combining the two inequalities we obtain

\DM\ < \DL\6\NK(A(f))\20 < 212d\DK\24\NK(A(f))\26.

Let A be a point in a projective space having as coordinates 1, l/(e2 — e{),
e\/(e2 — e{) and the coefficients of the polynomials G(S, U). We easily deduce
H(A) < \44H(f)\ Theorem 1 yields

u), HM(s)} < cxp{C(d)\DK\25\NK(A(f))\27\og*HK(f)},

where C(d) <
The equation @(x, s) = 0 implies

s4 - las2 - Sbs + a2

~ 4(s3 + as + b)

Then

HM(x) < 11024dHM{s)nHK{f)X44.

Therefore

mm{HK(x), HK(y)} < exp{\2C(d)\DK\25\NK(A(f))\21 log*HK(f)}.
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PROOF OF COROLLARY 1. Consider the equation Y2 = f(X) and multiply the two
members by 36. Putting T = 21Y and S = 9X, we get

Furthermore, setting 5 = U — 3a, we obtain the equation

T2 = g(U),

where

g(U) = U3 + 33{3b - a2)U + 33{2a3 - 32ab + 33c).

Let (x, y) € OK
2 with y2 = f(x). Then u = 3a + 9x and t — 21y lie in OK and

satisfy t2 = g(u). We have H(g) < 1026//(/)3 and the discriminant of g(U) is

A(g) = -[4(33(3b - a2))3 + 27(33(2a3 - 32ab + 33c))2] = 312A(/).

Then Theorem 1 yields

max{HK{u),HK(t)} < exp{Q3(d)3324dlO\DK\25\NK(A(f))\21 log*HK(f)}.

Since x = (u — 3a)/9 and y = t/21, we obtain

max{^(x), HK(y)} < exp{Qi(d)3324d20\DK\25\NK(A(f))\21 \og*HK(f)}.

5. Thue curves

By a Thue curve we mean a plane curve g(X, Y) = b, where g(X, Y) is a binary
form in K[X, Y] with at least three pairwise distinct linear factors and b a non-zero
element of K. In this section we consider a more general class than Thue curves and
we prove that the curves from this class have exceptional units. Thus Theorem 1 gives
an upper bound for their integer points. Our estimate is sharper than that of Theorem
5Eof[l].

THEOREM 4. Let F(X, Y) be an absolutely irreducible polynomial in K[X, Y] of
degree N, of the form

F(X, Y) = (X- a, Y)(X - a2Y)(X - a3Y)f(X, Y) + b,

where f(X, Y) e K[X, Y], a\,a2,a3,b e K and the elements au a2, a3 are pairwise
distinct. Then every solution x, y e OK of the equation F(X, Y) = 0 satisfies

max{HK(x), HK(y)}

< exp[Q5(d, N)\DK\(\og*\DK\)2dlog*(HK(l,aua2,a3)HK(F))},

where ns(d,N) < 10i0SldN33dud+l3.
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PROOF. Denote by C the algebraic curve defined by the equation F(X, Y) — 0.
Since the polynomials (X - a, Y)(X — a2Y)(X — a3Y) and F(X, Y) have no common
root in K2, we deduce that the fractions

a2 — a3 X —
andand

a2 — a\ X — CI3Y a2 — a\ X — CI3Y

define two units in K[C] that will be denoted respectively by (p and \j/. It is easily
verified that (/> + \js = 1. Thus </> is an exceptional unit. We can suppose without loss
of generality that one of the coefficients of F(X, Y) is 1. By Lemma 7, the function
4> is represented by a polynomial P(X, Y) of K[X, Y] satisfying deg P < 17N4 and

//(FT) < (289A^8)!(2//(l,a1,a2;a3)2//(F))289A'8,

where n is a point in a projective space having as coordinates 1 and the coefficients
of P(X, Y). Let A be a point in a projective space having as coordinates 1 and the
coefficients of P(X, Y) and F(X, Y) (in any order). Then

H(A) < H(U)H(F) < (290N*H(l,aua2,a3)
2H(F))290"\

Now we can apply Theorem 1. Thus, if x, y e OK such that F(X, Y) = 0, we have

max{HK(x),HK(y)}

where C(d,N) < Kfi0SldN33dud+13.
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