Skip to main content Accessibility help
×
Hostname: page-component-5c6d5d7d68-lvtdw Total loading time: 0 Render date: 2024-08-09T10:44:59.890Z Has data issue: false hasContentIssue false

5 - The Dirac equation and the Dirac field

Published online by Cambridge University Press:  05 September 2012

W. N. Cottingham
Affiliation:
University of Bristol
D. A. Greenwood
Affiliation:
University of Bristol
Get access

Summary

The Standard Model is a quantum field theory. In Chapter 4 we discussed the classical electromagnetic field. The transition to a quantum field will be made in Chapter 8. In this chapter we begin our discussion of the Dirac equation, which was invented by Dirac as an equation for the relativistic quantum wave function of a single electron. However, we shall regard the Dirac wave function as a field, which will subsequently be quantised along with the electromagnetic field. The Dirac equation will be regarded as a field equation. The transition to a quantum field theory is called second quantisation. The field, like the Dirac wave function, is complex. We shall show how the Dirac field transforms under a Lorentz transformation, and find a Lorentz invariant Lagrangian from which it may be derived.

On quantisation, the electromagnetic fields Aμ(x), Fμν(x) become space- and time-dependent operators. The expectation values of these operators in the environment described by the quantum states are the classical fields. The Dirac fields ψ(x) also become space- and time-dependent operators on quantisation. However, there are no corresponding measurable classical fields. This difference reflects the Pauli exclusion principle, which applies to fermions but not to bosons. In this chapter and in the following two chapters, the properties of the Dirac fields as operators are rarely invoked: for the most part the manipulations proceed as if the Dirac fields were ordinary complex functions, and the fields can be thought of as single-particle Dirac wave functions.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×