Skip to main content Accessibility help
×
Hostname: page-component-5c6d5d7d68-lvtdw Total loading time: 0 Render date: 2024-08-10T04:18:28.829Z Has data issue: false hasContentIssue false

1 - The particle physicist's view of Nature

Published online by Cambridge University Press:  05 September 2012

W. N. Cottingham
Affiliation:
University of Bristol
D. A. Greenwood
Affiliation:
University of Bristol
Get access

Summary

Introduction

It is more than a century since the discovery by J. J. Thomson of the electron. The electron is still thought to be a structureless point particle, and one of the elementary particles of Nature. Other particles that were subsequently discovered and at first thought to be elementary, like the proton and the neutron, have since been found to have a complex structure.

What then are the ultimate constituents of matter? How are they categorised? How do they interact with each other? What, indeed, should we ask of a mathematical theory of elementary particles? Since the discovery of the electron, and more particularly in the last sixty years, there has been an immense amount of experimental and theoretical effort to determine answers to these questions. The present Standard Model of particle physics stems from that effort.

The Standard Model asserts that the material in the Universe is made up of elementary fermions interacting through fields, of which they are the sources. The particles associated with the interaction fields are bosons.

Four types of interaction field, set out in Table 1.1., have been distinguished in Nature. On the scales of particle physics, gravitational forces are insignificant. The Standard Model excludes from consideration the gravitational field. The quanta of the electromagnetic interaction field between electrically charged fermions are the massless photons. The quanta of the weak interaction fields between fermions are the charged W+ and W bosons and the neutral Z boson, discovered at CERN in 1983.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×