Skip to main content Accessibility help
×
Hostname: page-component-84b7d79bbc-4hvwz Total loading time: 0 Render date: 2024-07-30T12:18:59.923Z Has data issue: false hasContentIssue false

11 - String theory, holography and Quantum Gravity

from Part II - String/M-theory

Published online by Cambridge University Press:  26 October 2009

Daniele Oriti
Affiliation:
Universiteit Utrecht, The Netherlands
Get access

Summary

Introduction

It is the opinion of this author that many theories of Quantum Gravity have already been discovered, but that the one which applies to the real world still remains a mystery. The theories I am referring to all go under the rubric of M/string-theory, and most practitioners of this discipline would claim that they are all “vacuum states of a single theory”. The model for such a claim is a quantum field theory whose effective potential has many degenerate minima, but I believe this analogy is profoundly misleading.

Among these theories are some which live in asymptotically flat space-times of dimensions between 11 and 4. The gauge invariant observables of these theories are encoded in a scattering matrix. All of these theories are exactly supersymmetric, a fact that I consider to be an important clue to the physics of the real world. In addition, they all have continuous families of deformations. These families are very close to being analogs of the moduli spaces of vacuum states of supersymmetric quantum field theory. They all have the same high energy behavior, and one can create excitations at one value of the moduli which imitate the physics at another value, over an arbitrarily large region of space. Except for the maximally supersymmetric case, there is no argument that all of these models are connected by varying moduli in this way. One other feature of these models is noteworthy.

Type
Chapter
Information
Approaches to Quantum Gravity
Toward a New Understanding of Space, Time and Matter
, pp. 187 - 209
Publisher: Cambridge University Press
Print publication year: 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×