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1. Abstract

In 1943, Post conjectured that "monogenic normal systems are universal",
and in 1961 Minsky proved a stronger result " 'tag' systems are universal"
which implied the proof of Post's conjecture. The author had independently
obtained a simple direct proof of Post's conjecture. The purpose of this note,
then, is to present an exposition of Post's conjecture, and to show the full
simplicity of its direct verification.

2.

The Hilbert school of Formalists placed great emphasis on finitistic
axiomatic systems. Many successful attempts were made to characterise
these systems in such a way that they themselves were amenable to mathe-
matical (or, more properly, meta-mathematical) analysis. The various
characterisations proved to be equivalent, and therein lay their power. In
particular, the definitions of Turing and Post proved equivalent.

The approaches of Turing and Post have a great amount in common.
First, we have an alphabet a0, ax, a2, • • • in terms of which we can write the
statements of our logic. A finite sequence of these symbols will be called a
string. The result of juxtaposing the pair of strings X, Y will be written XY.
Our logic L must have a designated finite set of strings — the axioms of L —
together with a finite set of rules of inference. When R (Y, Xx, • • •, Xn) is a
rule of inference of L, we say that Y is a consequence of Xx, • • •, Xn, by R,
in L.

A finite sequence of strings Xlt X2, • • •, Xn is called a proof (of Xn) in a
logic L if, for each i, 1 g i ^ «, either

(1) Xt is an axiom, or
(2) there exist / , • • • , k < i such that Xt is a consequence of Xt, • • •, Xk

in L by one of the rules of inference of L.
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We say that W is a theorem of L, or that W is provable in L, if there is a
proof of W in L.

The only thing now lacking in our definition of our logic L is a restriction
which ensures that the rules of inference operate in a strictly finitistic
manner. The difference between the Turing and Post formalisms is in the
way in which they effect this restriction.

Turing (1936) introduced the concept which has since been named, in his
honour, Turing machine. A Turing machine comprises (cf. Fig. 1A):

(a) An infinite tape which is divided lengthwise into distinct squares;
each of which may be blank, or bear a symbol from some finite
alphabet. At any moment, all but a finite number of the squares must
be blank.

(b) A "black box" which possesses a finite number of internal states, and
which is capable — at any moment of time — of scanning one square of the
tape, printing or erasing a symbol on that square, moving the tape one
square to the left or right relative to the scanning device, and changing its
internal state.

The operation of a Turing machine is deterministic, and proceeds on a
quantised time scale, t = 1, 2, 3, • • •. At any moment of time, the behaviour
of the machine is uniquely determined by the internal state of the black box,
and by the symbol scanned. (Note, however, that this determination will,
in general, be different for different Turing machines).

Hence we may regard a Turing machine as a set of quintuples qiSiSkDql,
each such to be interpreted as: if the machine is in state q( and the symbol
scanned is St, then print Sk (where Sk may be a blank — corresponding to
erasure), move tape D (where D may be: L, left one square; R, right one
square; or N, not at all) and change the state of the machine to qt. We make
the convention that if the machine is in state qi and the symbol scanned is
Sj, and no quintuple qiSjSkDql is listed, then the machine is to cease
operation.

The Turing form of the finitistic restriction, then, is to demand that a
rule of inference R only be accepted for one of our logics L if there exists a
Turing machine T(R) such that Y is a consequence of Xlt • • •, Xn by R if
and only if Y is printed on the tape by T(R) when it eventually ceases
operation after being started in some agreed initial state, say q0, scanning
the left-most symbol of the expression Xlt Xz> • • •, Xn* printed on its tape.
Let us agree to call one of our logics a Turing system if its rules of inference
can be mediated by Turing machines, as above.

Post (1943) gave his finitistic restriction in terms of productions, each of
the following form

* We can assume that the letters of the alphabet of L, and the comma will all belong to the
set of symbols of T(R).
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produce

••gmPmgm+i•

In this display, the g's represent specific strings including the null string,
while the P's represent the operational variables of the production, and, in
the application of the production, may be identified with arbitrary strings.
We then add the restriction that each operational variable in the conclusion
of the production is present in at least one of the premisses of the production,
it having been understood that each premiss, and the conclusion, has at
least one operational variable. Post called a logic in which each rule of
inference is mediated by a production, a system in canonical form.

As we said above, the class of all Turing systems is equivalent to the class
of all systems in canonical form (see, e.g. Davis (1958)).

Post (1943) also introduced 3 more restricted forms of logical systems:
(i) A system in canonical form is said to be in normal form if each of its

productions is in the form
gP

produces
Ph

(ii) A normal system is monogenic if the g's of the premisses form a set
Si> gz> ' ''> gk such that each string can be written in the form gtP for at
most one i.

(iii) A "tag" system is a monogenic normal system in which the g's
constitute all sequences of some fixed length /, while the corresponding A's
are identical for all g's having the same initial symbol.

Post proved that the normal systems are universal — i.e. any canonical
system can be characterised by a normal system. He then conjectured
(1943, p. 204) that the monogenic normal systems were universal. Minsky (1961)
has recently given an elegant proof of the even stronger result: the "tag"
systems are universal. Hence the weaker result of our title follows immedia-
tely. The purpose of this note is to give a direct proof of the weaker result,
laying bare its full simplicity.

Minsky used the equivalence of the Post and Turing definitions to prove
his result by showing how to represent an arbitrary Turing machine T
as a "tag" system. Our task, then, is to provide the much simpler represen-
tation of a Turing machine l a s a monogenic normal system M(T).

Out consttucXvQXi. TC=>u\fca iwnv a. TNH&KX oi Oaasv ŝ> at NVSW^VCA.. "EVR>\.

we may remove the infinitude of blank squares of T, agreeing to stick a new
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blank square on the tape whenever T tries to move off the end of its tape.
Thus we may regard the tape as finite, and can replace the linear tape by a
circular tape with a square marked h (assume this is a new symbol) to mark
the ends of the linear tape it replaces (cf. fig. IB). We can now signify our
knowledge of which square is scanned and the state of T by inserting a new
square on our circular tape immediately preceding the scanned square and
writing on it the name of the internal state. We now replace T by an arrow!
(See fig. 1C). It is this use of a circular tape, and the replacement of the Turing
machine by a state-square and an arrow, that constitutes the essence of our
construction. We can simulate the operation of T by rotating our circular
tape until we encounter a qt, and then operating according to the appropriate
quintuple. In fact we shall apply the Turing machine state-symbol changes
only when the arrow points to the square preceding that bearing the state-
symbol.

To ensure monogenicity, we will have to rotate the tape more than one
square at a time. In our construction, we shall cycle 2 squares at a time.
However, if the arrow should point to a state-square, and the tape has an
even number of squares, such 2-square cycling cannot bring the tape into
'the Turing position'. Hence we introduce a technical device which enables
the machine to extricate itself from the above impasse: we insert an addi-
tional square after the square bearing the state symbol, and on it print the
symbol 1 if the number of squares on the tape is even, and 0 if the number of
squares on the tape is odd. This should be enough to motivate the following
construction of a monogenic normal system.

If our Turing machine is to operate on the finite string of symbols P,
then we get our monogenic normal system to operate on the string

I 0 if P has an even no. of symbols
0 \ 1 if P has an odd no. of symbols.

For cycling we introduce the 3 productions:

a/SP -> Pa/?

(a,/S indicate non-state symbols).
This corresponds to rotating the tape till the arrow points to the square

preceding the one bearing a state symbol. This allows us to apply one of the
following productions corresponding to the quintuples of the Turing machine.
(50 denotes the blank).

qiSjSkLql gives rise to:
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S
and

qjSjSzNqt gives rise to

qiSiSkRql gives rise to

This system of productions is certainly a monogenic normal system M(T).
Further, if starting T in state q0 scanning the left-most square of P causes
T to stop in state qk scanning the a of the expression QfixR printed on its
tape; then if we start M(T) on the string hq^P we will finally obtain
fiqkrja.RhQ (rj = 0 or 1) from which we immediately obtain the desired result

Thus we have indeed obtained a representation of our Turing machine T
as a monogenic normal system M(T). Hence, monogenic normal systems are
universal.
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