CAMBRIDGE

Example Practice Papers for
 Cambridge IGCSE® Mathematics Core Practice Book

Example Practice Paper 1 2
Mark scheme for Paper 1 12
Example Practice Paper 3 14
Mark scheme for Paper 3 27

CAMBRIDGE

NAME \square

Cambridge IGCSE Mathematics Core Practice Book

Example Practice Paper 1

PLEASE NOTE: this example practice paper contains exam-style questions only

READ THESE INSTRUCTIONS FIRST

Answer all questions.

Working for a question should be written below the question.

If the answer is not exact but a degree of accuracy has not been provided, give the answer as follows:

- to three significant figures for all values, except
- to one decimal place for degrees
- for π, use either your calculator value or 3.142.

The number of marks is given in brackets [] next to each question or part question.
The total of the marks for this paper is 56 .

PLEASE NOTE: this practice examination paper has been written in association with the below publication and is not an official exam paper:

Paperback 9781107609884

1 (a) Calculate $\frac{97.54-31.6}{216.9}$

Answer(a)
(b) Write 216.9 in standard form.

Answer(b)
[1]

2 Write the following in order, starting with the smallest.

$$
\frac{4}{11} \quad 0.357 \quad 35 \%
$$

Answer \qquad $<$ \qquad $<$

3

The bearing of R from S is 253°.
Work out the bearing of S from R.

Answer
[2]

4 In a sale, all prices are reduced by 33%.
What is the sale price of a television that cost $\$ 650$ before the sale?

Answer

5 Simplify the following
(a) $3 a^{2} \times 8 a^{4}$

Answer(a)
(b) $\frac{3 b^{3} \times 8 b^{-4}}{6 b^{5}}$

Answer(b)

[2]

6 Work out the value of $5 \frac{3}{5} \div 1 \frac{2}{3}$.
Show all your working and leave your answer as a fraction.

Answer

7 Work out the following.
(a) $3+18 \div 3-2$

Answer(a)
[1]
(b) $2+3 \times 7-4 \div 8$

Answer(b)

Points A, B and C are shown on the grid.
(a) Write $\overrightarrow{B A}$ as a column vector.

Answer(a)

$$
\overrightarrow{B A}=(
$$

(b) D is another point such that $\overrightarrow{C D}=\frac{1}{2} \overrightarrow{B A}$.

Plot the point D on the grid above.
(c) What name is given to the shape formed by the points A, B, C and D ?

9 Solve the simultaneous equations.

$$
\begin{gathered}
2 x+y=4 \\
3 x+2 y=5
\end{gathered}
$$

Answer

$$
x=
$$

\qquad

$$
y=
$$[3]

10 A tourist changes $\$ 500$ to euros ($€$) when the exchange rate is $€ 1=\$ 0.8077$.
Calculate the amount he receives.
Give your answer correct to 2 decimal places.

11

Using straight edge and compasses only construct the locus of points that are equidistant from the lines $A B$ and $A C$.

Show all your construction arcs clearly.

12 The area of a semi-circle is $119.2 \mathrm{~cm}^{2}$.
Calculate the radius of the circle.

Answer

13 A girl travels 3 miles to visit her friend, completing the journey in 1 hour.
She finds her friend is not at home, and immediately makes the return journey at 2 miles per hour.
(a) Calculate how long the return journey took.

> Answer(a)
(b) Calculate the average speed for her entire journey.

Answer(b)

14 (a) Factorise $6 p^{3}+2 p q$

> Answer(a)
(b) Simplify completely $5(3 x-y)-7(8 x-5 y)$

The line $A B$ is tangent, at D, to a circle centre O.
The line $C E$ passes through the centre of the circle and is parallel to the line $F G$.
Angle $O D F=32^{\circ}$.

Write down the size of the following angles.
In each case give a reason for your answer.
(a) Angle $D F G=$ \qquad because \qquad
(b) Angle $D C F=$ \qquad because \qquad
\qquad
(c) Angle FDB = \qquad because \qquad

The logo above is made up of a triangle and a semi-circle with a smaller semi-circle removed. Calculate the shaded area.

17 Tiles labelled with the letters M A T H E M A T I C S are placed in a bag. One letter is selected at random.

Calculate the probability of the following events
(a) Drawing an M.

Answer(a)

(b) Drawing an M or a T .

Answer(b)
[1]
(c) Drawing a vowel.

Answer(c)
[2]

18 (a) Write down all the common factors of 36 and 45.

Answer(a)
(b) Write down the smallest number which is a multiple of both 25 and 15.

Answer(b)

19 The length of a rectangle is 5 cm , the width is 10 cm . Both measurements are to the nearest cm .
(a) Write down the upper bound for the length of the rectangle.

Answer(a)

cm [1]
(b) Write down the lower bound for the width of the rectangle.

CAMBRIDGE

Cambridge IGCSE Mathematics Core Practice Book

Example Practice Paper 1

Mark Scheme

Key: A - Accuracy marks awarded for a correct answer seen.
M - Method marks awarded for clear attempt to apply correct method.
oe - Or Equivalent.
" " - allow M marks for methods that include wrong answers from previous results.

1	(a)	0.304	A 1
	(b)	2.169×10^{2}	A 1

| 2 | $35 \%<0.357<\frac{4}{11}$ | A 1 |
| :--- | :--- | :--- | :--- |

3	$253-180$	M1	
		73°	A1

| 4 | 650×0.67 | M 1 |
| :--- | :--- | :--- | :--- |
| | $\$ 435.5(0)$ | A 1 |

5	(a)	$24 ; a^{6}$	A1 A1
	(b)	$3-4-5$ (manipulating powers)	M1
		$4 b^{-6}$ or $\frac{4}{b^{6}}$	A1

| 6 | $\frac{28}{5} \times \frac{3}{5}$ | M 1 |
| :--- | :--- | :--- | :--- |
| | $\frac{84}{25}$ | A 1 |

7	(a)	7	A1
	(b)	22.5	A1

8	(a)	$\binom{4}{-2}$	A1 A1
	(b)	Point correctly plotted at co-ordinates (6,5)	A1
	(c)	Trapezium	A1

| 9 | $4 x+2 y=8$ oe | M1 |
| :--- | :--- | :--- | :--- |
| | $x=3 ; y=-2$ | A1 A1 |

| 10 | $500 \div 0.8077$ | M 1 |
| :--- | :--- | :--- | :--- |
| | $619.0417234 \ldots$ | A 1 |

€619.04 (2dp)		A1
11 Arcs same distance from A on $A B$ and $A C$ M1 Arcs correctly identifying point on angle bisector and angle bisector drawn M1		

12		$119.2 \times 2 \div \pi=75.88507 \ldots$	M1
	$\sqrt{" 75.88507 \ldots . . "}$	M1	
	8.71	A1	

13	(a)	$3 \div 2=1.5$ hours	A1
		$(3+3) \div(1+1.5)$	M1
	(b)	2.4 mph	A1

14	(a)	$2 p\left(3 p^{2}+q\right)$	A1
	(b)	$15 x-5 y$	M1
		$-56 x+35 y$	M1
		$-41 x+30 y$	A1

15	(a)	$32^{\circ} ;$ alternate angles	A1 A1
	(b)	58° angle in a semi-circle (angles in a triangle)	A1 A1
	(c)	$58^{\circ} ;$ tangent perpendicular to radius	A1 A1

16	$\frac{1}{2} \times 6 \times 10=30$	M1	
		$\pi \times 5^{2}-\pi \times 2^{2}=65.9734 \ldots$	M1
	$" 30 "+(" 65.9734 \ldots ") \div 2=63.0$	A1	

17	(a)	$\frac{2}{11}$	A1
	(b)	$\frac{4}{11}$	A1
	(c)	$\frac{4}{11}$	A1 A1

18	(a)	$1 ; 3,9$	A1 A1
	(b)	Multiple of 25 and $15 \geq 75 ; 75$	A1 A1

19	(a)	$5.5 \mathrm{~cm}($ accept $4.999 \ldots$ or $4 . \dot{9}$)	A1
	(b)	9.5 cm	A1

			Total: 56

CAMBRIDGE

NAME \square

Cambridge IGCSE Mathematics Core Practice Book

Example Practice Paper 3

PLEASE NOTE: this example practice paper contains exam-style questions only

READ THESE INSTRUCTIONS FIRST

Answer all questions.

Working for a question should be written below the question.

If the answer is not exact but a degree of accuracy has not been provided, give the answer as follows:

- to three significant figures for all values, except
- to one decimal place for degrees
- for π, use either your calculator value or 3.142.

The number of marks is given in brackets [] next to each question or part question.
The total of the marks for this paper is 104.

PLEASE NOTE: this practice examination paper has been written in association with the below publication and is not an official exam paper:

Paperback 9781107609884

$$
y=x^{2}-3 x-1
$$

(a) Complete the table of values for this equation.

x	-2	-1	0	1	2	3	4	5	6
y				-3	-3			9	

(b) On the grid below, draw the graph of $y=x^{2}-3 x-1$ for $-2 \leq x \leq 6$.

[4]
(c) (i) Write down the co-ordinate of the lowest point of the graph.

$$
\text { Answer(c)(i) }(\ldots \ldots \ldots, \ldots
$$

(ii) Write down the solutions of the equation $x^{2}-3 x-1=0$.

$$
\operatorname{Answer}(c)(\mathrm{ii}) x=\ldots \ldots \ldots \text { or } x=\ldots \ldots \ldots
$$

(d) (i) On the grid, draw the straight line with gradient 2 that passes through the origin for $-2 \leq x \leq 6$.
(ii) Write down the equation of your line in the form $y=m x+c$.

$$
\begin{equation*}
\operatorname{Answer}(d)(\text { ii) } y= \tag{2}
\end{equation*}
$$

(iii) Write down the co-ordinates of the points where the straight line intersects the graph of $y=x^{2}-3 x-1$.

> Answer(d)(iii)
.) and (

2

$$
T=\frac{x+2}{n}
$$

(a) Find T when $x=-23$ and $n=7$.

$$
\text { Answer(a) } T=
$$

(b) Find x when $T=81$ and $n=4$.

$$
\begin{equation*}
\text { Answer(b) } x= \tag{2}
\end{equation*}
$$

(c) Make x the subject of the formula $T=\frac{x+2}{n}$.

$$
\begin{equation*}
\operatorname{Answer}(c) x= \tag{2}
\end{equation*}
$$

The diagram shows four points A, B, C and D.
Angle $C A D=20^{\circ}$ and angle $C B D=40^{\circ}$.
$B C=5 \mathrm{~cm}$ and $A C$ and $D C$ are perpendicular.
(a) (i) Calculate the size of angle $A B D$.

$$
\begin{equation*}
\text { Answer(a)(i) Angle } A B D= \tag{2}
\end{equation*}
$$

(ii) Calculate the size of angle $A D B$.

$$
\begin{equation*}
\text { Answer(a)(ii) Angle } A B D= \tag{2}
\end{equation*}
$$

(iii) What is the mathematical name for triangle $A B D$?

> Answer(a)(iii)
(b) (i) Use trigonometry to calculate the length of $D C$.

Answer(b)(i) $D C=$ \qquad .cm
(ii) Use trigonometry to calculate the length of $A C$.

Answer(b)(ii) $A C=$ \qquad
(iii) What is the length of $A B$?

$$
\begin{equation*}
\text { Answer(b)(iii) } A B=\ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots . . . \ldots \tag{1}
\end{equation*}
$$

(c) Calculate the length $B D$.

4 The table shows the marks obtained (as a percentage) by 20 students in two tests. One test was taken at the start of the year, and one at the end of the year.

Test 1%	75	50	30	25	70	50	60	35	65	85
Test 2%	70	55	30	15	40	35	85	50	55	80
Test 1%	20	60	70	50	40	80	55	75	60	74
Test 2%	36	65	80	45	40	65	62	85	45	55

(a) Complete the scatter diagram below to show this information.

The first 10 points have been plotted for you.

(b) What type of correlation does the scatter diagram show?

Answer(b)
[1]
(c) (i) Find the range of marks in Test 1.

> Answer(c)(i) \% [1]
(ii) Find the mean mark in Test 1.

Answer(c)(ii) \% [3]
(d) (i) Find the mode for the mark in Test 2.

Answer(d)(i)
(ii) Find the median for the mark in Test 2.

Answer(d)(ii)

One of the 20 students is chosen at random.
(e) Write down the probability that the student scored less than 50% in the first test.

> Answer(e)

(a) On the grid, draw the image of
(i) shape A reflected in the y-axis. Label the image B.
(ii) shape A after enlargement, scale factor 2 , centre origin. Label the image C.
(iii) shape A after translation by $\binom{4}{-6}$. Label the image D.
(b) Describe fully the single transformation which maps
(i) shape A onto shape X,
\qquad
(ii) shape A onto shape Y.
\qquad

NOT TO
SCALE

The diagram shows three different regular polygons touching each other.
Only parts of each shape are shown.
Shape A is a square and the interior angle of shape B is 120°.
(a) Mark the interior angle of the square using the correct mathematical symbol.
(b) (i) Work out the exterior angle of shape B.

> Answer(b)(i)
(ii) Work out how many sides shape B has.

Answer(b)(ii)
(iii) Write down the mathematical name for shape B.

> Answer(b)(iii)
(c) (i) Work out the exterior angle of shape C.

Answer(c)(i)
(ii) How many sides does shape C have?

Answer(c)(ii)

7 John invests \$1000 in a bank account at Bank A, which earns interest.
(a) After 1 year, John has $\$ 1050$ in the account.
(i) What was the interest rate that John received from the bank?

Answer(a)(i)

John withdraws the money and moves it to Bank B.
Bank B pays 7.5% per year compound interest.
(ii) Calculate the amount of money John has after it has been in Bank B for 4 years.

Answer(a)(ii)
(iii) Calculate how much interest John earned in total from both banks.

Answer(a)(iii)
(iv) Calculate how much the total interest is, as a percentage of his original $\$ 1000$.

> Answer(a)(iv)
(b) John spends $\$ 500$ of the money on new sheep for his farm.

Sheep are sold in lots of 5 . Each lot costs $\$ 134$.
(i) How many sheep can John buy?
Answer(b)(i) .. [3]
(ii) John sells each sheep for $\$ 40$.

What is John's percentage profit?

8 (a) Tamsin thinks of a number, doubles it then adds 5 . The result is 17.
(i) Write down an equation in x to represent this information.
Answer(a)(i)
(ii) Solve the equation to find the value of x.

> Answer(a)(ii)
(b) Amir thinks of a number, adds 9, then doubles. The result is three times the number he first thought of.
(i) Write down an equation in x to represent this information.
Answer(b)(i)
(ii) Solve the equation to find the value of x.
Answer(b)(ii)
(c) Chan-An thinks of a number. He multiplies it by 3, then adds 1 . The result is the same as if he had multiplied by 4 and added 6 .
(i) Write down an equation in x to represent this information.
Answer(c)(i)
(ii) Solve the equation to find the value of x.

Answer(c)(ii)

Diagram 1 Diagram 2
Diagram 3
Diagram 4
Diagram 5

The diagram show a pattern of triangles of dots.
(a) Complete the table below.

Diagram number	1	2	3	4	5
Number of triangles	2	6	10		
Number of dots	4	7	10		

(b) Work out the number of triangles and the number of dots in the 8th diagram.

Answer (b) Number of triangles = \qquad , Number of dots $=$
(c) (i) Write down an expression for the number of triangles in the nth diagram.
Answer(c)(i)
(ii) Write down an expression for the number of dots in the nth diagram.
Answer(c)(ii)
(d) Add together the expressions for the triangles and dots in the nth diagram.

Write your answer as simply as possible.
Answer(d)

CAMBRIDGE

Example Practice Paper 3

Mark Scheme

Key: A - Accuracy marks awarded for a correct answer seen.
M - Method marks awarded for clear attempt to apply correct method.
oe - Or Equivalent
"" - allow M marks for methods that include wrong answers from previous results.

(d)(i)		Gradient A1 Through origin A1
(d)(ii)	$y=2 x+c$	A1
	$y=2 x \quad(c=0)$	A1
(d)(iii)	$(-0.2,-0.4),(5.2,10.4) \quad$ (allow $\pm \frac{1}{2}$ square)	A1 A1

2	(a)	$\frac{-23+2}{7}$	M 1
		-3	A 1
	(b)	$81=\frac{x+2}{4}$	M 1
		322	A 1
	(c)	$\operatorname{Tn}=x+2$	M 1
		$x=T n-2$	A 1

3	(a)(i)	$180-40$	M 1
		140°	A 1
	(a)(ii)	$180-140-20$	M 1
		20°	A 1
	(a)(iii)	Isosceles	A 1 A 1
	(b)(i)	$\tan 40^{\circ}=\frac{D C}{5}$	M 1
		$D C=4.20 \mathrm{~cm}$	A 1
	(b)(ii)	$\tan 20^{\circ}=\frac{" 4.1955 . . "}{A C}$	M 1
		$A C=11.5 \mathrm{~cm}$	A 1
	(b)(iii)	$" 11.5 "-5=6.5$	A 1
	(c)	$B D=A B=6.5 \mathrm{~cm}$ (accept use of Pythagoras)	A 1 A 1

4	(a)	Correct points plotted	A 3
	(b)	Positive correlation	A 1
	(c)(i)	$85-20=65$	A 1
	(c)(ii)	1129	M 1
		$\frac{1129}{20}$	M 1
		56.45	A 1
	(d)(i)	55	A 1
	(d)(ii)	55	A 1
	(e)	$\frac{5}{20}$ oe	A 1

6	(a)	Correct symbol	A1
	(b)(i)	$180-120=60^{\circ}$	A 1
	(b)(ii)	$\frac{360}{60}$	M 1
		6	A 1
	(b)(iii)	Hexagon	A 1
	(c)(i)	$120-90$ oe	M 1
		30°	A 1
	(c)(ii)	$\frac{360}{30}$	M 1
		12	A 1

7	(a)(i)	$\frac{50}{1000} \times 100$	M1
		5\%	A1
	(a)(ii)	1050×1.075^{4}	M1
		\$1402.24	A1
	(a)(iii)	1402.24-1000	M1
		402.24	A1
	(a)(iv)	$\frac{402.24}{1000} \times 100$	M1
		40.2\%	A1
	(b)(i)	$\frac{500}{134}=3.73 \ldots$	M1
		3×5	M1
		15 sheep	A1
	(b)(ii)	$15 \times \$ 40=\$ 600$	M1
		$\frac{600}{(3 \times 134)}=1.49 \ldots$ (also acceptable: $\frac{135}{5}=26.80, \frac{40}{26.80}=1.49 \ldots$ or: $\frac{134}{5}=26.80,40-26.80=13.2, \frac{13.2}{26.80} \times 100=49 \%$	M1
		49\% profit	A1

8	(a)(i)	$2 x+5=17$	A 1
	(a)(ii)	$2 x=12$	M 1
		$x=6$	A 1
	(b)(i)	$2(x+9)=3 x$	A 1 A 1
	(b)(ii)	$2 x+18=3 x$	M 1
		$x=18$	A 1
	(c)(i)	$3 x+1=4 x+6$	A 1 A 1
	(c)(ii)	$1=x+6$	M 1
		$x=1-6$	M 1
		$x=-5$	A 1

9	(a)	Triangles: 14,18	A1 A1
		Dots: 13,16	A1 A1
	(b)	30,25	A1 A1
	(c)(i)	$4 n-2$	A1 A1
	(c)(ii)	$3 n+1$	A1 A1
	(d)	$7 n-1$	A1

			Total:104

