Skip to main content Accessibility help
×
Hostname: page-component-77c89778f8-m42fx Total loading time: 0 Render date: 2024-07-23T01:19:46.441Z Has data issue: false hasContentIssue false

5 - The method of separation of variables

Published online by Cambridge University Press:  05 September 2012

Yehuda Pinchover
Affiliation:
Technion - Israel Institute of Technology, Haifa
Jacob Rubinstein
Affiliation:
Indiana University
Get access

Summary

Introduction

We examined in Chapter 1 Fourier's work on heat conduction. In addition to developing a general theory for heat flow, Fourier discovered a method for solving the initial boundary value problem he derived. His solution led him to propose the bold idea that any real valued function defined on a closed interval can be represented as a series of trigonometric functions. This is known today as the Fourier expansion. D'Alembert and the Swiss mathematician Daniel Bernoulli (1700–1782) had actually proposed a similar idea before Fourier. They claimed that the vibrations of a finite string can be formally represented as an infinite series involving sinusoidal functions. They failed, however, to see the generality of their observation.

Fourier's method for solving the heat equation provides a convenient method that can be applied to many other important linear problems. The method also enables us to deduce several properties of the solutions, such as asymptotic behavior, smoothness, and well-posedness. Historically, Fourier's idea was a breakthrough which paved the way for new developments in science and technology. For example, Fourier analysis found many applications in pure mathematics (number theory, approximation theory, etc.). Several fundamental theories in physics (quantum mechanics in particular) are heavily based on Fourier's idea, and the entire theory of signal processing is based on Fourier's method and its generalizations.

Nevertheless, Fourier's method cannot always be applied for solving linear differential problems. The method is applicable only for problems with an appropriate symmetry.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×