Skip to main content Accessibility help
×
Hostname: page-component-77c89778f8-swr86 Total loading time: 0 Render date: 2024-07-16T14:36:53.794Z Has data issue: false hasContentIssue false

Chapter 8 - Ancient DNA and its Application to the Reconstruction of Human Evolution and History

Published online by Cambridge University Press:  05 June 2012

Dennis H. O'Rourke
Affiliation:
University of Utah
Michael H. Crawford
Affiliation:
University of Kansas
Get access

Summary

Introduction

The use of ancient nucleic acids to infer population history and phylogeny is now entering its third decade, with the initial demonstration of the possibility and utility of the approach pioneered by Higuchi et al. (1984) on museum specimens of the extinct quagga, and by Pääbo (1985) on preserved soft tissue from Egyptian mummies. Now uniformly termed ancient DNA (aDNA) studies, the approach has exploded in the past decade to encompass studies of modern human origins, regional history and dynamics of prehistoric human populations, as well as phylogenetic studies of nonhuman organisms. A full review of this vast and rapidly growing literature is beyond the scope of this chapter, and interested readers are directed to several excellent and recent reviews of the field from a variety of disciplinary perspectives (e.g. Wayne et al., 1999; O'Rourke et al., 2000a; Hofreiter et al., 2001a; Kaestle and Horsburgh, 2002, Pääbo et al., 2004, Cipollaro et al., 2005).

The study of contemporary patterns of human genetic variation has proven a powerful approach to inferring human population history and evolution, although such approaches are bound by assumptions of evolutionary rates in the markers under study, effective population sizes over time, rates of population movement, levels of admixture, etc. The use of aDNA analyses in conjunction with such modern genetic studies affords a temporal perspective on human genetic variation that is, to some degree, independent of model assumptions.

Type
Chapter
Information
Anthropological Genetics
Theory, Methods and Applications
, pp. 210 - 232
Publisher: Cambridge University Press
Print publication year: 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Adachi, N., Umetsu, K., Takigawa, W. and Sakaue, K. (2004). Phylogenetic analysis of the human ancient mitochondrial DNA. J. Archaeol. Sci., 31, 1339–48CrossRefGoogle Scholar
Anderson, S., Bankier, A., Arrell, B., Bruijn, M., Coulson, A., Drouin, J., Eperon, I., Nierlich, D., Roe, B., Sanger, F., Schreier, P., Smith, A., Staden, R. and Young, I. (1981). Sequence and organization of the human mitochondrial genome. Nature, 290, 457–65CrossRefGoogle ScholarPubMed
Arriaza, B. T., Salo, W., Auferheide, A. C. and Holcomb, T. A. (1995). Pre-Columbian tuberculosis in Northern Chile – molecular and skeletal evidence. Amer. J. Phys. Anthropol., 98, 37–45CrossRefGoogle ScholarPubMed
Barnes, I., Matheus, P., Shapiro, B., Jensen, D. and Cooper, A. (2002). Dynamics of Pleistocene population extinctions in Beringian brown bears. Science, 295, 2267–70CrossRefGoogle ScholarPubMed
Basler, C. F., Reid, A. H., Dybing, J. K., Janczewski, T. A., Fanning, T. G., Zheng, H., Salvatore, M., Perdue, M. L., Swayne, D. E., García-Sastre, A., Palese, P. and Taubenberger, J. K. (2001). Sequence of the 1918 pandemic influenza virus nonstructural gene (SN) segment and characterization of recombinant viruses bearing the 1918 NS genes. PNAS, 98, 2746–51CrossRefGoogle ScholarPubMed
Batista dos Santos, S. E., Rodrigues, J. D., Ribeiro-Dos-Santos, A. K. C. and Zago, M. A. (1999). Differential contribution of indigenous men and women to the formation of an urban population in the Amazon Region as revealed by mtDNA and Y-DNA. Amer. J. Phys. Anthrop., 109, 175–803.0.CO;2-#>CrossRefGoogle ScholarPubMed
Bosch, E., Calafell, F., Rosser, Z. H., Norby, S., Lynnerup, N., Hurles, M. E. and Jobling, M. A. (2003). High level of male-biased Scandinavian admixture in Greenlandic Inuit shown by Y-chromosomal analysis. Hum. Genet., 112, 353–63Google ScholarPubMed
Bouwman, A. S. and Brown, T. A. (2005). The limits of biomolecular paleopathology: ancient DNA cannot be used to study venereal syphilis. J. Archaeol. Sci., 32, 703–13CrossRefGoogle Scholar
Caramelli, D., Lalueza-Fox, C., Vernesi, C., Lari, M., Casoli, A., Mallegni, F., Chiarelli, B., Dupanloup, I., Bertranpetit, J., Barbujani, G. and Bertorelle, G. (2003). Evidence for a genetic discontinuity between Neandertals and 24,000-year-old anatomically modern Europeans. PNAS, 100, 6593–97CrossRefGoogle ScholarPubMed
Cipollaro, M., Galderisi, U. and DiBernardo, G. (2005). Ancient DNA as a multidisciplinary experience. J. Cell Physiol., 202, 315–22CrossRefGoogle ScholarPubMed
Coltrain, J. B., Hayes, M. G. and O'Rourke, D. H. (2004). Sealing, whaling and caribou: the skeletal isotope chemistry of Eastern Arctic foragers. J. Arch. Sci., 31, 39–57CrossRefGoogle Scholar
Coltrain, J. B., Hayes, M. G. and O'Rourke, D. H. (2006). A radiometric evaluation of Hrdlicka's Aleutian replacement hypothesis: population continuity and morphological change. Current Anthropology, in press.
Cooper, A. and Poinar, H. (2000). Ancient DNA: do it right or not at all. Science, 289, 1139.CrossRefGoogle ScholarPubMed
Di Bernardo, G., Del Gaudio, S., Cammarota, M., Galderisi, U., Cascino, A. and Cipollaro, M. (2002). Enzymatic repair of selected cross-linked homoduplex molecules enhances nuclear gene rescue from Pompeii and Herculaneum remains. Nucleic Acids Res., 30, e16.CrossRefGoogle ScholarPubMed
Donoghue, H. D., Spigelman, M., Zias, J., Gernaey-Child, A. M. and Minnikin, D. E. (1998). Mycobacterium tuberculosis complex DNA in calcified pleura from remains 1400 years old. Let. Appl. Microbiol., 27, 265–9CrossRefGoogle ScholarPubMed
Drancourt, M., Aboudharam, G., Signoli, M., Dutour, O. and Raoult, D. (1998). Detection of 400-year old Yersinia pestis DNA in human dental pulp: an approach to the diagnosis of ancient septicemia. Proc. Natl. Acad. Sci., USA, 95, 12637–40CrossRefGoogle Scholar
Eshleman, J. A. and Smith, D. G. (2001). Use of DNase to eliminate contamination in ancient DNA analysis. Electrophoresis, 22, 4316–193.0.CO;2-V>CrossRefGoogle ScholarPubMed
Gilbert, M. T. P., Willerslev, E., Hansen, A. J., Barnes, I., Rudbeck, L., Lynnerup, N. and Cooper, A. (2003). Distribution patterns of postmortem damage in human mitochondrial DNA. Amer. J. Hum. Genet., 72, 32–47CrossRefGoogle ScholarPubMed
Gilbert, M. T. P., Wilson, A. S., Bunce, M., Hansen, A. J., Willerslev, E., Shapiro, B., Higham, T. F. G., Richards, M. P., O'Connell, T. C., Tobin, D. J., Janaway, R. C. and Cooper, A. (2004a). Ancient mitochondrial DNA from hair. Curr. Biol., 14, R463–R464.CrossRefGoogle Scholar
Gilbert, M. T. P., Cuccui, J., White, W., Lynnerup, N., Titball, R. W.et al. (2004b). Absence of Yersinia pestis-specific DNA in human teeth from five European excavations of putative plague victims, Microbiol. Sgm., 150, 341–54CrossRefGoogle Scholar
Gilbert, M. T. P., Rudbeck, L., Willerslev, E., Hansen, A. J., Smith, C., Penkman, K. E. H., Prangenberg, K., Nielsen-Marsh, C. M., Jans, M. E., Arthur, P., Lynnerup, N., Turner-Walker, G., Biddle, M., Kjølbye-Biddle, B. and Collins, M. J. (2005). Biochemical and physical correlates of DNA contamination in archaeological human bones and teeth excavated at Matera, Italy. J. Archaeol. Sci., 32, 785–93CrossRefGoogle Scholar
Guhl, F., Jaramillo, C., Valleho, G. A., Yockteng, R., Cárdenas-Arroyo, F.et al. (1999). Isolation of Trypanosoma cruzi DNA in 4,000-year-old mummified human tissue from Northern Chile. Amer. J. Phys. Anthrop., 108, 401–07Google ScholarPubMed
Gutiérrez, G., Sánchez, D. and Marín, A. (2002). A reanalysis of the ancient mitochondrial DNA sequences recovered from Neandertal bones. Mol. Biol. Evol., 19, 1359–66CrossRefGoogle ScholarPubMed
Handt, O., Höss, M., Krings, M. and Pääbo, S. (1994a). Ancient DNA: methodological challenges. Experientia, 50, 524–9CrossRefGoogle Scholar
Handt, O., Richards, M., Trommsdorff, M., Kilger, C., Simanainen, J.et al. (1994b). Molecular genetic analyses of the Tyrolean ice man. Science, 264, 1175–8CrossRefGoogle Scholar
Hänni, C., Brousseau, T., Laudet, V. and Stehelin, D. (1995). Isoproponaol precipitation removes PCR inhibitors from ancient bone extracts. Nucleic Acid Res., 23, 881–2CrossRefGoogle ScholarPubMed
Hansen, A., Willerslev, E., Wiuf, C., Mourier, T. and Arctander, P. (2001). Statistical evidence for miscoding lesions in ancient DNA templates. Mol. Biol. Evol., 18, 262–5CrossRefGoogle ScholarPubMed
Hawkes, J., Hunley, K., Lee, S. H. and Wolpoff, M. (2000). Population bottlenecks and Pleistocene human evolution. Mol. Biol. Evol., 17, 2–22CrossRefGoogle Scholar
Hayes, M. G. (2002). Paleogenetic Assessments of Human Migration and Population Replacement in North American Arctic Prehistory. Ph.D. Dissertation, University of Utah.
Hayes, M. G, Coltrain, J. B.and, D. H. (2006). Genetic signature of human population replacement coincident with paleoclimatic change in the North American Arctic. Submitted.
Higuchi, R., Bowman, B., Freiberger, M., Ryder, O. A. and Wilson, A. C. (1984). DNA sequences from the quagga, an extinct member of the horse family. Nature, 312, 282–4CrossRefGoogle ScholarPubMed
Hofreiter, M., Serre, D., Poinar, H. N., Kuch, M. and Pääbo, S. (2001a). Ancient DNA. Nature Rev. Genet., 2, 353–9CrossRefGoogle Scholar
Hofreiter, M., Jaenicke, V., Serre, D., Haeseler, A. and Pääbo, S. (2001b). DNA sequences from multiple amplifications reveal artifacts induced by cytosine deamination in ancient DNA. Nucleic Acids Res., 29, 4793–9CrossRefGoogle Scholar
Höss, M., Jaruga, P., Zastawny, T., Dizdaroglu, M. and Pääbo, S. (1996). DNA damage and DNA sequence retrieval from ancient tissue. Nucleic Acids Res., 24, 1304–7CrossRefGoogle Scholar
Hrdlicka, A. (1945). The Aleutian and Commander Islands and Their Inhabitants. The Wistar Institute of Anatomy and Biology, Philadelphia.Google Scholar
Kaestle, F. A. and Horsburgh, K. A. (2002). Ancient DNA in anthropology: methods, applications and ethics. Yrbk Phys. Anthrop, 45, 92–130CrossRefGoogle Scholar
Karanth, K. P., Delefosse, T., Rakotosamimanana, B., Parsons, T. J. and Yoder, A. D. (2005). Ancient DNA from giant extinct lemurs confirms single origin of Malagasy primates. PNAS, 102, 5090–5CrossRefGoogle ScholarPubMed
Kiesslich, J., Radacher, M., Neuhuber, F., Meyer, H. J. and Zeller, K. W. (2002). On the use of nitrocellulose memberanes for dialysis-mediated purification of ancient DNA from human bone and teeth extracts. Ancient Biomol., 4, 79–87CrossRefGoogle Scholar
Kolman, C. J., Centurion-Lara, A., Lukehart, S. A., Owsley, D. A. and Tuross, N. (1999). Identification of Treponema pallidum subspecies pallidum in a 200-year-old skeletal specimen. J. Infect. Dis., 180, 2060–3CrossRefGoogle Scholar
Krings, M., Stone, A., Schmitz, R. W., Krainitzki, H, Stoneking, M. and Pääbo, S. (1997). Neandertal DNA sequences and the origin of modern humans. Cell, 90, 19–30CrossRefGoogle ScholarPubMed
Krings, M., Geisert, H., Schmitz, R. W., Krainitzki, H. and Pääbo, S. (1999). DNA sequence of the mitochondrial hypervariable region II from the Neandertal type specimen. PNAS, 96, 5581–5CrossRefGoogle ScholarPubMed
Krings, M., Capelli, C., Tschentscher, F., Geisert, H., Meyer, S.et al. (2000). A view of Neandertal genetic diversity. Nat. Genet., 26, 144–6CrossRefGoogle ScholarPubMed
Lalueza-Fox, C., Sampietro, M. L., Caramelli, D., Puder, Y., Lari, M., Calafell, F., Martínez-Maza, C., Bastir, M., Fortea, J., Rasilla, M., Bertranpetit, J. and Rosas, A. (2005). Neandertal evolutionary genetics: mitochondrial DNA data from the Iberian peninsula. Mol. Biol. Evol., 22, 1077–81CrossRefGoogle ScholarPubMed
Lambert, D. M., Ritchie, P. A., Miller, C. D., Holland, B., Drummond, A. J. and Baroni, C. (2002) Rates of evolution in ancient DNA from Adelie penguins. Science, 295, 2270–3CrossRefGoogle ScholarPubMed
Lau, A., Wyuatt, M., Glassner, B., Samson, L. and Ellenberger, T. (2000). Molecular basis for discrimination between normal and damaged bases by the human alkyladenine glycosylase, AAG. PNAS, 97, 13575–8CrossRefGoogle Scholar
Leonard, J. A., Wayne, R. K. and Cooper, A. (2000). Population genetics of Ice Age brown bears. Proc. Natl. Acad. Sci., USA, 97, 1651–4CrossRefGoogle ScholarPubMed
Longo, M. C., Berninger, M. S. and Hartley, J. L. (1990). Use of uracil DNA glycosylase to control carry-over contamination in polymerase chain reactions. Gene, 93, 125–8CrossRefGoogle ScholarPubMed
Matisoo-Smith, E., Roberts, R. M., Allen, J. S., Irwin, G. J., Penny, D. and Lambert, D. M. (1997). Patterns of human colonization in Polynesia revealed by mitochondrial DNA from the Polynesian rat. PNAS, 95, 15145–50CrossRefGoogle Scholar
McCartney, A. P. (1984). Prehistory of the Aleutian Region. In Handbook of North American Indians, Vol. 5 The Arctic, ed. Damas, D.. Washington, DC: Smithsonian Institution, p. 119–35.Google Scholar
Nielsen-Marsh, C. M., Ostrom, P. H., Gandhi, H., Shapiro, B., Cooper, A., Hauschka, P. V. and Collins, M. J. (2002). Sequence preservation of osteocalcin protein and mitochondrial DNA in Bison bones older than 55 ka. Geology, 30, 1099–11022.0.CO;2>CrossRefGoogle Scholar
Nordborg, M. (1998). On the probability of Neanderthal ancestry. Amer. J. Hum. Genet., 63, 1237–40CrossRefGoogle ScholarPubMed
O'Rourke, D. H., Hayes, M. G. and Carlyle, S. W. (2000a). Ancient DNA studies in physical anthropology. Ann. Rev. Anthropology, 29, 217–42CrossRefGoogle Scholar
O'Rourke, D. H., Hayes, M. G. and Carlyle, S. W. (2000b). Spatial and temporal stability of mtDNA haplogroup frequencies in Native North America. Hum. Biol., 72, 15–34Google Scholar
O'Rourke, D. H., M. G. Hayes and S. W. Carlyle (2005). The consent process and aDNA research: contrasting approaches in North America. In Biological Anthropology and Ethics, ed. Turner, T. R.. SUNY Press, Albany, pp. 231–40.Google Scholar
Ovchinnikov, I. V., Götherström, G., Romanova, G. P., Kharitonov, V. M., Lidén, K. and Goodwin, W. (2000). Molecular analysis of Neanderthal DNA from the northern Caucasus. Nature, 404, 490–3CrossRefGoogle ScholarPubMed
Pääbo, S. (1985). Preservation of DNA in ancient Egyptian mummies. J. Archaeol. Sci., 12, 411–17CrossRefGoogle Scholar
Pääbo, S. (1989). Ancient DNA: extraction, characterization, molecular cloning, and enzymatic amplification. PNAS, 86, 1939–43CrossRefGoogle ScholarPubMed
Pääbo, S., Poinar, H., Serre, D., Jaenicke-Després, V., Hebler, J., Rohland, N., Kuch, M., Krause, J., Vigilant, L. and Hofreiter, M. (2004). Genetic analyses from ancient DNA. Ann. Rev. Genet., 38, 645–79CrossRefGoogle ScholarPubMed
Paxinos, E. E., James, H. F., Olson, S. L., Ballou, J. D., Leonard, J. A. and Fleischer, R. C. (2002). Prehistoric decline of genetic diversity in the Nene. Science, 296, 1827.CrossRefGoogle ScholarPubMed
Poinar, H., Hofreiter, M., Spaulding, G., Martin, P., Stankiewicz, A., Bland, H., Evershed, R., Possnert, G. and Pääbo, S. (1998). Molecular coproscopy: dung and diet of the extinct ground sloth Nothrotheriops shastensis. Science, 281, 402–6CrossRefGoogle ScholarPubMed
Pusch, C., Giddings, I. and Scholz, M. (1998). Repair of degraded duplex DNA from prehistoric samples using Escherichia coli, DNA polymerase I and T4 DNA ligase. Nucleic Acids Res., 26, 857–9CrossRefGoogle ScholarPubMed
Pruvost, M. and Geigl, E.-M. (2004). Real-time quantitative PCR to assess the authenticity of ancient DNA amplification. J. Archaeol. Sci., 31, 1191–7CrossRefGoogle Scholar
Pruvost, M., Grange, T. and Geigl, E.-M. (2005). Minimizing DNA contamination by using UNG-coupled quantitative real-time PCR on degraded DNA samples: application to Ancient DNA studies. BioTechniques, 38, 569–75CrossRefGoogle ScholarPubMed
Raoult, D., Aboudharam, G., Crubezy, E., Larrouy, G., Ludes, B. and Drancourt, M. (2000). Molecular identification by ‘suicide PCR’ of Yersinia pestis as the agent of Medieval Black Death. PNAS, 97, 12800–3CrossRefGoogle Scholar
Reid, A. H., Fanning, T. G., Hultin, J. V. and Taubenberger, J. K. (1999). Origin and evolution of the 1918 ‘Spanish’ influenza virus hemagglutinin gene. PNAS, 96, 1651–6CrossRefGoogle ScholarPubMed
Relethford, J. H. (2001). Absence of regional affinities of Neandertal DNA with living humans does not reject multiregional evolution. Amer. J. Phys. Anthrop., 115, 95–8CrossRefGoogle Scholar
Rightmire, G. P. (2001). Patterns of hominid evolution and dispersal in the Middle Pleistocene. Quaternary Int., 75, 77–84CrossRefGoogle Scholar
Ritchie, P. A., Millar, C. D., Gibb, G. C., Baroni, C. and Lambert, D. M. (2004). Ancient DNA enables timing of the Pleistocene origin and Holocene expansion of two Adelie penquin lineages in Antarctica. Mol. Biol. Evol., 21, 240–8CrossRefGoogle Scholar
Rubicz, R., Schurr, T. G., Babb, P. L. and Crawford, M. H. (2003). Mitochondrial DNA variation and the origins of the Aleuts. Hum. Biol., 75, 809–35CrossRefGoogle ScholarPubMed
Salo, W. L., Aufderheide, A. C., Buikstra, J. and Holcomb, T. A. (1994). Identification of Mycobacterium tuberculosis DNA in a Pre-Columbian Peruvian mummy. PNAS, 91, 2091–4CrossRefGoogle Scholar
Savolainen, P., Leitner, T., Wilton, A. N., Matisoo-Smith, and Lundeberg, J. (2004). A detailed picture of the origin of the Australian dingo, obtained from the study of mitochondrial DNA. Proc. Natl. Acad. Sci., USA, 101, 12387–90CrossRefGoogle Scholar
Schmitz, R. W., Serre, D., Bonani, G., Feine, S., Hillgruber, F.et al. (2002). The Neandertal sype site revisited: Interdisciplinary investigations of skeletal remains from the Neander Valley, Germany. PNAS, 99, 13342–7CrossRefGoogle Scholar
Serre, D., Langaney, A., Chech, M., Teschler-Nicola, M., Paunovic, M., Mennecier, P., Hofreiter, M., Possnert, G. and Pääbo, S. (2004). No evidence of Neandertal mtDNA contribution to early modern humans. PLoS Biology, 2, 313–17CrossRefGoogle ScholarPubMed
Smith, S. E., Hayes, M. G., Coltrain, J. B. and O'Rourke, D. H. (2006). Inferring population continuity versus replacement with aDNA: a cautionary tale in the Aleutians. Amer. J. Phys. Anthrop., 129(S42), 167.Google Scholar
Spigelman, M. and Lemma, E. (1993). The use of the polymerase chain reaction to detect Mycobacterium tuberculosis in ancient skeletons. Int. J. Osteoarch., 3, 137–43CrossRefGoogle Scholar
Stone, A. and Stoneking, M. (1998). mtDNA analysis of a prehistoric Oneota population: implications for the peopling of the New World. Amer. J. Hum. Genet., 62, 1153–70CrossRefGoogle ScholarPubMed
Wall, J. (2000). Detecting ancient admixture in humans using sequence polymorphism data. Genetics, 154, 1271–9Google ScholarPubMed
Wayne, R. K., Leonard, J. A. and Cooper, A. (1999). Full of sound and fury: the recent story of ancient DNA. Ann. Rev. Ecol. Syst., 30, 457–77CrossRefGoogle Scholar
Yang, D. Y., Cannon, A. and Saunders, S. R. (2004). DNA species identification of archaeological salmon bone from the Pacific Northwest Coast of North America. J. Archaeol. Sci., 31, 619–31CrossRefGoogle Scholar
Yang, D. Y. and Watt, K. (2005). Contamination controls when preparing archaeological remains for ancient DNA analysis. J. Archaeol. Sci., 32, 331–6CrossRefGoogle Scholar
Yang, D. Y., Woiderski, J. R. and Driver, J. C. (2005). DNA analysis of archaeological rabbit remains from the American Southwest. J. Archaeol. Sci., 32, 567–78CrossRefGoogle Scholar
Yoder, A. D., B. Rakotosamimanana and T. J. Parsons (1999). Ancient DNA in subfossil lemurs: methodological chanllenges and their solutions. In New Directions in Lemur Studies, eds. Rakotosamimanana, B., et al. New York: Kluwer Academic/Plenum Press.CrossRefGoogle Scholar
Zink, A. R., Grabner, W., Reischl, U., Wolf, H. and Nerlich, A. G. (2003). Molecular study on human tuberculosis in three geographically distinct and time delineated populations from ancient Egypt. Epidemiol. Infect., 130, 239–49CrossRefGoogle ScholarPubMed
Zlojutro, M., Rubicz, R., Devor, E. J., Spitsyn, V. A., Makarov, S. V., Wilson, K. and Crawford, M. H. (2006). Genetic structure of the Aleuts and circumpolar populations based on mitochondrial DNA sequences: a synthesis. Amer. J. Phys. Anthrop., 129, 446–64CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×