CAMBRIDGE

Example Practice Papers for Cambridge IGCSE® Mathematics Core Practice Book

Example Practice Paper 1	2
Mark scheme for Paper 1	12
Example Practice Paper 3	14
Mark scheme for Paper 3	27

CAMBRIDGE

NAME

Cambridge IGCSE Mathematics Core Practice Book

Example Practice Paper 1

1 hour

PLEASE NOTE: this example practice paper contains exam-style questions only

READ THESE INSTRUCTIONS FIRST

Answer all questions.

Working for a question should be written below the question.

If the answer is not exact but a degree of accuracy has not been provided, give the answer as follows:

- to three significant figures for all values, except
- to one decimal place for degrees
- for π , use either your calculator value or 3.142.

The number of marks is given in brackets [] next to each question or part question.

The total of the marks for this paper is 56.

PLEASE NOTE: this practice examination paper has been written in association with the below publication and is <u>not</u> an official exam paper:

Paperback 9781107609884

What is the sale price of a television that cost \$650 before the sale?

Written specifically for the publication 'Cambridge IGCSE Mathematics Core Practice Book'. Cambridge International Examinations does not take responsibility for this content or the associated answers. © Cambridge University Press, 2013

5 Simplify the following

6 Work out the value of $5\frac{3}{5} \div 1\frac{2}{3}$.

Show all your working and leave your answer as a fraction.

7 Work out the following.

(a) $3 + 18 \div 3 - 2$

Answer(*a*) [1]

(b) $2 + 3 \times 7 - 4 \div 8$

Points A, B and C are shown on the grid.

(a) Write \overrightarrow{BA} as a column vector.

$$Answer(a) \qquad \overline{BA} = \left(\begin{array}{c} \\ \end{array} \right) \quad [2]$$

$$D \text{ is another point such that } \overline{CD} = \frac{1}{2}\overline{BA}.$$
Plot the point D on the grid above. [1]

(c) What name is given to the shape formed by the points A, B, C and D?

Answer(c)

(

Written specifically for the publication 'Cambridge IGCSE Mathematics Core Practice Book'. Cambridge International Examinations does not take responsibility for this content or the associated answers. © Cambridge University Press, 2013

(b)

9 Solve the simultaneous equations.

2x + y = 43x + 2y = 5

Answer x =

 $y = \dots$ [3]

10 A tourist changes \$500 to euros () when the exchange rate is = \$0.8077.

Calculate the amount he receives. Give your answer correct to 2 decimal places.

Using straight edge and compasses only construct the locus of points that are equidistant from the lines *AB* and *AC*.

Show all your construction arcs clearly.

[2]

12 The area of a semi-circle is 119.2 cm². Calculate the radius of the circle.

- A girl travels 3 miles to visit her friend, completing the journey in 1 hour.She finds her friend is not at home, and immediately makes the return journey at 2 miles per hour.
 - (a) Calculate how long the return journey took.

(b) Calculate the **average** speed for her entire journey.

Answer(b) [2]

14 (a) Factorise $6p^3 + 2pq$

Answer(*a*) [1]

(b) Simplify completely 5(3x-y) - 7(8x-5y)

The line *AB* is tangent, at *D*, to a circle centre *O*. The line *CE* passes through the centre of the circle and is parallel to the line *FG*. Angle $ODF = 32^{\circ}$.

Write down the size of the following angles. In each case give a reason for your answer.

(a)	Angle $DFG = \dots$	because	
	C .		
			[2]
(b)	Angle <i>DCF</i> =	because	
	C		
			[2]
(c)	Angle <i>FDB</i> =	because	
			[2]

The logo above is made up of a triangle and a semi-circle with a smaller semi-circle removed.

Calculate the shaded area.

17	Tiles labelled with the letters M A T H E M A T I C S are placed in a bag. One letter is selected at random.						
	Cal	culate the probability of the following events					
	(a)	Drawing an M.					
			Answer(a)		[1]		
	(b)	Drawing an M or a T.					
			Answer(b)		[1]		
	(c)	Drawing a vowel.					
			Answer(c)		[2]		
18	(a)	Write down all the common factors of 36 and 4	45.				
			Answer(a)		[2]		
	(b) Write down the smallest number which is a multiple of both 25 and 15.						

Answer(b) [2]

- **19** The length of a rectangle is 5 cm, the width is 10 cm. Both measurements are to the nearest cm.
 - (a) Write down the upper bound for the length of the rectangle.

Answer(a)cm [1]

(b) Write down the lower bound for the width of the rectangle.

Answer(*b*)cm [1]

CAMBRIDGE

Cambridge IGCSE Mathematics Core Practice Book

Example Practice Paper 1

Mark Scheme

Key: A – Accuracy marks awarded for a correct answer seen.

M – Method marks awarded for clear attempt to apply correct method.

619.0417234

oe – Or Equivalent. "" – allow M marks for methods that include wrong answers from previous results.

1	(a)	0.304	A1
	(b)	2.169×10^2	A1
L			
2		$35\% < 0.357 < \frac{4}{11}$	A1
3		253 - 180	M1
		73°	A1
4		650×0.67	M1
		\$435.5(0)	A1
5	(a)	24; a^6	A1 A1
	(b)	3-4-5 (manipulating powers)	M1
		$4b^{-6} \text{ or } \frac{4}{b^6}$	A1
			· · · ·
6		$\frac{28}{5} \times \frac{3}{5}$	M1
		$\frac{84}{25}$	A1
L			
7	(a)	7	A1
	(b)	22.5	A1
		1	
8	(a)	$\begin{pmatrix} 4 \\ -2 \end{pmatrix}$	A1 A1
	(b)	Point correctly plotted at co-ordinates (6, 5)	A1
	(c)	Trapezium	A1
L	(-)	1E	
9		4x + 2y = 8 oe	M1
<u> </u>		x = 3; y = -2	A1 A1
L			
10		$500 \div 0.8077$	M1

Written specifically for the publication 'Cambridge IGCSE Mathematics Core Practice Book'. Cambridge International Examinations does not take responsibility for this content. © Cambridge University Press, 2013

A1

		€619.04 (2dp)	A1
11		Arcs same distance from A on AB and AC	M1
		Arcs correctly identifying point on angle bisector and angle bisector drawn	M1 M1
10	1		2.61
12		$119.2 \times 2 \div \pi = 75.88507$	MI
		√"75.88507"	M1
		8.71	Al
12	(a)	$2 \cdot 2 - 15$ hours	A 1
13	(a)	$3 \div 2 = 1.5$ nours (2 + 2) ÷ (1 + 1.5)	AI M1
	(b)	24 mnh	A1
	(0)	2.7 mpn	211
14	(2)	$2n(3n^2 + q)$	Δ 1
14	(a)	$\frac{2p(5p+q)}{15x-5x}$	
	(b)	15x - 5y	MI
		-56x + 35y	Ml
		-41x + 30y	A1
15	(a)	32°; alternate angles	ALAL
	(b)	58°; angle in a semi-circle (angles in a triangle)	
	(0)	38, tangent perpendicular to radius	ALAI
16		1 (10 20	
16		$\frac{-\times6\times10=30}{2}$	MI
		$\pi \times 5^2 - \pi \times 2^2 = 65.9734$	M1
		$"30" + ("65.9734") \div 2 = 63.0$	A1
17	(a)	$\frac{2}{2}$	A1
		11	
	(b)	$\frac{4}{2}$	A1
	(-)	11	
	(c)		A1 A1
		11	
10	(a)	1. 2. 0	A 1 A 1
18	(a)	1, 3, 9 Multiple of 25 and $15 > 75, 75$	
	(0)	$ \text{ wumple of } 25 \text{ and } 15 \ge 15; 15$	ALAI
10	(2)	55 cm (accent 1000 or 10)	Δ1
17	(a) (b)	9.5 cm (accept 4.999 01 4.9)	Δ1
L	(0)	7.5 611	
			Total: 56

CAMBRIDGE

NAME

Cambridge IGCSE Mathematics Core Practice Book

Example Practice Paper 3

2 hours

PLEASE NOTE: this example practice paper contains exam-style questions only

READ THESE INSTRUCTIONS FIRST

Answer all questions.

Working for a question should be written below the question.

If the answer is not exact but a degree of accuracy has not been provided, give the answer as follows:

- to three significant figures for all values, except
- to one decimal place for degrees
- for π , use either your calculator value or 3.142.

The number of marks is given in brackets [] next to each question or part question.

The total of the marks for this paper is 104.

PLEASE NOTE: this practice examination paper has been written in association with the below publication and is <u>not</u> an official exam paper:

Paperback 9781107609884

(a) Complete the table of values for this equation.

x	-2	-1	0	1	2	3	4	5	6	
у				-3	-3			9		
		·				·	·	•		[3

(b) On the grid below, draw the graph of $y = x^2 - 3x - 1$ for $-2 \le x \le 6$.

Written specifically for the publication 'Cambridge IGCSE Mathematics Core Practice Book'. Cambridge International Examinations does not take responsibility for this content or the associated answers. © Cambridge University Press, 2013

(c) (i) Write down the co-ordinate of the lowest point of the graph.

Answer(*c*)(i) (.....) [2]

(ii) Write down the solutions of the equation $x^2 - 3x - 1 = 0$.

Answer(*c*)(ii) x = or x = [2]

- (d) (i) On the grid, draw the straight line with gradient 2 that passes through the origin for $-2 \le x \le 6$. [2]
 - (ii) Write down the equation of your line in the form y = mx + c.

 $Answer(d)(ii) \quad y = \dots$ [2]

(iii) Write down the co-ordinates of the points where the straight line intersects the graph of $y = x^2 - 3x - 1$.

2

$$T = \frac{x+2}{n}$$

- (a) Find T when x = -23 and n = 7.
- Answer(a) $T = \dots$ [2]

(b) Find x when T = 81 and n = 4.

Answer(b) $x = \dots$ [2]

(c) Make x the subject of the formula $T = \frac{x+2}{n}$.

Answer(c) $x = \dots$ [2]

The diagram shows four points A, B, C and D. Angle $CAD = 20^{\circ}$ and angle $CBD = 40^{\circ}$. BC = 5 cm and AC and DC are perpendicular.

(a) (i) Calculate the size of angle ABD.

Answer(a)(i) Angle $ABD = \dots$ [2]

(ii) Calculate the size of angle *ADB*.

 $Answer(a)(ii) Angle ABD = \dots [2]$

(iii) What is the mathematical name for triangle *ABD*?

Written specifically for the publication '*Cambridge IGCSE Mathematics Core Practice Book*'. *Cambridge International Examinations does not take responsibility for this content or the associated answers*. © Cambridge University Press, 2013 (b) (i) Use trigonometry to calculate the length of *DC*.

Answer(b)(i) $DC = \dots cm$ [2]

(ii) Use trigonometry to calculate the length of AC.

 $Answer(b)(ii) AC = \dots cm [2]$

(iii) What is the length of *AB*?

(c) Calculate the length *BD*.

4 The table shows the marks obtained (as a percentage) by 20 students in two tests. One test was taken at the start of the year, and one at the end of the year.

Test 1 %	75	50	30	25	70	50	60	35	65	85
Test 2 %	70	55	30	15	40	35	85	50	55	80
Test 1 %	20	60	70	50	40	80	55	75	60	74
Test 2 %	36	65	80	45	40	65	62	85	45	55

(a) Complete the scatter diagram below to show this information. The first 10 points have been plotted for you.

(b) What type of correlation does the scatter diagram show?

Answer(*b*) [1]

Written specifically for the publication '*Cambridge IGCSE Mathematics Core Practice Book*'. Cambridge International Examinations does not take responsibility for this content or the associated answers. © Cambridge University Press, 2013

(c)	(i)	Find the range of marks in Test 1 .						
	(ii)	Find the mean mark in Test 1 .	<i>Answer(c)</i> (i) %	[1]				
(d)	(i)	Find the mode for the mark in Test 2 .	<i>Answer(c)</i> (ii) %	[3]				
(u)	(1)	T ind the mode for the mark in Test 2.	Answer(d)(i)	[1]				
	(ii)	Find the median for the mark in Test 2						
			Answer(d)(ii)	[1]				
One	One of the 20 students is chosen at random.							
(e)	Wri	te down the probability that the student	scored less than 50% in the first test.					
			Answer(e)	[1]				

(a) On the grid, draw the image of

	(i)	shape A reflected in the y-axis. Label the image B.	[2]
	(ii)	shape A after enlargement, scale factor 2, centre origin. Label the image C .	[2]
	(iii)	shape A after translation by $\begin{pmatrix} 4 \\ -6 \end{pmatrix}$. Label the image D.	[2]
(b)	Des	cribe fully the single transformation which maps	
	(i)	shape A onto shape X,	
			[3]
	(ii)	shape A onto shape Y.	
			[2]

- 7 John invests \$1000 in a bank account at **Bank A**, which earns interest.
 - (a) After 1 year, John has \$1050 in the account.
 - (i) What was the interest rate that John received from the bank?

Answer(a)(i) [2]

John withdraws the money and moves it to **Bank B**. **Bank B** pays 7.5% per year **compound** interest.

(ii) Calculate the amount of money John has after it has been in **Bank B** for 4 years.

(iii) Calculate how much interest John earned in total from both banks.

Answer(*a*)(iii)[2]

(iv) Calculate how much the total interest is, as a percentage of his original \$1000.

Answer(*a*)(iv)[2]

- (b) John spends \$500 of the money on new sheep for his farm. Sheep are sold in lots of 5. Each lot costs \$134.
 - (i) How many sheep can John buy?

(ii) John sells each sheep for \$40.

What is John's percentage profit?

(a)	Tan	nsin thinks of a number, doubles it then adds 5. The result is 17.	
	(i)	Write down an equation in x to represent this information.	
		Answer(a)(i)	[1]
	(ii)	Solve the equation to find the value of x .	
		Answer(a)(ii)	[2]
(b)	Am The	ir thinks of a number, adds 9, then doubles. result is three times the number he first thought of.	
	(i)	Write down an equation in x to represent this information.	
		Answer(b)(i)	[2]
	(ii)	Solve the equation to find the value of x .	[-]
		Answer(b)(ii)	[2]
(c)	Cha The	n-An thinks of a number. He multiplies it by 3, then adds 1. result is the same as if he had multiplied by 4 and added 6.	
	(i)	Write down an equation in x to represent this information.	
		Answer(c)(i)	[2]
	(ii)	Solve the equation to find the value of <i>x</i> .	

The diagram show a pattern of triangles of dots.

(a) Complete the table below.

Diagram number	1	2	3	4	5	
Number of triangles	2	6	10			
Number of dots	4	7	10			
						[4

(b) Work out the number of triangles and the number of dots in the 8th diagram.

Answer (b) Number of triangles = \dots ,	Number of dots =	[2]
--	------------------	-----

(c) (i) Write down an expression for the number of triangles in the nth diagram.

Answer(*c*)(i) [2]

(ii) Write down an expression for the number of dots in the *n*th diagram.

(d) Add together the expressions for the triangles and dots in the nth diagram.

Write your answer as simply as possible.

Answer(d) [1]

Example Practice Paper 3

Mark Scheme

Key: A – Accuracy marks awarded for a correct answer seen.

- M Method marks awarded for clear attempt to apply correct method.

oe – Or Equivalent "" – allow M marks for methods that include wrong answers from previous results.

1	(a)	9 , 3 , -1 , -3 , -3 , -1 , 3 , 9 , 17 (2 correct; 4 correct; All correct)	A1 A1 A1
	(b)		Shape A1 Points A1 Smooth A1 Gradient continuous A1
	(c)(i)	$(1.5, -3.2)$ allow ± 1 square on y co-ordinate	A1 A1
	(c)(ii)	$-0.3, 3.3 \text{ allow} \pm \frac{1}{2} \text{ square}$	A1 A1

2	(a)	$\frac{-23+2}{7}$	M1
		-3	A1
	(b)	$81 = \frac{x+2}{4}$	M1
		322	A1
	(c)	Tn = x + 2	M1
		x = Tn - 2	Al

3	(a)(i)	180 - 40	M1
		140°	A1
	(a)(ii)	180 - 140 - 20	M1
		20°	A1
	(a)(iii)	Isosceles	A1 A1
	(b)(i)	$\tan 40^\circ = \frac{DC}{5}$	M1
		DC = 4.20 cm	A1
	(b)(ii)	$\tan 20^{\circ} = \frac{"4.1955"}{AC}$	M1
		AC = 11.5 cm	A1
	(b)(iii)	"11.5" - 5 = 6.5	Al
	(c)	BD = AB = 6.5 cm (accept use of Pythagoras)	A1 A1

4	(a)	Correct points plotted	A3
	(b)	Positive correlation	A1
	(c)(i)	85 - 20 = 65	A1
	(c)(ii)	1129	M1
		1129	N (1
		$\overline{20}$	M1
		56.45	A1
	(d)(i)	55	A1
	(d)(ii)	55	A1
	(e)	$\frac{5}{20}$ oe	A1

6	(a)	Correct symbol	Al
	(b)(i)	$180 - 120 = 60^{\circ}$	A1
	(b)(ii)	$\frac{360}{60}$	M1
		6	A1
	(b)(iii)	Hexagon	A1
	(c)(i)	120 – 90 oe	M1
		30°	A1
	(c)(ii)	$\frac{360}{30}$	M1
		12	Al

 Written specifically for the publication 'Cambridge IGCSE Mathematics Core Practice Book'. Cambridge International Examinations does not take responsibility for this content.
 © Cambridge University Press, 2013

7	(a)(i)	$\frac{50}{1000} \times 100$	M1
		5%	A1
	(a)(ii)	1050×1.075^4	M1
		\$1402.24	A1
	(a)(iii)	1402.24 - 1000	M1
		402.24	A1
	(a)(iv)	$\frac{402.24}{1000} \times 100$	M1
		40.2%	A1
	(b)(i)	$\frac{500}{134} = 3.73$	M1
		3×5	M1
		15 sheep	A1
	(b)(ii)	$15 \times \$40 = \600	M1
		$\frac{600}{(3\times134)} = 1.49$ (also acceptable: $\frac{135}{5} = 26.80, \ \frac{40}{26.80} = 1.49$ or: $\frac{134}{5} = 26.80, \ 40 - 26.80 = 13.2, \ \frac{13.2}{26.80} \times 100 = 49\%$	M1
		49% profit	A1

8	(a)(i)	2x + 5 = 17	A1
	(a)(ii)	2x = 12	M1
		x = 6	A1
	(b)(i)	2(x+9) = 3x	A1 A1
	(b)(ii)	2x + 18 = 3x	M1
		<i>x</i> = 18	A1
	(c)(i)	3x + 1 = 4x + 6	A1 A1
	(c)(ii)	1 = x + 6	M1
		x = 1 - 6	M1
		x = -5	A1

9	(a)	Triangles: 14, 18	A1 A1
		Dots: 13, 16	A1 A1
	(b)	30, 25	A1 A1
	(c)(i)	4n - 2	A1 A1
	(c)(ii)	3n + 1	A1 A1
	(d)	7 <i>n</i> – 1	A1

Total:104	
-----------	--