Skip to main content Accessibility help
×
Hostname: page-component-7479d7b7d-wxhwt Total loading time: 0 Render date: 2024-07-13T18:55:24.771Z Has data issue: false hasContentIssue false

4 - The signer as an embodied mirror neuron system: neural mechanisms underlying sign language and action

Published online by Cambridge University Press:  01 September 2009

Karen Emmorey
Affiliation:
University San Diego
Michael A. Arbib
Affiliation:
University of Southern California
Get access

Summary

Introduction

“Mirror” neurons are found in area F5 of the monkey brain, and they fire both when a monkey grasps an object and when the monkey observes another individual grasping the object (e.g., Rizzolatti et al., 1996; see Arbib, Chapter 1, this volume, for further discussion). Mirror neurons have also been found in the rostral part of the monkey inferior parietal lobule (Gallese et al., 2002). Like mirror neurons, signers must associate the visually perceived manual actions of another signer with self-generated actions of the same form. Sign language comprehension and production requires a direct coupling between action observation and action execution. However, unlike mirror neurons for hand movements recorded in monkey, signing is not tied to object manipulation. Mirror neurons for grasping in monkey fire only when an object is present or understood to be present and do not fire when just the grasping movement is presented (Umiltà et al., 2001). Furthermore, unlike grasping and reaching movements, sign articulations are structured within a phonological system of contrasts. The hand configuration for a sign is determined by a phonological specification stored in the lexicon, not by the properties of an object to be grasped. These facts have interesting implications for the evolution of language and for the neural systems that underlie sign language and action.

The fact that sign language exhibits form-based patterning of meaningless elements (i.e., phonology) distinguishes signs from actions, even when the two appear quite similar on the surface; for example, the American Sign Language (ASL) sign TO-HAMMER resembles the act of hammering.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Anderson, D., and Reilly, J. S., 1997. The puzzle of negation: how children move from communicative to grammatical negation in ASL. Appl. Psycholing. 18: 411–429.CrossRefGoogle Scholar
Arbib, M. A., 2005. From monkey-like action recognition to human language: an evolutionary framework for neurolinguistics. Behav Brain Sci. 28: 105–167.CrossRefGoogle ScholarPubMed
Bavelier, D., Corina, D., Jezzard, P., et al., 1998. Hemispheric specialization for English and ASL: left invariance-right variability. Neuroreport 9: 1537–1542.CrossRefGoogle ScholarPubMed
Best, C., 1995. A direct realist perspective on cross-language speech perception. In Strange, W. and Jenkins, J. J. (eds.) Cross-Language Speech Perception.Timonium, MD: York Press, pp. 171–204.Google Scholar
Blakemore, S.-J., and Decety, J., 2001. From the perception of action to the understanding of intention. Nature Rev. 2: 561–567.Google ScholarPubMed
Braun, A. R., Varga, M., Stager, S., et al., 1997. Altered patterns of cerebral activity during speech and language production in developmental stuttering: an H2 (15)O positron emission tomography study. Brain 120: 761–784.CrossRefGoogle ScholarPubMed
Braun, A. R., Guillemin, A., Hosey, L., and Varga, V., 2001. The neural organization of discourse: an H215O PET study of narrative production in English and American Sign Language. Brain 124: 2028–2044.CrossRefGoogle Scholar
Brentari, D., 1998. A Prosodic Model of Sign Language Phonology. Cambridge, MA: MIT PressGoogle Scholar
Buccino, G., Binkofski, F., Fink, G. R., et al., 2001. Action observation activates premotor and parietal areas in a somatotopic manner: an fMRI study. Eur. J. Neurosci. 13: 400–404.Google Scholar
Calvert, G. A., and Campbell, R., 2003. Reading speech from still and moving faces: the neural substrates of visible speech. J. Cogn. Neurosci. 15: 57–70.CrossRefGoogle ScholarPubMed
Calvert, G. A., Bullmore, E. T., Brammer, M. J., et al., 1997. Activation of auditory cortex during silent lipreading. Science 276: 593–596CrossRefGoogle ScholarPubMed
Calvo-Merino, B., Glaser, D. E., Grezes, J., Passingham, R. E., and Haggard, P., 2004. Action observation and acquired motor skills: an fMRI study with expert dancers. Cereb Cortex. 15: 1243–1249.CrossRefGoogle ScholarPubMed
Campbell, R., MacSweeney, M., Sugurladze, S., et al., 2001. The specificity of activation for seen speech and form meaningless lower-face acts (gurning). Brain Res. Cog. Res. 12: 233–243.CrossRefGoogle Scholar
Chao, L., and Martin, A., 2000. Representation of manipulable man-made objects in the dorsal stream. Neuroimage 12: 478–484.CrossRefGoogle ScholarPubMed
Choi, S. H., Na, D. L., Kang, E., et al., 2001. Functional magnetic resonance imaging during pantomiming tool-use gestures. Exp. Brain Res. 139: 311–317.CrossRefGoogle ScholarPubMed
Clegg, M., and Aiello, L. C., 2000. Paying the price for speech? An analysis of mortality statistics for choking on food. Am. J. Phys. Anthropol. (Suppl. 30), 126: 9482–9483.Google Scholar
Corballis, M., 2002. From Hand to Mouth: The Origins of Language. Princeton, NJ: Princeton University Press.Google Scholar
Corina, D. P., and Sandler, W., 1993. On the nature of phonological structure in sign language. Phonology 10: 165–207.CrossRefGoogle Scholar
Corina, D. P., Poizner, H., Bellugi, U., et al., 1992. Dissociation between linguistic and non-linguistic gestural systems: a case for compositionality. Brain Lang. 43: 414–447.CrossRefGoogle Scholar
Corina, D. P., McBurney, S. L., Dodrill, C., et al., 1999. Functional roles of Broca's area and supramarginal gyrus: evidence from cortical stimulation mapping in a deaf signer. Neuroimage 10: 570–581.CrossRefGoogle Scholar
Crasborn, O., 2001. Phonetic Implementation of Phonological Categories in Sign Language of the Netherlands. LOT: Utrecht, Netherlands.Google Scholar
Cutler, A., 1987. Speaking for listening. In A. Allport and D. MacKay (eds.), Language Perception and Production: Relationship between Listening, Speaking, Reading, and Writing.San Diego, CA: Academic Press, pp. 23–40.Google Scholar
Damasio, H., Grabowski, T. J., Tranel, D., Hichwa, R., and Damasio, A. R., 1996. A neural basis for lexical retrieval. Nature 380: 499–505.CrossRef
Damasio, H., Grabowski, T. J., Tranel, D., et al., 2001. Neural correlates of naming actions and of naming spatial relations. Neuroimage 13: 1053–1064.CrossRefGoogle ScholarPubMed
Emmorey, K., 2002. Language, Cognition, and the Brain: Insights from Sign Language Research. Mahwah, NJ: Lawrence Erlbaum.Google Scholar
Emmorey, K.(ed.), 2003. Perspectives on Classifier Constructions in Signed Languages. Mahwah, NJ: Lawrence Erlbaum.Google Scholar
Emmorey, K.2005. Signing for viewing: some relations between the production and comprehension of sign language. In Cutler, A. (ed.) Twenty-First Century Psycholinguistics: Four Cornerstones. Mahwah, NJ: Lawrence Erlbaum, pp. 293–309.Google Scholar
Emmorey, K.2006. The role of Broca's area in sign language. In Grodzinsky, Y. and Amunts, K. (eds.) Broca's Region. Oxford, UK: Oxford University Press, pp. 167–182.CrossRefGoogle ScholarPubMed
Emmorey, K., and Corina, D., 1990. Lexical recognition in sign language: effects of phonetic structure and morphology. Percept. Motor Skills 71: 1227–1252.CrossRefGoogle ScholarPubMed
Emmorey, K., and Grabowski, T., 2004. Neural organization for sign versus speech production. J. Cogn. Neurosci. (suppl.): 205.Google Scholar
Emmorey, K., Grabowski, T., McCullough, S., et al., 2003a. Neural systems underlying lexical retrieval for sign language. Neuropsychologia 41: 85–95.CrossRefGoogle ScholarPubMed
Emmorey, K., McCullough, S., and Brentari, D., 2003b. Categorical perception in American Sign Language. Lang. Cogn. Processes 18: 21–45.CrossRefGoogle Scholar
Emmorey, K., Grabowski, T., McCullough, S., et al., 2004. Motor-iconicity of sign language does not alter the neural systems underlying tool and action naming. Brain Lang. 89: 27–37.CrossRefGoogle Scholar
Finney, E. M., Fine, I., and Dobkins, K. R., 2001. Visual stimuli activate auditory cortex in the deaf. Nature Neurosci. 4: 1171–1173.CrossRefGoogle ScholarPubMed
Fowler, C., 1986. An event approach to the study of speech perception: a direct-realist perspective. J. Phonet. 14: 3–28.Google Scholar
Gallese, V., Fadiga, L., Fogassi, L., and Rizzolatti, G., 1996. Action recognition in the premotor cortex. Brain 119: 593–609.CrossRefGoogle ScholarPubMed
Gallese, V., Fadiga, L., Fogassi, L., and Rizzolatti, G., 2002. Action representation and the inferior parietal lobule. In Prinz, W. and Hommel, B. (eds.) Common Mechanisms in Perception and Action. Oxford, UK: Oxford University Press, pp. 334–355.Google Scholar
Goldstein, L., and Fowler, C., 2003. Articulatory phonology: a phonology for public language use. In Schiler, N. and Meyer, A. (eds.) Phonetics and Phonology in Language Comprehension and Production. New York: Mouton de Gruyter, pp. 159–208.CrossRefGoogle Scholar
Grabowski, T. J., Damasio, H., and Damasio, A., 1998. Premotor and prefrontal correlates of category-related lexical retrieval. Neuroimage 7: 232–243.CrossRefGoogle ScholarPubMed
Grafton, S., Fadiga, L., Arbib, M., and Rizzolatti, G., 1997. Premotor cortex activation during observation and naming of familiar tools. Neuroimage 6: 231–236.CrossRefGoogle ScholarPubMed
Grossman, E., Donnelly, M., Price, R., et al., 2000. Brain areas involved in perception of biological motion. J. Cogn. Neurosci. 12: 711–720.CrossRefGoogle ScholarPubMed
Heilman, K. M., Rothi, I. J., and Valenstein, E., 1982. Two forms of ideomotor apraxia. Neurology 32: 342–346.CrossRefGoogle ScholarPubMed
Hickok, G., and Poeppel, D., 2000. Towards a functional neuroanatomy of speech perception. Trends Cogn. Sci. 4: 131–138.CrossRefGoogle ScholarPubMed
Hickok, G., Bellugi, U., and Klima, E. S. (1998). What's right about the neural organization of sign language? A perspective on recent neuroimaging results. Trends Cogn. Sci. 2: 465–468.CrossRefGoogle ScholarPubMed
Hickok, G., Love-Geffen, T., and Klima, E. S., 2002. Role of the left hemisphere in sign language comprehension. Brain Lang. 82: 167–178.CrossRefGoogle ScholarPubMed
Horwitz, B., Amunts, K., Bhattacharyya, R., et al., 2003. Activation of Broca's area during the production of spoken and signed language: a combined cytoarchitectonic mapping and PET analysis. Neuropsychologia 41: 1868–1876.CrossRefGoogle ScholarPubMed
Iacoboni, M., Woods, R. P., Brass, M., et al., 1999. Cortical mechanisms of human imitation. Science 286: 2526–2528.CrossRefGoogle ScholarPubMed
Iacoboni, M., Molnar-Szakacs, I., Gallese, V., et al., 2005. Grasping the intentions of others with one's own mirror neuron system. PLoS Biol. 3 (3): e79.CrossRefGoogle ScholarPubMed
Indefrey, P., and Levelt, W. J., 2004. The spatial and temporal signatures of word production components. Cognition 92: 101–144.CrossRefGoogle ScholarPubMed
Indefrey, P., and Levelt, W., 2000. The neural correlates of language production. In Gazzaniga, M. (ed.) The New Cognitive Neurosciences.Cambridge, MA: MIT Press, pp. 845–865.Google Scholar
Janzen, T., and Shaffer, B., 2002. Gesture as the substrate in the process of ASL grammaticalization. In Meier, R. P., Cormier, K., and Quinto-Pozos, D. (eds.) Modality and Structure in Signed and Spoken Languages. Cambridge, UK: Cambridge University Press, pp. 199–223.CrossRefGoogle Scholar
Ladefoged, P., 2000. A Course in Phonetics, 3rd edn. Zurich, Switzerland: Heinle.Google Scholar
Levänen, S., Uutela, K., Salenius, S., and Hari, R., 2001. Cortical representation of sign language: comparison of deaf signers and hearing non-signers. Cereb. Cortex 11: 506–512.CrossRefGoogle ScholarPubMed
Liberman, A., 1996. Speech: A Special Code. Cambridge, MA: Bradford Books.Google Scholar
MacSweeney, M., Amaro, E., Calvert, G. A., et al., 2000. Activation of auditory cortex by silent speechreading in the absence of scanner noise: an event-related fMRI study. Neuroreport 11: 1729–1734.CrossRefGoogle Scholar
MacSweeney, M., Woll, B., Campbell, R., et al., 2002. Neural systems underlying British Sign Language and audio-visual English processing in native users. Brain 125: 1583–1593.CrossRefGoogle ScholarPubMed
MacSweeney, M., Campbell, R., Woll, B., et al., 2004. Dissociating linguistic and nonlinguistic gestural communication in the brain. Neuroimage 22: 1605–1618.CrossRefGoogle Scholar
Marshall, J., Atkinson, J., Smulovitch, E., Thacker, A., and Woll, B., 2004. Aphasia in a user of British Sign Language: dissociation between sign and gesture. Cogn. Neuropsychol. 21: 537–554.CrossRefGoogle Scholar
Mayberry, R., 1994. The importance of childhood to language acquisition: insights from American Sign Language. In Goodman, J. C. and Nusbaum, H. C. (eds.) The Development of Speech Perception: The Transition from Speech Sounds to Words. Cambridge, MA: MIT Press, pp. 57–90.Google Scholar
Mayberry, R.1995. Mental phonology and language comprehension or What does that sign mistake mean? In Emmorey, K. and Reilly, J. (eds.) Language, Gesture, and Space. Hillsdale, NJ: Lawrence Erlbaum, pp. 355–370.Google Scholar
Mayberry, R. I., and Fischer, S. D., 1989. Looking through phonological shape to lexical meaning: the bottleneck of non-native sign language processing. Mem. Cogn. 17: 740–754.CrossRefGoogle ScholarPubMed
McCullough, S., Emmorey, K., and Sereno, M., 2005. Neural organization for recognition of grammatical and emotional facial expressions in deaf ASL signers and hearing nonsigners. Brain Res. Cogn. Brain Res. 22: 193–203.CrossRefGoogle ScholarPubMed
McDonald, P. A., and Paus, T., 2003. The role of parietal cortex in awareness of self-generated movements: a transcranial magnetic stimulation study. Cereb. Cortex 13: 962–967.CrossRefGoogle Scholar
McGuire, P., Silbersweig, D. A., and Frith, C. D., 1996. Functional neuroanatomy of verbal self-monitoring. Brain 119: 907–917.CrossRefGoogle ScholarPubMed
Moll, J., Oliveira-Souza, R., Passman, L. J., et al., 2000. Functional MRI correlates of real and imagined tool-use pantomimes. Neurology 54: 1331–1336.CrossRefGoogle ScholarPubMed
Mountcastle, V. B., Lynch, J. C., Georgopoulos, A., Sakata, H., and Acuna, C., 1975. Posterior parietal association cortex of the monkey: command functions for operations within extrapersonal space. J. Neurophysiol. 38: 871–908.CrossRefGoogle ScholarPubMed
Neville, H. J., Bavelier, D., Corina, D., et al., 1998. Cerebral organization for language in deaf and hearing subjects: biological constraints and effects of experience. Proc. Natl Acad. Sci. USA 95: 922–929.CrossRefGoogle ScholarPubMed
Newman, A., Bavelier, D., Corina, D., Jezzard, P., and Neville, H. J., 2002. A critical period for right hemisphere recruitment in American Sign Language processing. Nature Neurosci. 5: 76–80.CrossRefGoogle ScholarPubMed
Newport, E. L., and Meier, R. P., 1985. The acquisition of American Sign Language. In Slobin, D. (ed.) The Cross-Linguistic Study of Language Acquisition. Hillsdale, NJ: Lawrence Erlbaum, pp. 881–938.Google Scholar
Nishimura, H., Hashikawa, K., Doi, K., et al., 1999. Sign language “heard” in the auditory cortex. Nature 397: 116.CrossRefGoogle ScholarPubMed
Papathanassiou, D., Etard, O., Mellet, E., et al., 2000. A common language netword for comprehension and production: a contribution to the definition of language epicenters with PET. Neuroimage 11: 347–357.CrossRefGoogle Scholar
Paulesu, E., Perani, D., Blasi, V., et al., 2003. A functional–anatomical model for lipreading. J. Neurophysiol. 90: 2005–2013.CrossRefGoogle ScholarPubMed
Petitto, L. A., 1987. On the autonomy of language and gesture: evidence from the acquisition of personal pronouns in American Sign Language. Cognition 27: 1–52.CrossRefGoogle ScholarPubMed
Petitto, L. A., Zatorre, R. J., Gauna, K., et al., 2000. Speech-like cerebral activity in profoundly deaf people processing signed languages: implications for the neural basis of human language. Proc. Natl Acad. Sci. USA 97: 13961–13966.CrossRefGoogle ScholarPubMed
Quinto-Pozos, D., 2003. Contact between Mexican Sign Language and American Sign Language in two Texas border areas. Ph. D. dissertation, University of Texas, Austin, TX.
Rizzolatti, G. and Arbib, M., 1998. Language within our grasp. Trends Neurosci. 21: 188–194.CrossRefGoogle ScholarPubMed
Rizzolatti, G., Fadiga, L., Matelli, M., et al., 1996. Premotor cortex and the recognition of motor actions. Cogn. Brain Res. 71: 491–507.Google Scholar
Rizzolatti, G., Fogassi, L., and Gallese, V., 2002. Motor and cognitive functions of the ventral premotor cortex. Curr. Opin. Neurobiol. 12: 149–154.CrossRefGoogle ScholarPubMed
Rothi, L. J., Heilman, K. M., and Watson, R. T., 1985. Pantomime comprehension and ideomotor apraxia. J. Neurol. Neurosurg. Psychiat. 48: 207–210.CrossRefGoogle ScholarPubMed
Sadato, N., Yamada, H., Okada, T., et al., 2004. Age-dependent plasticity in the superior temporal sulcus in deaf humans: a functional MRI study. BMC Neurosci. 5: 56–61.CrossRefGoogle ScholarPubMed
Sakai, K. L., Tatsuno, Y., Suzuki, K., Kimura, H., and Ichida, Y., 2005. Sign and speech: amodal commonality in left hemisphere dominance for comprehension of sentences. Brain 128: 1407–1417.CrossRefGoogle ScholarPubMed
Sandler, W., 1989. Phonological Representation of the Sign: Linearity and Nonlinearity in American Sign Language. Dordrecht, Netherlands: Foris.CrossRefGoogle Scholar
San, José-Robertson L., Corina, D. P., Ackerman, D., Guillemin, A., and Braun, A. R., 2004. Neural systems for sign language production: mechanisms supporting lexical selection, phonological encoding, and articulation. Hum. Brain Map. 23: 156–167.Google Scholar
Sekiyama, K., Kanno, I., Miura, S., and Sugita, Y., 2003. Auditory–visual speech perception examined by fMRI and PET. Neurosci. Res. 47: 277–287.CrossRefGoogle ScholarPubMed
Senghas, A., 2003. Intergenerational influence and ontogenetic development in the emergence of spatial grammar in Nicaraguan Sign Language. Cogn. Devel. 18: 511–531.CrossRefGoogle Scholar
Skipper, J. I., Nusbaum, H. C., and Small, S. L., 2005. Listening to talking faces: motor cortical activation during speech perception. Neuroimage 25: 76–89.CrossRefGoogle ScholarPubMed
Söderfeldt, B., Rönnberg, J., and Risberg, J., 1994. Regional cerebral blood flow in sign language users. Brain Lang. 46: 59–68.CrossRefGoogle ScholarPubMed
Söderfeldt, B., Ingvar, M., Rönnberg, J., et al., 1997. Signed and spoken language perception studied by positron emission tomography. Neurology 49: 82–87.CrossRefGoogle ScholarPubMed
Stevens, K., and Blumstein, S., 1981. The search for invariant acoustic correlates of phonetic features. In Eimas, P. D. and Miller, J. L. (eds.) Perspectives on the Study of Speech. Hillsdale, NJ: Lawrence Erlbaum, pp. 1–38.Google Scholar
Supalla, T., and Newport, E., 1978. How many seats in a chair? The derivation of nouns and verbs in American Sign Language. In Siple, P. (ed). Understanding Language through Sign Language Research. New York: Academic Press.Google Scholar
Talairach, J., and Tournoux, P., 1988. Co-Planar Stereotaxic Atlas of the Human Brain. New York: Thieme.Google Scholar
Tanaka, S., and Inui, T., 2002. Cortical involvement for action imitation of hand/arm versus finger configurations: an fMRI study. Neuroreport 13: 1599–1602.CrossRefGoogle Scholar
Tanaka, S., Inui, T., Iwaki, S., Konishi, J., and Nakai, T., 2001. Neural substrates involved in imitating finger configurations: an fMRI study. Neuroreport 12: 1171–1174.CrossRefGoogle Scholar
Taub, S., 2001. Language from the Body: Iconicity and Metaphor in American Sign Language. New York: Cambridge University Press.CrossRefGoogle Scholar
Tomasello, M., Savage-Rumbaugh, S., and Kruger, A. C., 1993. Imitative learning of actions on objects by children, chimpanzees, and enculturated chimpanzees. Child Devel. 64: 1688–705.CrossRefGoogle ScholarPubMed
Umiltá, M. A., Kohler, E., Gallese, V., et al., 2001. I know what you are doing: a neurophysiological study. Neuron 31: 155–165.CrossRefGoogle ScholarPubMed
Vaina, L. M., Solomon, J., Chowdhury, S., Sinha, P., and Belliveau, J. W., 2001. Functional neuroanatomy of biological motion perception in humans. Proc. Natl Acad. Sci. USA 98: 11656–11661.CrossRefGoogle ScholarPubMed
Volterra, V., and Iverson, J., 1995. When do modality factors affect the course of language acquisition? In Emmorey, K. and Reilly, J. (eds.) Language, Gesture, and Space. Hillsdale, NJ: Lawrence Erlbaum, pp. 371–390.Google Scholar
Watanabe, J., Sugiura, M., Miura, N., et al., 2004. The human parietal cortex is involved in spatial processing of tongue movement: an fMRI study. Neuroimage 21: 1289–1299.CrossRefGoogle Scholar
Wise, R. J. S., Scott, S. K., Blank, S. C., et al., 2001. Separate neural subsystems within ‘Wernicke's’ area. Brain 124: 83–95.CrossRefGoogle ScholarPubMed
Wolpert, D. M., Goodbody, S. J., and Husain, M., 1998. Maintaining internal representations: the role of the human superior parietal lobe. Nature Neurosci. 1: 529–533.CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×