Skip to main content Accessibility help
×
Hostname: page-component-77c89778f8-vsgnj Total loading time: 0 Render date: 2024-07-23T05:12:04.586Z Has data issue: false hasContentIssue false

References

Published online by Cambridge University Press:  10 August 2009

Get access
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aagaard, K. and Carmack, E. C. (1989). The role of sea ice and other fresh waters in the Arctic circulation. J. Geophys. Res. 94 (C10), 14485–14498CrossRefGoogle Scholar
Aagaard, K. and Greisman, P. (1975). Toward new mass and heat budgets for the Arctic Ocean. J. Geophys. Res. 80, 3821–3827CrossRefGoogle Scholar
Abdalati, W. and Steffen, K. (1995). Passive microwave-derived snow melt regions on the Greenland ice sheet. Geophys. Res. Lett. 22, 787–790CrossRefGoogle Scholar
Abdalati, W. and Steffen, K. (1997). Snowmelt on the Greenland ice sheet as derived from passive microwave satellite data. J. Climate 10, 165–1752.0.CO;2>CrossRefGoogle Scholar
Abdalati, W. and Steffen, K. (2001). Greenland ice sheet melt extent: 1979–1999. J. Geophys. Res. 106 (D24), 33983–33988CrossRefGoogle Scholar
Arctic Climate Impact Assessment (2005). Impacts of a Warming Climate: Arctic Climate Impact Assessment. Cambridge: Cambridge University Press
Agnew, T. A., Le, H. and Hirose, T. (1997). Estimation of aggregate-scale sea ice motion from SSM/I 85 GH2 imagery. Ann. Glaciol. 25, 305–311CrossRefGoogle Scholar
Albright, M. (1980). Geostrophic wind calculations for AIDJEX. In Pritchard, R. S. (ed.), Sea Ice Processes and Models. Seattle, WA: University of Washington Press, pp. 402–409Google Scholar
Alexander, M. A., Bhatt, U. S., Walsh, J. E., Timlin, M. S., Miller, J. S. and Scott, J. P. (2004). The atmospheric response to realistic Arctic sea ice anomalies in an Atmospheric Global Climate Model (or General Circulation Model) during winter. J. Climate 17, 890–9052.0.CO;2>CrossRefGoogle Scholar
Alexandrova, V. (1970). The vegetation of the tundra zones in the USSR and data about its productivity. In Fuller, W. A. and Kevan, P. G. (eds.), Productivity and Conservation in Northern Circumpolar Lands. Morges, Switzerland: International Union for Conservation of Nature and Natural Resources. IUCN Publication No. 16, pp. 93–114Google Scholar
Alley, R. B., Meese, D. A., Schuman, C. A.et al. (1993). Abrupt increase in Greenland snow accumulation at the end of the Younger Dryas event. Nature 362, 527–529CrossRefGoogle Scholar
Alley, R. B., Mayewski, P. A., Sowers, T.et al. (1997). Holocene climatic instability: A prominent widespread event 8200 years ago. Geology 25, 483–4862.3.CO;2>CrossRefGoogle Scholar
Alley, R. B., Anandakrishnan, S. and Jung, P. (2001). Stochastic resonance in the North Atlantic. Paleoceanography 16, 190–198CrossRefGoogle Scholar
Alley, R. B., Nordhaus, W. D., Overpeck, J. T.et al. (2003). Abrupt climate change. Science 299, 2005–2010CrossRefGoogle ScholarPubMed
Alt, B. T. (1975). The Energy Balance Climate of Meighen Ice Cap, N. W. T.Polar Continental Shelf Project, Energy, Mines and Resources, Canada. Vol. 1Google Scholar
Alt, B. T., Labine, C. L., Atkinson, D. E. and Wolfe, P. M. (2000). Automatic weather station results from Fosheim Peninsula, Ellesmere Island, Nunavut. Geol. Surv. Canada Bull. 529, 37–97Google Scholar
Ambaum, M. H. P. and Hoskins, B. J. (2002). The North Atlantic Oscillation troposphere- stratosphere connection. J. Climate 15, 1969–19782.0.CO;2>CrossRefGoogle Scholar
Ambaum, M. H., Hoskins, B. J. and Stephenson, D. B. (2001). Arctic Oscillation or North Atlantic Oscillation?J. Climate 14, 3495–35072.0.CO;2>CrossRefGoogle Scholar
Ananjeva, G. V. (2000). Study of the distribution of lakes in Russian Arctic with the use of GIS technologies. Kriosfera Zemli 4, 67–73Google Scholar
Anderson, D. L. (1961). Growth rate of sea ice. J. Glaciol. 3, 1170–1172CrossRefGoogle Scholar
Anderson, P. M. and Brubaker, L. B. (1994). Vegetation history of North Central Alaska: A mapped summary of Late Quaternary pollen data. Quatern. Sci. Rev. 13, 71–92CrossRefGoogle Scholar
Anderson, R., Boville, B. and McClellan, D. E. (1955). An operational frontal contour analysis model. Q. J. R. Meteorol. Soc. 81, 588–599CrossRefGoogle Scholar
Andreas, E. L., Paulson, C. S., Williams, R. M., Lindsay, R. W. and Businger, J. A. (1979). The turbulent heat flux from Arctic leads. Boundary Layer Meteorol. 17, 57–91CrossRefGoogle Scholar
Andreas, E. L., Miles, M. W., Barry, R. G. and Schnell, R. C. (1990). Lidar-derived particle concentrations in plumes from Arctic leads. Ann. Glaciol. 14, 9–12CrossRefGoogle Scholar
Andrews, D. G., Holton, J. R. and Leovy, C. B. (1987). Middle Atmosphere Dynamics. Orlando, Florida: Academic PressGoogle Scholar
Arbatskaya, M. K. and Vaganov, E. A. (1997). Long-term variation in fire frequency and radial increment in pine from the middle taiga subzone of central Siberia. Russian J. Ecol. 28, 291–297Google Scholar
Arbetter, T. E., Curry, J. A. and Maslanik, J. A. (1999). Effects of rheology and ice thickness distribution in a dynamic- thermodynamic sea ice model. J. Oceanogr. 29, 2656–2670Google Scholar
Arctic Climatology Project (1997). Environmental Working Group Joint U.S.-Russian Atlas of the Arctic Ocean–Winter Period. Timokhov, L. and Tanis, F. (eds.). Ann Arbor, Michigan: Environmental Research Institute of Michigan with the National Snow and Ice Data Center, CD-ROMGoogle Scholar
Arctic Climatology Project (1998). Environmental Working Group Joint U.S.-Russian Atlas of the Arctic Ocean – Summer Period. Timokhov, L. and Tanis, F. (eds.). Ann-Arbor, Michigan: Environmental Research Institute of Michigan with the National Snow and Ice Data Center, CD-ROMGoogle Scholar
Arctic Climatology Project (2000). Environmental Working Group Arctic Meteorology and Climate Atlas. Fetterer, F. and Radionov, V. (eds.), National Snow and Ice Data Center, CD-ROMGoogle Scholar
Armstrong, T. E. (1952). The Northern Sea Route. Soviet Exploitation of the North-east Passage. Cambridge: Cambridge University PressGoogle Scholar
Armstrong, T. E. (1984). In search of a northern sea-route to Siberia, 1553–1619. Arctic 37, 429–440CrossRefGoogle Scholar
Armstrong, T. E. (1995). The Soviet Northern Sea Route. Geogr. Rev. 121, 136–148Google Scholar
Arnell, N. W. (1995). Grid mapping of river discharge. J. Hydrol. 167, 39–56CrossRefGoogle Scholar
Badgley, R. I. (1966). Heat budget at the surface of the Arctic Ocean. In Fletcher, J. O. (ed.), Proceedings of the Symposium on the Arctic Heat Budget and Atmospheric Circulation, Memo. RM-5233-National Science Foundation. Santa Monica, CA: Rand Corp., pp. 267–277Google Scholar
Baer, K. E. (1838). On the ground ice or frozen soil of Siberia. J. R. Geog. Soc. 8, 210–213Google Scholar
Baldwin, M. P. and Dunkerton, T. J. (1999). Propagation of the Arctic Oscillation from the stratosphere to the troposphere. J. Geophys. Res. 104, 30937–30946CrossRefGoogle Scholar
Baldwin, M. P. and Dunkerton, T. J. (2001). Stratospheric harbingers of anomalous weather regimes. Science 294, 581–584CrossRefGoogle ScholarPubMed
Baldwin, M. P. and Holton, J. R. (1988). Climatology of the stratosphere polar vortex and planetary wave breaking. J. Atmos. Sci. 45, 1123–11422.0.CO;2>CrossRefGoogle Scholar
Bales, R. C., McConnell, J. R., Mosley-Thompson, E. and Csatho, B. (2001). Accumulation over the Greenland ice sheet from historical and recent records. J. Geophys. Res. 106 (D24), 33813–33825CrossRefGoogle Scholar
Bamber, J. L., Layberry, S. F. and Gogineni, S. P. (2001). A new ice thickness and bed data set for the Greenland ice sheet. J. Geophys. Res. 106 (D24), 33773–33780CrossRefGoogle Scholar
Barnston, A. G. and Livezy, R. E. (1987). Classification, seasonality and persistence of low-frequency atmospheric circulation patterns. Mon. Wea. Rev. 115, 1083–11262.0.CO;2>CrossRefGoogle Scholar
Barr, W. (1978). The voyage of the Sibiryakov, 1932. Polar Record 19, 253–266CrossRefGoogle Scholar
Barr, W. (1985). The Expeditions of the First International Polar Year. Tech. Paper No. 29. Calgary: Arctic Institute of North AmericaGoogle Scholar
Barr, W. (1991). The Arctic Ocean in Russian history to 1945. In Brigham, L. W. (ed.), The Soviet Maritime Arctic. Annapolis, Maryland: Naval Institute Press, pp. 11–32Google Scholar
Barrie, L. A. (1986). Arctic air pollution: An overview of current knowledge. Atmos. Environ. 20, 643–663CrossRefGoogle Scholar
Barrie, L. A., Bottenheim, J. W., Schnell, R. C., Crutzen, R. C. and Rasmussen, R. A. (1988). Ozone destruction and photochemical reactions at polar sunrise in the lower Arctic atmosphere. Nature 334, 138–141CrossRefGoogle Scholar
Barrow, J. (1818). A Chronological History of Voyages into the Arctic Regions. London: John Murray (reprinted 1971, Barnes and Noble, New York)Google Scholar
Barry, R. G. (1966). Meteorological aspects of the glacial history of Labrador-Ungava with special reference to vapor transport. Geogr. Bull. (Ottawa) 8, 319–340Google Scholar
Barry, R. G. (1967). Seasonal location of the Arctic front over North America. Geogr. Bull. 9, 79–95Google Scholar
Barry, R. G. (1989). The present climate of the Arctic Ocean and possible past and future states. In Herman, Y. (ed.), The Arctic Seas. Climatology, Oceanography, Geology, and Biology. New York: Van Nostrand Reinhold, pp. 1–46Google Scholar
Barry, R. G. (1992). Mountain Weather and Climate 2nd Edition. London: Methuen and Company LtdCrossRefGoogle Scholar
Barry, R. G. (1996). The parameterization of surface albedo for sea ice and its snow cover. Prog. Phys. Geogr. 20, 63–79CrossRefGoogle Scholar
Barry, R. G. and Andrews, J. T. (1967). Remarks on the retreat of the North American ice sheet (in Russian). Izv. Vsesoyuz. Greogr. Obsch., Leningrad, 99, 230–231, also Soviet Geog. (1968), 9, 882–885Google Scholar
Barry, R. G. and Carleton, A. M. (2001). Synoptic and Dynamic Climatology. London: RoutledgeCrossRefGoogle Scholar
Barry, R. G. and Chorley, R. (2003). Atmosphere, Weather, and Climate 8th Edition. New York: Routledge, Taylor and Francis GroupGoogle Scholar
Barry, R. G. and Jackson, C. I. (1969). Summer weather conditions at Tanquary Fiord, N. W. T. 1963–67. Arct. Alp. Res. 1, 169–180CrossRefGoogle Scholar
Barry, R. G. and Kiladis, G. N. (1982). Climatic characteristics of Greenland. In Radok, U. (ed.), Climatic and Physical Characteristics of the Greenland Ice Sheet, Vol. 1. Boulder, Colorado: Cooperative Institute for Research in Environmental Sciences, University of Colorado, pp. 7–33Google Scholar
Barry, R. G. and Serreze, M. C. (2000). Atmospheric components of the Arctic Ocean freshwater balance and their interannual variability. In Lewis, E. L.et al. (eds.), The Freshwater Budget of the Arctic Ocean. NATO Science Series 2. Environmental Security, Vol. 70. Dordrecht, the Netherlands: Kluwer Academic Publishers, pp. 45–56Google Scholar
Barry, R. G., Moritz, R. E. and Rogers, J. C. (1979). The fast ice regimes of the Beaufort and Chukchi Sea coasts, Alaska. Cold Regions Sci. Technol. 1, 129–152CrossRefGoogle Scholar
Barry, R. G., Courtin, G. M. and Labine, C. (1981). Tundra climates. In Bliss, L. C., Heal, A. W. and Moore, J. (eds.), Tundra Ecosystems: A Comparative Analysis. Cambridge: Cambridge University Press, pp. 81–114Google Scholar
Barry, R. G., Crane, R. G., Schweiger, A. and Newell, J. (1987). Arctic cloudiness in spring from satellite imagery. Int. J. Climatol. 7, 428–451Google Scholar
Barry, R. G., Serreze, M. C., Maslanik, J. A. and Preller, R. H. (1993). The Arctic sea-ice climate system: Observations and modeling. Rev. Geophys. 31, 397–422CrossRefGoogle Scholar
Beesley, J. A. and Moritz, R. E. (1999). Toward an explanation of the annual cycle of cloudiness over the Arctic Ocean. J. Climate 12, 395–4152.0.CO;2>CrossRefGoogle Scholar
Belchansky, G. I., Douglas, D. C. and Platonov, N. G. (2004). Duration of the Arctic melt season: Regional and interannual variability, 1979–2001. J. Climate 17, 67–802.0.CO;2>CrossRefGoogle Scholar
Belkin, I. M., Levitus, S., Antonov, J. and Malmberg, S. A. (1998). The “Great Salinity Anomalies” in the North Atlantic. Prog. Oceanogr. 41, 1–68CrossRefGoogle Scholar
Belov, M. I. (1969). Istoriya Otkrytiya Osvoyeniya Severnogo Morskogo Puti. IV. 1933–1945. (History of the Discovery and Exploitation of the Northern Sea Route. IV. 1933–1945). Leningrad: GidrometeoizdatGoogle Scholar
Bender, G. (1984). The Distribution of Snow Accumulation on the Greenland Ice Sheet, M. S. Thesis. Fairbanks, Alaska: Geophysical Institute, University of Alaska. (Available from Geophysical Institute, University of Alaska, PO Box 7555780, Fairbanks, AK 99775– 5780)Google Scholar
Bengtsson, L., Semenov, V. and Johannessen, O. M. (2004). The early twentieth century warming in the Arctic – a possible mechanism. J. Climate 17, 4045–40572.0.CO;2>CrossRefGoogle Scholar
Benn, D. I. and Evans, D. J. A. (1998). Glaciers and Glaciation. London: ArnoldGoogle Scholar
Benson, C. S. (1969). The Seasonal Snow Cover of Arctic Alaska. Arctic Institute of North America Technical Report No. 51. Calgary, Alberta: Arctic Institute of North AmericaGoogle Scholar
Benson, C. S. (1970). Ice Fog. Low Temperature Air Pollution Defined with Fairbanks, Alaska as Type Locality. CRREL Research Report 121. U.S. Army, Cold Regions Research and Engineering Laboratory, Hanover, New HampshireGoogle Scholar
Benson, C. S. and Bowling, S. A. (1975). The sub-Arctic heat island as studied at Fairbanks, Alaska. In Weller, G. and Bowling, S. A. (eds.), Climate of the Arctic, Fairbanks, Alaska: Geophysical Institute, University of Alaska, pp. 309–311Google Scholar
Beringer, J., Tapper, N. J., McHugh, I.et al. (2001). Impact of Arctic treeline on synoptic climate. Geophys. Res. Lett. 28, 4247–4250CrossRefGoogle Scholar
Betts, A. K. (2000). Offset of the potential carbon sink from boreal forestation by decreases in surface albedo. Nature 408, 187–190CrossRefGoogle ScholarPubMed
Bigg, E. K. and Leck, C. (2001). Properties of the aerosol over the central Arctic Ocean. J. Geophys. Res. 106 (D23), 32101–32109CrossRefGoogle Scholar
Bilello, M. A. (1957). A Survey of Arctic Snow-cover Properties as Related to Climatic Conditions. Research Report 39. Hanover, New Hampshire: U.S. Army CRRELGoogle Scholar
Birks, H. H., Paus, , Svendsen, A., , J. I.et al. (1994). Late Weichselian environmental change in Norway, including Svalbard. J. Quatern. Sci. 9, 133–145CrossRefGoogle Scholar
Bitz, C. M., Batitisti, D. S., Moritz, R. E. and Beesley, J. A. (1996). Low-frequency variability in the Arctic atmosphere, sea ice and upper-ocean climate system. J. Climate 9, 394–4082.0.CO;2>CrossRefGoogle Scholar
Blanchet, J.-P. and Girard, E. (1995). Water vapour–temperature feedback in the formation of continental Arctic air: Implication for climate. Sci. Total. Environ. 160/161, 793–802CrossRefGoogle Scholar
Bliss, L. C. (1997). Arctic ecosystems of North America. In Wielgolaski, F. E. (ed.), Polar and Alpine Tundra, Ecosystems of the World, Vol. 3. Amsterdam: Elsevier, pp. 551–683Google Scholar
Blyth, J. D. M. (1951). German meteorological activities in the Arctic, 1940–1945. Polar Record 6, 185–226CrossRefGoogle Scholar
Bojkov, R. D. and Fiolotov, V. E. (1995). Estimating the global ozone characteristics during the last 30 years. J. Geophys. Res. 100 (D8), 16537–16551CrossRefGoogle Scholar
Bokoye, A. I., Royer, A., O'Neill, N. T. and McArthur, B. (2002). A North American Arctic aerosol climatology using ground-based sun photometers. Arctic 55, 215–228CrossRefGoogle Scholar
Bonan, G. B. (1995). Sensitivity of a Global Climate Model (or General Circulation Model) simulation to inclusion of inland water surfaces. J. Climate 8, 2691–27042.0.CO;2>CrossRefGoogle Scholar
Bonan, G. B., Pollard, D. and Thompson, S. L. (1992). Effects of boreal forest vegetation on global climate. Nature 359, 716–718CrossRefGoogle Scholar
Bonan, G. B., Chapin, F. S. III and Thompson, S. L. (1995). Boreal forest and tundra ecosystems as components of the climate system. Clim. Change 29, 145–167CrossRefGoogle Scholar
Bond, G. C. and Lotti, R. (1995). Iceberg discharges into the North Atlantic on millennial time scales during the last glaciation. Science 267, 1005–1010CrossRefGoogle ScholarPubMed
Bond, G., Broecker, W., Johnsen, S.et al. (1993). Correlations between climate records from North Atlantic sediments and Greenland ice. Nature 365, 143–147CrossRefGoogle Scholar
Bond, G. C., Showers, W., Cheseby, M.et al. (1997). A pervasive millennial-scale cycle in North Atlantic Holocene and glacial climates. Science 278, 1257–1266CrossRefGoogle Scholar
Bond, G. C., Kromer, B., Beer, J.et al. (2001). Persistent solar influence on North Atlantic climate during the Holocene. Science 294, 2130–2136CrossRefGoogle ScholarPubMed
Borisov, A. A. (1975). Klinaty SSSR ⅴ Proshlom, Nastoyashchemi i Budushchem (Climates of the USSR, Past, Present and Future). Leningrad: Leningrad UniversityGoogle Scholar
Borodachev, B. E. and Shil'nikov, V. I. (2002). Istoriya L'dovoi Aviatsinnoi Razvedki ⅴ Arktikei na Zamerzayushchikh Moryakh Rossii (1914–1993 gg) (The History of Aerial Ice Reconnaissance in the Arctic and Ice-covered Seas of Russia, 1914–1993). St. Petersburg: GidrometeoizdatGoogle Scholar
Bourke, R. H. and Garrett, R. P. (1987). Sea ice thickness distribution in the Arctic Ocean. Cold Regions Sci. Technol. 13, 259–280CrossRefGoogle Scholar
Bourke, R. H. and McLaren, A. S. (1992). Contour mapping of Arctic basin ice draft and roughness parameters. J. Geophys. Res. 97 (C11), 17715–17728CrossRefGoogle Scholar
Bourke, R. H. and Paquette, R. G. (1989). Estimating the thickness of sea ice. J. Geophys. Res. 94, 919–923CrossRefGoogle Scholar
Boville, B. W., MacFarlane, M. A. and Steiner, H. A. (1959). An Atlas of Stratospheric Circulation, October 1958–March 1959. Arctic Meteorology Research Group, Publication in Meteorology No. 37. Montreal, Canada: McGill University, Defense Research Board, Department of National Defense
Bovis, M. J. and Barry, R. G. (1974). A climatological analysis of north polar desert areas. In Smiley, T. L. and Zumberge, J. H. (eds.), Polar Deserts and Modern Man. Tucson, Arizona: University of Arizona Press, pp. 23–31Google Scholar
Bowling, L. C., Lettenmaier, D. P. and Matheussen, B. V. (2000). Hydroclimatology of the Arctic drainage basin. In Lewis, E. L.et al. (eds.), The Freshwater Budget of the Arctic Ocean. NATO Science Series 2. Environmental Security, Vol. 70. Dordrecht, the Netherlands: Kluwer Academic Publishers, pp. 57–90Google Scholar
Bowling, L. C., Letternmaier, D. P., Nijssen, B.et al. (2003). Simulation of hydrologic responses in the Torne-Kalix basIn Project for Intercomparison of Land Surface Parameterization Schemes Phase 2(e) 1: Experiment description and summary intercomparisons. Global Planet. Change 38, 1–30CrossRefGoogle Scholar
Bowling, S. A. (1986). Climatology of high-latitude air pollution as illustrated by Fairbanks and Anchorage, Alaska. J. Clim. Appl. Meteor. 25, 22–342.0.CO;2>CrossRefGoogle Scholar
Box, J. E. and Steffen, K. (2001). Sublimation on the Greenland ice sheet from automated weather station observations. J. Geophys. Res. 106 (D24), 33965–33981CrossRefGoogle Scholar
Boyd, T. J., Steele, M., Muench, R. D. and Gunn, J. T. (2002). Partial recovery of the Arctic Ocean halocline. Geophys. Res. Lett. 29, 1647, DOI: 10.1029/2001GL014047CrossRef
Bradley, R. S. (1999). Paleoclimatology: Reconstructing Climates of the Quaternary. San Diego, California: Academic PressGoogle Scholar
Bradley, R. S. and Serreze, M. C. (1987). Topoclimatic studies of a high Arctic plateau ice cap. J. Glaciol. 33, 149–158CrossRefGoogle Scholar
Bridgman, H. A., Schnell, R. C., Kahl, J. D., Herbert, G. A. and Joranger, E. (1989). A major haze event near Point Barrow, Alaska: Analysis of probable source regions and transport pathways. Atmos. Environ. 23, 2537–2549CrossRefGoogle Scholar
Brinkman, W. and Barry, R. G. (1972). Paleoclimatological aspects of the synoptic climatology of Keewatin, Northwest Territories, Canada. Paleogeogr., Paleoclimatol., Paleoecol. 11, 87–91CrossRefGoogle Scholar
Broecker, W. D. (1990). Salinity history of the northern Atlantic during the last glaciation. Paleoceanography 5, 459–467CrossRefGoogle Scholar
Broecker, W. S., Kennet, J. P., Flower, B. P.et al. (1989). Routing of meltwater from the Laurentide Ice Sheet during the Younger Dryas episode. Nature 341, 318–321CrossRefGoogle Scholar
Broecker, W. S., Bond, G., Klas, M., Bonani, G. and Wolfi, W. (1990). A salt oscillator in the glacial North Atlantic? 1. The concept. Paleoceanography 5, 469–477CrossRefGoogle Scholar
Bromwich, D. H., Keen, R. A. and Bolzan, J. F. (1993). Modeled variations of precipitation over the Greenland ice sheet. J. Climate 6, 1253–12682.0.CO;2>CrossRefGoogle Scholar
Bromwich, D. H., Cassano, J. J., Klein, T.et al. (2001a). Mesoscale modeling of katabatic winds over Greenland with Polar MM5. Mon. Wea. Rev. 129, 2290–23092.0.CO;2>CrossRefGoogle Scholar
Bromwich, D. H., Qui-shi, Chen, Bai, Le-sheng, Cassano, E. N. and Li, Y. (2001b). Modeled precipitation variability over the Greenland ice sheet. J. Geophys. Res. 106 (D24), 33891–33908CrossRefGoogle Scholar
Bromwich, D. H., Toracinta, E. R. and Wang, S.-H. (2002). Meteorological perspectives on the initiation of the Laurentide ice sheet. Quatern. Internat. 95–96, 113–124CrossRefGoogle Scholar
Bromwich, D. H., Toracinta, E. R., Wei, H.et al. (2004). Polar MM5 simulations of the winter climate of the Laurentide Ice Sheet at the Last Glacial Maximum. J. Climate 17, 3415–34332.0.CO;2>CrossRefGoogle Scholar
Bromwich, D. H., Toracinta, E. R., Oglesby, R. J., Fastook, J. L. and Hughes, T. J. (2005). Last Glacial Maximum summer climate on the southern margin of the Laurentide Ice Sheet: Wet or dry? J. Climate (in press)
Brooks, C. E. P. (1931). The vertical temperature gradient in the Arctic. Meteorol. Mag. 66, 267–268Google Scholar
Brown, J., Ferrians, O. J. Jr., Heginbottom, A. J. and Melnikov, S. E. [1997]. Circum-Arctic Map of Permafrost and Ground-Ice Conditions. U.S. Geological Survey Circum-Pacific Map Series, CP-45Google Scholar
Brubaker, K. L., Entekhabi, D. and Eagleson, P. S. (1993). Estimation of continental-scale precipitation recycling. J. Climate 6, 1077–10892.0.CO;2>CrossRefGoogle Scholar
Bryan, K. (1969). Climate and the ocean circulation. III. The ocean model. Mon. Wea. Rev. 97, 806–8272.3.CO;2>CrossRefGoogle Scholar
Bryazgin, N. N. (1976). Yearly mean precipitation in the Arctic region accounting for measurement error (in Russian). Proc. Arctic. Ant. Res. Inst. 323, 40–74Google Scholar
Bryson, R. A. (1966). Air masses, stream- lines, and the boreal forest. Geogr. Bull. 8, 228–269Google Scholar
Bulatov, V. and Popov, G. (1996). Novaya Zemlya: Myfy i real'nost' (Novaya Zemlya: Myths and reality). In Tolkachev, V. F. (ed.), Terra Incognita Arktik. Archangelsk: Pomorskogo Mezhdunarodnogo Pedagogicheskii Universitet, pp. 5–68Google Scholar
Busch, N., Ebel, U., Kraus, H. and Schaller, E. (1982). The structure of the subpolar inversion-capped ABL. Arch. Met. Geophys. Bioklim. 31A, 1–18Google Scholar
Businger, S. and Reed, R. J. (1989). Cyclogenesis in cold air masses. Weather and Forecasting 4, 133–1562.0.CO;2>CrossRefGoogle Scholar
Carleton, A. M. (1996). Satellite climatological aspects of cold air mesocyclones in the Arctic and Antarctic. Global Atmos. Ocean. Syst. 5, 1–42Google Scholar
Carmack, E. C. (1990). Large-scale physical oceanography of polar oceans. In Smith, W. O. Jr. (ed.), Polar Oceanography, Part A, Physical Science. San Diego, California: Academic Publishers, pp. 171–222Google Scholar
Carroll, J. J. and Fitch, B. W. (1981). Effects of solar elevation and cloudiness on snow albedo at the South Pole. J. Geophys. Res. 86, 5271–5276CrossRefGoogle Scholar
Cassau, C. and Terray, L. (2001). Dual role of Atlantic and Pacific Sea Surface Temperature anomalies on the North Atlantic/Europe winter climate. Geophys. Res. Lett. 30, 3195–3198CrossRefGoogle Scholar
Catchpole, A. J. W. and Faurer, M. A. (1983). Summer sea ice severity in Hudson Strait, 1751–1850. Clim. Change 5, 115–139CrossRefGoogle Scholar
Cavalieri, D. J., Parkinson, C. L. and Vinnikov, K. Y. (2003). 30-year satellite records reveal contrasting Arctic and Antarctic decadal sea ice variability. Geophys. Res. Lett. 30, 1970, DOI: 10.1029/2003GL018031CrossRef
Central Intelligence Agency (CIA) (1978). Polar Regions Atlas. Produced by National Foreign Assessment Center, Central Intelligence Agency
Chapin, F. S. III, Shaver, G. R., Giblin, R. E., Nadelhoffer, K. J. and Laundre, J. A. (1995). Responses of Arctic tundra to experimental and observed changes in climate. Ecology 76, 694–711CrossRefGoogle Scholar
Chapin, F. S. III, Matson, P. A. and Mooney, H. A. (2000). Principles of Terrestrial Ecosystem Ecology. New York: Springer VerlagGoogle Scholar
Charlier, R. H. (1969). The geographic distribution of polar desert soil in the Northern Hemisphere. Geol. Soc. Amer. Bull. 80, 1985–1996CrossRefGoogle Scholar
Charney, J., Halem, M. and Jastrow, R. (1969). Use of incomplete historical data to infer the present state of the atmosphere. J. Atmos. Sci. 26, 1160–11632.0.CO;2>CrossRefGoogle Scholar
Chartrand, D. J., Grandpere, J. and McConnell, J. C. (1999). An introduction to stratospheric chemistry. Atmosphere-Ocean 37, 309–367CrossRefGoogle Scholar
Chase, T. N., Herman, B., Peilke, R. S. Sr., Zeng, X. and Leuthold, M. (2002). A proposed mechanism for the regulation of minimum midtropospheric temperatures in the Arctic. J. Geophys. Res. 107(D14), DOI: 10.1029/2001JD001425CrossRef
Chen, Q. S., Bromwich, D. H. and Bai, L. (1997). Precipitation over Greenland retrieved by a dynamic method and its relation to cyclonic activity. J. Climate 10, 839–8702.0.CO;2>CrossRefGoogle Scholar
Cherkauer, K. A., Bowling, L. C. and Lettenmaier, D. P. (2003). Variable Infiltration Capacity (Variable Infiltration Capacity model) cold land process model updates. Global Planet. Change 38, 151–159CrossRefGoogle Scholar
Chernov, Y. I. and Matveyeva, N. V. (1997). Arctic ecosystems in Russia. In Wielgolaski, F. E. (ed.), Polar and Alpine Tundra Ecosystems of the World, Vol. 3. Amsterdam: Elsevier, pp. 361–507Google Scholar
Choudhury, B. J. and Chang, A. T. C. (1981). The albedo of snow for partially cloudy skies. Boundary Layer Meteorol. 20, 371–389CrossRefGoogle Scholar
Christiansen, H. H. (1998). ‘Little Ice Age’ nivation activity in northeast Greenland. Holocene 8, 719–728CrossRefGoogle Scholar
Christiansen, H. H., Bennike, O., Bocher, J.et al. (2002). Holocene environmental reconstruction from deltaic deposits in northeast Greenland. J. Quatern. Sci. 17, 145–160CrossRefGoogle Scholar
Clark, C. D., Knight, J. K. and Gray, J. T. (2000). Geomorphological reconstruction of the Labrador sector of the Laurentide ice sheet. Quatern. Sci. Rev. 19, 1343–1366CrossRefGoogle Scholar
Clark, D. L. (1982). Origin, nature and world climate effect of the Arctic Ocean ice cover. Nature 300, 321–325CrossRefGoogle Scholar
Clark, D. L. and Grantz, A. (2002). Piston cores improve understanding of deep Arctic Ocean. EOS, Trans. Amer. Geophys. Union 83, 417, 422–423CrossRefGoogle Scholar
Clark, M. P., Serreze, M. C. and Barry, R. G. (1996). Characteristics of Arctic Ocean climate based on Comprehensive Ocean Atmosphere Data Set data, 1980–1993. Geophys. Res. Lett. 23, 1953–1956CrossRefGoogle Scholar
Clark, P. U., Marshall, S. J., Clarke, G. K.et al. (2001). Freshwater forcing of abrupt climate change during the last glaciation. Science 293, 283–287CrossRefGoogle ScholarPubMed
Clark, P. U., Pisias, N. G., Stocker, T. F. and Weaver, A. J. (2002). The role of the thermohaline circulation in abrupt climate change. Nature 415, 863–869CrossRefGoogle ScholarPubMed
Clein, J. S., Kwiatkowski, B. L., McGuire, A. D.et al. (2000). Modeling carbon responses of tundra ecosystems to historical and projected climate: A comparison of a plot- and a global-scale ecosystem model to identify process-based uncertainties. Global Change Biol. 6 (Supplement 1), 127–140CrossRefGoogle Scholar
Cohen, J. and Entekhabi, D. (1990). Eurasian snow cover variability and Northern Hemisphere climate predictability. Geophys. Res. Lett. 26, 345–348CrossRefGoogle Scholar
Cohen, J., Saito, K. and Entekhabi, D. (2001). The role of the Siberian High in Northern Hemisphere climate variability. Geophys. Res. Lett. 28, 299–302CrossRefGoogle Scholar
Colony, R., Radionov, V. and Tanis, F. L. (1998). Measurements of precipitation and snow pack at the Russian North Pole drifting stations. Polar Record 34, 3–14CrossRefGoogle Scholar
Comiso, J. (2003). Warming trends in the Arctic from clear-sky satellite observations. J. Climate 16, 3498–35102.0.CO;2>CrossRefGoogle Scholar
Cook, E. R., D'Arrigo, R. D. and Briffa, K. R. (1998). A reconstruction of the North Atlantic Oscillation using tree-ring chronologies from North America and Europe. Holocene 8, 9–17CrossRefGoogle Scholar
Courtin, G. H. and Labine, C. L. (1977). Microclimatological studies of the Truelove Lowland, Devon Island, Northwest Territories. In Bliss, L. C. (ed.), Truelove Lowland, Devon Island, Canada, a High Arctic Ecosystem. Edmonton, Canada: University of Alberta Press, pp. 73–106Google Scholar
Cox, P. M., Betts, R. A., Jones, C. D., Spall, S. A. and Totterdell, I. J. (2000). Acceleration of global warming due to carbon cycle feedbacks in a coupled global model. Nature 408, 184–187CrossRefGoogle Scholar
Crowley, T. J. (2000). Causes of climate change over the past 1000 years. Science 289, 270–276CrossRefGoogle ScholarPubMed
Cuffey, K. M. and Marshall, S. J. (2000). Substantial contribution to sea-level rise during the last interglacial from the Greenland ice sheet. Nature 404, 591–594CrossRefGoogle ScholarPubMed
Cullather, R. I. and Lynch, A. H. (2003). The annual cycle and interannual variability of atmospheric pressure in the vicinity of the North Pole. Int. J. Climatol. 23, 1161–1183CrossRefGoogle Scholar
Cullather, R. I., Bromwich, D. H. and Serreze, M. C. (2000). The atmospheric hydrologic cycle over the Arctic basin from reanalyses. Part I: Comparison with observations and previous studies. J. Climate 13, 923–9372.0.CO;2>CrossRefGoogle Scholar
Curry, J. (1983). On the formation of polar continental air. J. Atmos. Sci. 40, 2278–22922.0.CO;2>CrossRefGoogle Scholar
Curry, J. A. and Ebert, E. E. (1992). Annual cycle of radiation fluxes over the Arctic Ocean: Sensitivity to cloud optical properties. J. Climate 5, 1267–12802.0.CO;2>CrossRefGoogle Scholar
Curry, J. A., Ebert, E. E. and Herman, G. F. (1988). Mean and turbulent structure of the summertime Arctic cloudy boundary layer. Q. J. R. Meteorol. Soc. 114, 715–746CrossRefGoogle Scholar
Curry, J. A., Meyer, F. G., Radke, L. F., Brock, C. A. and Ebert, E. E. (1990). Occurrence and characteristics of lower tropospheric ice crystal in the Arctic. Int. J. Climatol. 10, 749–764CrossRefGoogle Scholar
Curry, J. A., Schramm, J. L. and Ebert, E. E. (1995). On the ice albedo climate feedback mechanism. J. Climate 8, 240–2472.0.CO;2>CrossRefGoogle Scholar
Curry, J. A., Rossow, W. B., Randall, D. and Schramm, J. L. (1996). Overview of Arctic cloud and radiative characteristics. J. Climate 9, 1731–17642.0.CO;2>CrossRefGoogle Scholar
Cushman, S. A. and Wallin, D. O. (2002) Separating the effects of environmental, spatial and disturbance factors on forest community structure in the Russian Far East. For. Ecol. Manage. 168, 201–215CrossRefGoogle Scholar
Danielsen, E. F. (1968). Stratospheric- tropospheric exchange based on radioactivity, ozone and potential vorticity. J. Atmos. Sci. 25, 502–5182.0.CO;2>CrossRefGoogle Scholar
Danilov, I. D. (1989). Geological and paleoclimatic evolution of the Arctic during Late Cenozoic time. In Herman, Y. (ed.), The Arctic Seas. Climatology, Oceanography, Geology, and Biology. New York: Van Nostrand Reinhold, pp. 759–760Google Scholar
Danilov, I. L. (2000). Arkticheckii Okean kak faktor globalnykh klimaticheskikh izmenenuu (The Arctic Ocean as a factor in global climate). In Global Variations of the Environment (Climate and Water Regime) (in Russian). Moscow: Nauchny Mir, pp. 91–121
Dansgaard, W. S., Johnsen, S. J., Clausen, H. B. and Langway, C. C. Jr. (1971). Climatic record revealed by the Camp Century ice core. In Tuekian, K. K. (ed.), The Late Cenozoic Glacial Age. New Haven, Connecticut: Yale University Press, pp. 37–56Google Scholar
Dansgaard, W., White, J. W. C. and Johnsen, S. J. (1989). The abrupt termination of the Younger Dryas event. Nature 339, 532–534CrossRefGoogle Scholar
Dawson, H. P. (1886). Observations of the International Polar Expedition, Fort Rae. London: Eyre and SpottiswoodeGoogle Scholar
Defant, F. and Taba, H. (1957). The threefold structure of the atmosphere and the characteristics of the tropopause. Tellus 9, 259–274CrossRefGoogle Scholar
Delworth, T. L. and Knutson, T. R. (2000). Simulation of early 20th century global warming. Science 287, 2246–2250CrossRefGoogle ScholarPubMed
Delworth, T. L. and Mann, M. E. (2000). Observed and simulated multidecadal variability in the Northern Hemisphere. Clim. Dynam. 16, 661–676CrossRefGoogle Scholar
Denton, G. H. and Hughes, T. (eds.) (1981). The Last Great Ice Sheets. New York: John Wiley and SonsGoogle Scholar
Desborough, C. E. (1999). Surface energy balance complexity in Global Climate Model (or General Circulation Model) land surface models. Clim. Dynam. 15, 389–403CrossRefGoogle Scholar
Deser, C. (2000). On the teleconnectivity of the ‘Arctic Oscillation’. Geophys. Rev. Lett. 27, 779–782CrossRefGoogle Scholar
Deser, C., Walsh, J. E. and Timlin, M. S. (2000). Arctic sea ice variability in the context of recent atmospheric circulation trends. J. Climate 13, 617–6332.0.CO;2>CrossRefGoogle Scholar
Deser, C., Magnusdottir, G., Saravanan, R. and Phillips, A. (2004). The effects of North Atlantic Sea Surface Temperature and sea ice anomalies on the winter circulation in CCM3. Part II: Direct and indirect components of the response. J. Climate 17, 877–8892.0.CO;2>CrossRefGoogle Scholar
Dethloff, K., Rinke, A., Lehmann, R.et al. (1996). Regional climate model of the Arctic atmosphere. J. Geophys. Res. 101 (D18), 23401–23442CrossRefGoogle Scholar
DeVeer, G. (1876). The Three Voyages of Willem Barents to the Arctic Regions. London: Hakluyt SocietyGoogle Scholar
Vernal, A. and Hillaire-Marcel, C. (2000). Sea ice cover, sea surface salinity and halo-1 thermocline structure of the northwest North Atlantic: modern values versus full glacial conditions. Quatern. Sci. Rev. 19, 65–85CrossRefGoogle Scholar
Dickson, R. R., Meincke, J., Malmberg, S. A. and Lee, A. J. (1988). The “Great Salinity Anomaly” in the northern North Atlantic, 1968–1982. Progr. Oceanogr. 20, 103–151CrossRefGoogle Scholar
Dickson, R. R., Osborn, T. J., Hurrell, J. W.et al. (2000). The Arctic Ocean response to the North Atlantic Oscillation. J. Climate 13, 2671–26962.0.CO;2>CrossRefGoogle Scholar
Ding, Y-H. (1990). Build-up, air mass transformation and propagation of the Siberian High and its relation to cold surges in East Asia. Meteorol. Atmos. Phys. 44, 281–292Google Scholar
Dingman, S. L., Barry, R. G., Weller, G. et al. (1980). Climate, snow cover, microclimate and hydrology. In Brown, J.et al. (eds.), An Arctic Ecosystem: The Coastal Tundra at Barrow, Alaska. Stroudsburg, Pennsylvania: Dowden, Hutchinson and Ross, pp. 30–65CrossRefGoogle Scholar
Ditlevsen, P. D., Svensmark, H. and Johnsen, S. (1996). Contrasting atmospheric and climate dynamics of last-glacial and Holocene periods. Nature 379, 810–812CrossRefGoogle Scholar
Doronin, Yu. P. and Kheisin, D. E. (1975). Sea Ice. Leningrad: Gidrometeoizdat (Translation by National Science Foundation, TT75-52088, 1977)Google Scholar
Dorsey, H. G. Jr. (1945). Some meteorological aspect of the Greenland Ice Cap. J. Meteorol. 2, 135–1422.0.CO;2>CrossRefGoogle Scholar
Doyle, J. D. and Shapiro, M. A. (1999). Flow response to large-scale topography: The Greenland tip jet. Tellus 51A, 728–748CrossRefGoogle Scholar
Duchkov, A. D. and Balobaev, V. T. (2001). Geothermal studies of permafrost response to global natural changes. In Paepe, R. and Melnikov, V. (eds.), Permafrost Response on Economic Development, Environmental Security and Natural Resources. Dordrecht, the Netherlands: Kluwer Academic Publishers, pp. 317–332CrossRefGoogle Scholar
Dukhovsky, D. S., Johnson, M. A. and Proshutinsky, A. (2004). Arctic decadal variability: An auto-oscillatory system of heat and fresh water exchange. Geophys. Res. Lett. 31, L03302, DOI: 10.1029/2003GL019023CrossRef
Dunbar, M. and Dunbar, M. J. (1972). The history of the North Water. Proc. R. Soc. Edinburgh B 72, 231–241Google Scholar
Dyke, A. S., Dredge, L. A. and Vincent, J.-S. (1982). Configuration and dynamics of the Laurentide ice sheet during the late Wisconsin maximum. Geogr. Phys. Quaternaire 36, 5–14CrossRefGoogle Scholar
Dymond, J. and Wales, W. (1770). Observations on the state of the air, winds, weather, etc. made at Prince of Wales Fort, on the North-West coast of Hudson Bay. Philas. Trans. R. Soc. Lond. 60, 137–177CrossRefGoogle Scholar
Dyurgerov, M. B. and Meier, M. F. (1997). Year-to-year fluctuation of global mass balance of small glaciers and their contribution to sea level changes. Arct. Alp. Res. 29, 392–402CrossRefGoogle Scholar
Dzerdzeevskii, B. L. (1945). Tsirkulatsionnye skhemy ⅴ troposfere Tsentralnoi Arctike (Circulation schemes for the central Arctic troposphere). Izdat. Akad. Nauk SSSR (Transl. in Sci. Rep. No.3, Contract AF 19 (122)-128, Meteorology Dept., University of California, Los Angeles)
Edwards, M. E., Mock, C. J., Finney, B. P., Barber, V. A. and Bartlein, P. J. (2001). Potential analogues for paleoclimatic variations in eastern interior Alaska during the past 14,000 yr: Atmospheric-circulation controls of regional temperature and moisture responses. Quatern. Sci. Rev. 20, 189–202CrossRefGoogle Scholar
Ehlers, J. and Gibbard, P. L. (2003). Extent and chronology of glaciations. Quatern. Sci. Rev. 22, 1561–1568CrossRefGoogle Scholar
Elias, S. A., Short, S. K., Nelson, C. H. and Birks, H. H. (1996). Life and times of the Bering Land Bridge. Nature 382, 60–63CrossRefGoogle Scholar
Elliott-Fisk, D. L. (1983). The stability of the northern Canadian tree limit. Ann. Assoc. Amer. Geogr. 73, 560–576CrossRefGoogle Scholar
Eltahir, E. A. B. and Bras, R. L. (1996). Precipitation recycling. Rev. Geophys. 34, 367–378CrossRefGoogle Scholar
Emanuel, K. A. and Rotunno, R. (1989). Polar lows as Arctic hurricanes. Tellus 41A, 1–17CrossRefGoogle Scholar
Emery, W. J., Fowler, C. W. and Maslanik, J. A. (1997). Satellite-derived maps of Arctic and Antarctic sea ice motion: A new multi-year record of ice transport. Geophys. Res. Lett. 24, 897–900CrossRefGoogle Scholar
England, J. (1999). Coalescent Greenland and Innuitian ice during the Last Glacial Maximum: Revising the Quaternary of the Canadian High Arctic. Quatern. Sci. Rev. 18, 421–456CrossRefGoogle Scholar
Epenshade, E. B. and Schytt, V. (1956). Problems in Mapping Snow Cover. Research Report 27. Hanover, New Hampshire: U.S. Army CRRELGoogle Scholar
EPICA Community Members (2004). Eight glacial cycles from an Antarctic ice core. Nature 429, 623–628CrossRef
Ezer, T., Mellor, G. L. and Greatbatch, R. G. (1995). On the interpentadal variability of the North Atlantic Ocean: Model simulated changes in transport, meridional heat flux, and coastal sea level between 1955–1959 and 1970–1974. J. Geophys. Res. 100, 10559–10566CrossRefGoogle Scholar
Fanning, A. F. and Weaver, A. J. (1997). Temporal-geographical meltwater influences on the North Atlantic conveyor: implications for the Younger Dryas event. Paleoceanography 12, 307–320CrossRefGoogle Scholar
Farmer, G. L., Barber, D.C. and Andrewa, J. T. (2003). Provenance of late Quaternary ice proximal sediments in the North Atlantic: Nd, Sr and Pd isotopic evidence. Earth Planet. Sci. Lett. 209, 227–243CrossRefGoogle Scholar
Fasullo, J. (2004). A stratified diagnosis of the Indian Monsoon – Eurasian snow cover relationship. J. Climate 17, 1110–11222.0.CO;2>CrossRefGoogle Scholar
Ferguson, H. L., O'Neill, A. D. and Cork, H. F. (1970). Mean evaporation over Canada. Water Resour. Res. 6, 1618–1633CrossRefGoogle Scholar
Fichefet, T., Poncin, C., Goosse, H. et al. (2003). Implications of changes in freshwater flux from the Greenland ice sheet for the climate of the 21st century. Geophys. Res. Lett. 30, DOI: 10.1029/2003GL017826CrossRef
Field, W. O. (ed.) (1975). Mountain Glaciers of the Northern Hemisphere (2 vols). Hanover, New Hampshire: U.S. Army CRRELGoogle Scholar
Fischer, H., Werner, M., Wagenbach, D.et al. (1998). Little Ice Age clearly recorded in northern Greenland ice cores. Geophys. Res. Lett. 25, 1749–1752CrossRefGoogle Scholar
Fisher, R. H. (1984). The early cartography of the Bering Strait region. Arctic 37, 574–589CrossRefGoogle Scholar
Fisheries and Environment Canada (1978). Hydrological Atlas of Canada. Ottawa, Canada: Fisheries and Environment Canada, Minister of Supply and Services
Flato, G. M. and Hibler, W. D. III (1992). Modeling pack ice as a cavitating fluid. J. Phys. Oceanogr. 22, 626–6512.0.CO;2>CrossRefGoogle Scholar
Fleming, G. H. and Semtner, A. J. Jr. (1991). A numerical study of interannual forcing on Arctic ice. J. Geophys. Res. 96 (C3), 4589–4603CrossRefGoogle Scholar
Fleming, J. A. (ed.) (1907). The Ziegler Polar Expedition 1903–1905: Scientific Results Obtained Under the Direction of William J. Peters. Washington, DC: National Geographic Society, Section C, pp. 369–487Google Scholar
Flint, R. F. (1943). Growth and decay of the North American ice sheet during the Wisconsin age. Bull. Amer. Geol. Soc. 54, 325–362CrossRefGoogle Scholar
Foley, J. A., Kutzbach, J. E., Coe, M. T. and Levis, S. (1994). Feedbacks between climate and boreal forests during the Holocene Epoch. Nature 371, 52–54CrossRefGoogle Scholar
Formozov, A. N. (1946). Snow Cover as an Integral Factor of the Environment and its Importance in the Ecology of Mammals and Birds. Materials for Fauna and Flora of the USSR (New Series. Zoology, 5). Edmonton, Canada: Boreal Institute, University of Alberta, English EditionGoogle Scholar
Franklin, J. (1828). Narrative of a Second Expedition to the Shores of the Polar Sea in the Years 1825, 1826 and 1827. London: John Murray (reprinted Rutland, Vermont, 1971)Google Scholar
French, H. M. (1996). The Periglacial Environment 2nd Edition. London: Addison Wesley LongmanGoogle Scholar
Friendly, A. (1977). Beaufort of the Admiralty. The Life of Sir Francis Beaufort 1754–1847. New York: Random House, pp. 301–322Google Scholar
Fyfe, J. C. (2003). Separating extratropical zonal wind variability and mean change. J. Climate 16, 863–8742.0.CO;2>CrossRefGoogle Scholar
Gadbois, P. and Laverdiere, C. (1954). Esquisse geographique de la region de Floeberg Beach, nord de l'isle Ellesmere. Geogr. Bull. Ottawa 6, 17–44Google Scholar
Gaigerov, S. S. (1967). Aerology of the Polar Regions (Moscow, 1964). Jerusalem: Israel Program of Scientific TranslationsGoogle Scholar
Gakkel, Ya. Ya. and Chernenko, M. B. (1959). Sovetskoye Arkitchekoye Moreplavaniye 1917–1932 gg. Istoriya Otkrytiya I. Osvoyeniya Severnogo Morskogo Puti, III (Soviet Arctic Navigation 1917–1932. History of the Discovery and Exploitation of the Northern Sea Route, Vol. 3). Leningrad: Morsko TransportGoogle Scholar
Galloway, J. L. (1958). The three-front model: Its philosophy, nature, construction and use. Weather 13, 395–403CrossRefGoogle Scholar
Ganopolski, A. and Rahmsdorf, S. (2001). Rapid changes of glacial climate simulated in a coupled climate model. Nature 409, 153–158CrossRefGoogle Scholar
Gates, W. L. (1992). Atmospheric Model Intercomparison Project: The atmospheric model intercomparison project. Bull. Amer. Meteorol. Soc. 73, 1962–19702.0.CO;2>CrossRefGoogle Scholar
Gavrilov, A. V. (2001). Geocryological mapping of Arctic shelves. In Paepe, R. and Melnikov, V. (eds.), Permafrost Response on Economic Development, Environmental Security and Natural Resources. Dordrecht, the Netherlands: Kluwer Academic Publishers, pp. 69–86CrossRefGoogle Scholar
Gerrard, A. J., Kane, T. L., Thayer, J. P. et al. (2002). Synoptic scale study of the Arctic polar vortex's influence on the middle atmosphere. 1. Observations. J. Geophys. Res. 107(D16), DOI: 10.1029/2001JD000681CrossRef
Ghil, M. and Malanotte-Rizzoli, P. (1991). Data assimilation in meteorology and oceanography. Adv. Geophys. 33, 141–266CrossRefGoogle Scholar
Gillett, N. P., Baldwin, M. P. and Allen, M. R. (2003). Climate change and the North Atlantic Oscillation. In The North Atlantic Oscillation: Climate Significance and Environmental Impact. Geophysical Monograph 134, American Geophysical Union, pp. 193–209
Glazovsky, A. F. (2003). Glacier changes in the Russian Arctic. In Papers and Recommendations: Snow Watch 2002 Workshop and Assessing Global Glacier Recession. Glaciol. Data Report GD-32. National Snow and Ice Data Center/WDC for Glaciology, Boulder, pp. 78–82
Golubchikov, Y. N. (1996). Geografiya Gornykh i Polyarnikh Stran (The Geography of Mountain and Polar Lands). Moscow: Moscow University Press, 304 ppGoogle Scholar
Goodrich, L. E. (1982). Efficient numerical technique for one-dimensional thermal problems with phase change. Int. J. Heat Mass Transfer 21, 615–621CrossRefGoogle Scholar
Gorshkov, S. G. (ed.) (1983). World Ocean Atlas, Vol. 3, Arctic Ocean (in Russian). Oxford: Pergamon PressGoogle Scholar
Govorukha, L. S. (1988). Sovremennoe Nazemnoe Oledenenie Sovyetskoi Arktiki (Modern Terrestrial Glaciation of the Soviet Arctic). Leningrad: GidrometeoizdatGoogle Scholar
Gow, A. J. and Tucker, W. B. III (1987). Physical properties of sea ice discharge from Fram Strait. Science 236, 236–439CrossRefGoogle Scholar
Greatbatch, R. J., Fanning, A. F., Goulding, A. D. and Levitus, S. (1991). A diagnosis of interpentadal circulation changes in the North Atlantic. J. Geophys. Res. 96, 22009–22023CrossRefGoogle Scholar
Greely, A. W. (1896). Three Years of Arctic Service. An Account of the Lady Franklin Bay Expedition of 1881–84 and the Attainment of the Farthest North. New York: Charles Scribner's Sons, Vols. 1 and 2Google Scholar
Grell, G. A., Dudhia, J. and Stauffer, D. R. (1995). A Description of the Fifth-generation Penn State/National Center for Atmospheric Research Mesoscale Model (MM5). National Center for Atmospheric Research Technical Note NCSR/TN-382+STR. Boulder, Colorado: National Center for Atmospheric Research
Groisman, P. Y., Koknaeva, V. V., Belokrylova, T. A. and Karl, T. R. (1991). Overcoming biases of precipitation: A history of the USSR experience. Bull. Amer. Meteorol. Soc. 72, 1725–17332.0.CO;2>CrossRefGoogle Scholar
Grønas, S. and Kvamstø, N. G. (1995). Numerical simulations of the synoptic conditions and development of Arctic outbreak polar lows. Tellus 47A, 797–814CrossRefGoogle Scholar
Grootes, P. M. and Stuiver, M. (1997). Oxygen 18/16 variability in Greenland snow and ice with 103-to-105 year time resolution. J. Geophys. Res. 102, 26455–26470CrossRefGoogle Scholar
Grosswald, M. G. (1980). Late Wiechselian ice sheet of northern Eurasia. Quatern. Res. 13, 1–32CrossRefGoogle Scholar
Grossvald, M. G. (1999). Evraziiskie Gidrosvernye Katastrofy I Oledenenie Arktiki (Eurasian Hydrospheric Catastrophes and the Glaciation of the Arctic). Moscow: Nauchnu MirGoogle Scholar
Grosswald, M. G. and Hughes, T. J. (1999). The case for an ice shelf in the Pleistocene Arctic Ocean. Polar Geog. 23, 23–54CrossRefGoogle Scholar
Grove, J. M. (2004). Little Ice Ages: Ancient and Modern. 2nd Edition. London/New York: RoutledgeGoogle Scholar
Gyakum, J. R. (2000). Moisture transports to Arctic drainage basins relating to significant precipitation events and cyclogenesis. In Lewis, E. L.et al. (eds.), The Freshwater Budget of the Arctic Ocean. NATO Science Series 2. Environmental Security, Vol. 70. Dordrecht, the Netherlands: Kluwer Academic Publishers, pp. 1978–2008Google Scholar
Hagglund, M. G. and Thompson, H. A. (1964). A Study of Sub-zero Canadian Temperatures. Memoir No. 16, Meteorological Branch, Department of Transport, CanadaGoogle Scholar
Hahn, C. J., Warren, S. G. and London, J. (1995). The effect of moonlight on observations of cloud cover at night and application to cloud climatology. J. Climate 8, 1429–14462.0.CO;2>CrossRefGoogle Scholar
Hahn, D. G. and Shukla, D. (1976). An apparent relationship between Eurasian snow cover and Indian monsoon rainfall. J. Atmos. Sci. 33, 2461–24622.0.CO;2>CrossRefGoogle Scholar
Häkkinen, S. (1993). An Arctic source for the Great Salinity Anomaly: A simulation of the Arctic ice-ocean system for 1955–1975. J. Geophys. Res. 98 (C9), 16397–16410CrossRefGoogle Scholar
Häkkinen, S. (1999). A simulation of thermohaline effects of a Great Salinity Anomaly. J. Climate 12, 1781–17952.0.CO;2>CrossRefGoogle Scholar
Hall, D. K. and Roswell, C. (1981). The origin of water feeding icings on the eastern North Slope of Alaska. Polar Record 20, 433–438CrossRefGoogle Scholar
Hammer, C., Mayewski, P. A., Peel, D. and Stuiver, M. (1997). Preface. Greenland Summit Ice Cores. Greenland Ice Sheet Project 2/Greenland Ice Core Project. J. Geophys. Res. 102 (C12), 26315–26316CrossRefGoogle Scholar
Harden, D., Barnes, P. and Reimnitz, E. (1977). Distribution and character of naleds in northeastern Alaska. Arctic 30, 28–40CrossRefGoogle Scholar
Hare, F. K. (1958). Weather and climate. In Kimble, G. H. and Good, D. (eds.), Geography of the Northlands. New York: The American Geographical Society and John Wiley and Sons, Inc., pp. 58–83Google Scholar
Hare, F. K. (1960a). The disturbed circulation of the Arctic stratosphere. J. Meteorol. 17, 36–512.0.CO;2>CrossRefGoogle Scholar
Hare, F. K. (1960b). The summer circulation of the Arctic stratosphere below 30 km. Q. J. R. Meteorol Soc. 86, 127–146CrossRefGoogle Scholar
Hare, F. K. (1961). The Circulation of the Stratosphere. Publication in Meteorology No. 43. Montreal, Canada: Arctic Meteorology Research Group, McGill University
Hare, F. K. (1968). The Arctic. Q. J. R. Meteorol. Soc. 94, 439–459CrossRefGoogle Scholar
Hare, F. K. and Orvig, S. (1958). The Arctic Circulation: A Preliminary View. Publication in Meteorology No. 12. Montreal, Canada: Arctic Meteorology Research Group, McGill University
Hare, F. K. and Ritchie, J. C. (1972). The boreal microclimates. Geogr. Rev. 62, 333–365CrossRefGoogle Scholar
Hartmann, B. and Wendler, G. (2005). On the significance of the 1976 Pacific climate shift in the climatology of Alaska. J. Climate (in press)CrossRef
Harris, J. M. and Kahl, J. D. (1994). An analysis of ten-day isentropic flow patterns for Barrow, Alaska. J. Geophys. Res. 99, 25845–25856CrossRefGoogle Scholar
Harris, S. A. (2001). Sequence of glaciations and permafrost events. In Paepe, R. and Melnikov, V. (eds.), Permafrost Response on Economic Development, Environmental Security and Natural Resources. Dordrecht, the Netherlands: Kluwer Academic Publishers, pp. 227–252CrossRefGoogle Scholar
Hartmann, D. L., Wallace, J. M., Limpasuvan, V., Thompson, D. W. J. and Holton, J. R. (2000). Can ozone depletion and global warming interact to produce rapid climate change?Proc. Nat. Acad. Sci. USA 97, 1412–1417CrossRefGoogle ScholarPubMed
Hastings, A. D. Jr. (1961). Atlas of the Arctic Environment. Natick, Massachusetts: U.S. Army Rep. R-33, HQ Quartermaster Res. Eng. CommandGoogle Scholar
Hattersley-Smith, G. (1974). North of Latitude Eighty. The Defense Research Board in Ellesmere Island. Ottawa, Canada: Defense Research BoardGoogle Scholar
Hattersley-Smith, G., Crary, A. P. and Christie, R. L. (1955). Northern Ellesmere Island, 1953 and 1954. Arctic 8, 2–36CrossRefGoogle Scholar
Hayes, J. D., Imbrie, J. and Shackleton, N. J. (1976). Variations in the earth's orbit: Pacemaker of the ice ages. Science 194, 1121–1132CrossRefGoogle Scholar
Hebbeln, D., Dokken, T., Andersen, E. S., Hald, M. and Elverhoi, A. (1994). Moisture supply for northern ice-sheet growth during the Last Glacial Maximum. Nature 370, 357–360CrossRefGoogle Scholar
Hebbeln, D., Heinrich, R. and Baumann, K. H. (1998). Paleoceanography of the last interglacial/glacial cycle in the polar North Atlantic. Quatern. Sci. Rev. 17, 125–153CrossRefGoogle Scholar
Heinemann, G. and Klein, T. (2002). Modeling and observations of the katabatic flow dynamics over Greenland. Tellus 54A, 542–554CrossRefGoogle Scholar
Heinrich, H. (1988). Origin and consequences of cyclic ice rafting in the northeast Atlantic Ocean during the past 130,000 years. Quatern. Res. 29, 142–152CrossRefGoogle Scholar
Herber, A., Thomason, L. W., Gernandt, H. et al. (2002). Continuous day and night aerosol optical depth observations in the Arctic between 1991 and 1999. J. Geophys. Res. 107(D10), DOI: 10.1029/2002JD002079CrossRef
Herman, G. and Goody, R. (1976). Formation and persistence of summertime Arctic stratus clouds. J. Atmos. Sci. 33, 1537–15532.0.CO;2>CrossRefGoogle Scholar
Herman, G. F. (1975). Radiative-Diffusive Models of the Arctic Boundary Layer. Cambridge: Department of Meteorology, Massachusetts Institute of TechnologyGoogle Scholar
Herman, G. F. and Curry, J. A. (1984). Observational and theoretical studies of solar radiation in Arctic stratus clouds. J. Clim. Appl. Meteorol. 23, 5–242.0.CO;2>CrossRefGoogle Scholar
Herman, Y. (1983). Arctic Ocean paleoceanography in late Neogene time and its relationship to global climate. Oceanology 23, 81–87Google Scholar
Herman, Y. (ed.) (1989). The Arctic Seas. Climatology, Oceanography, Geology, and Biology. New York: Van Nostrand, ReinholdGoogle Scholar
Herschel, J. F. W. (ed.) (1851). Admiralty Manual of Scientific Enquiry: Prepared for the Use of Officers in Her Majesty's Navy; and Travellers in General 2nd Edition, London (reprinted Folkestone, UK: Dawson, 1974)Google Scholar
Hewson, T. D. (1998). Objective fronts. Meteorol. Appl. 5, 37–63CrossRefGoogle Scholar
Hibler, W. D. III (1979). A dynamic thermodynamic sea ice model. J. Phys. Oceanogr. 9, 815–8462.0.CO;2>CrossRefGoogle Scholar
Hibler, W. D., III (1980). Modeling a variable thickness sea ice cover. Mon. Wea. Rev. 108, 1943–19732.0.CO;2>CrossRefGoogle Scholar
Hibler, W. D., III (1986). Ice dynamics. In Untersteiner, N. (ed.), The Geophysics of Sea Ice, NATO ASI Ser., Ser. B Phys., Vol. 146. New York: Plenum Press, pp. 577–640CrossRefGoogle Scholar
Hibler, W. D. III, and Bryan, F. (1987). A diagnostic ice-ocean model. J. Phys. Oceanogr. 17, 987–10152.0.CO;2>CrossRefGoogle Scholar
Hibler, W. D. III, and Flato, G. M. (1992). Sea ice models. In Trenberth, K. (ed.), Climate System Modeling, Cambridge: Cambridge University Press, pp. 413–436Google Scholar
Hibler, W. D. and Schulson, E. M. (2000). On modeling the anisotropic failure and flow of flawed sea ice. J. Geophys. Res. 105 (C7), 17105–17120CrossRefGoogle Scholar
Hibler, W. D., Heil, P. and Lytle, V. I. (1998). On simulating high-frequency variability in Antarctic sea-ice dynamics models. Ann. Glaciol. 27, 443–448CrossRefGoogle Scholar
Highwood, E. J., Hoskins, B. J. and Berrisford, P. (2000). Properties of the Arctic tropopause. Q. J. R. Meteorol. Soc. 226, 1515–1532CrossRefGoogle Scholar
Hilmer, M. and Lemke, P. (2000). On the decrease of Arctic sea ice volume. Geophys. Res. Lett. 27, 3751–3754CrossRefGoogle Scholar
Hinkel, K. M., Nelson, F. E., Klene, A. E. and Bett, J. H. (2003). The urban heat island in winter at Barrow, Alaska. Int. J. Climatol. 23, 1889–1905CrossRefGoogle Scholar
Hinzman, L. D., Kane, D. L., Benson, C. S. and Everett, K. R. (1996). Energy balance and hydrological processes in an Arctic watershed. Ecol. Stud. 120, 131–154CrossRefGoogle Scholar
Hinzman, L. D., Bettez, N. D., Bolton, W. R. et al. (2005). Evidence and implications of recent climate change in northern Alaska and other Arctic regions. Clim. Change (in press)CrossRef
Hobbs, W. H. (1910). Characteristics of the inland ice of the Arctic regions. Amer. Phil. Soc. 49, 57–129Google Scholar
Hobbs, W. H. (1926). The Glacial Anticyclones, the Poles for the Atmospheric Circulation. New York: MacMillanGoogle Scholar
Hobbs, W. H. (1945). The Greenland glacial anticyclone. J. Meteorol. 2, 143–1532.0.CO;2>CrossRefGoogle Scholar
Hobbs, W. H. (1948). The climate of the Arctic as viewed by explorer and meteorologist. Science 108, 193–201CrossRefGoogle ScholarPubMed
Hoerling, M. P., Hurrell, J. W. and Xu, T. (2001). Tropical origins for recent North Atlantic climate change. Science 292, 90–92CrossRefGoogle ScholarPubMed
Hoerling, M. P., Hurrell, J. W., Xu, T., Bates, G. T. and Phillips, A. (2004). Twentieth century North Atlantic climate change. Part II: Understanding the effect of Indian Ocean warming. Clim. Dynam. DOI: 10.1007/s00382-004-0433-ⅹCrossRef
Hoinka, K. P. (1998). Statistics of the global tropopause pressure. Mon. Wea. Rev. 126, 3303–33252.0.CO;2>CrossRefGoogle Scholar
Holland, M. M. and Bitz, C. M. (2003). Polar amplification of climate change in coupled models. Clim. Dynam. 21, 221–232CrossRefGoogle Scholar
Holland, M. M., Bitz, C. M., Eby, M. and Weaver, A. J. (2001). The role of ice-ocean interactions in the variability of the North Atlantic thermohaline circulation. J. Climate 14, 656–6752.0.CO;2>CrossRefGoogle Scholar
Holloway, G. and Sou, T. (2002). Has Arctic sea ice rapidly thinned?J. Climate 15, 1691–17012.0.CO;2>CrossRefGoogle Scholar
Holmgren, B. (1971). Climate and Energy Exchange on a Sub-polar Ice Cap in Summer. Part E. Radiation Climate. Meteorologiska Institutionen, Uppsala Universitet, Meddelande Nr. 111Google Scholar
Holton, J. R. (2004). An Introduction to Dynamic Meteorology 4th Edition. San Diego, California: Elsevier Academic PressGoogle Scholar
Hopkins, D. M., Matthews, J. V. Jr., Schweger, C. L. and Young, S. B. (1982). Paleoecology of Beringia. New York: Academic PressGoogle Scholar
Hubberten, H.-W. and Romanovskii, N. N. (2001). Terrestrial and offshore permafrost evolution of the Laptev Sea region during the last Pleistocene- Holocene glacial – eustatic cycle. In Paepe, R. and Melnikov, V. (eds.), Permafrost Response on Economic Development, Environmental Security and Natural Resources. Dordrecht, the Netherlands: Kluwer Academic Publishers, pp. 43–60CrossRefGoogle Scholar
Huffman, G. J., Alder, R. F., Arkin, P. A.et al. (1997). The Global Precipitation Climatology Project (GPCP) Combined Precipitation Data Set. Bull. Amer. Meteorol. Soc. 78, 5–202.0.CO;2>CrossRefGoogle Scholar
Huffman, G. J., Alder, R. F., Morrissey, M. M.et al. (2001). Global precipitation at one-degree daily resolution from multisatellite observations. J. Hydrometeorol. 2, 36–502.0.CO;2>CrossRefGoogle Scholar
Hughes, M. K. and Diaz, H. F. (1994). Was there a ‘Medieval Warm Period’?Clim. Change 26, 109–142CrossRefGoogle Scholar
Hurrell, J. W. (1995). Decadal trends in the North Atlantic Oscillation: regional temperatures and precipitation. Science 269, 676–679CrossRefGoogle ScholarPubMed
Hurrell, J. W. (1996). Influence of variations in extratropical wintertime teleconnections on Northern Hemisphere temperature. Geophys. Res. Lett. 23, 665–668CrossRefGoogle Scholar
Hurrell, J. W. and Loon, H. (1997). Decadal variations in climate associated with the North Atlantic Oscillation. Clim. Change 36, 301–326CrossRefGoogle Scholar
Hurrell, J. W., Kushnir, Y., Ottersen, G. and Visbeck, M. (2003). An overview of the North Atlantic Oscillation. In The North Atlantic Oscillation: Climate Significance and Environmental Impact. Geophysical Monograph 134, American Geophysical Union, pp. 1–35
Hurrell, J. W., Hoerling, M. P., Phillips, A. and Xu, T. (2004). Twentieth century North Atlantic climate change. Part I: Assessing determination. Clim. Dynam., DOI: 10.1007/s00382-004-0432-yCrossRef
Huybrechts, P., Kuhn, M., Lambeck, K., Nhuan, M. T., Qin, D. and Woodworth, P. L. (lead authors) and 28 contributing authors (2001). Changes in sea level. In Climate Change 2001, The Scientific Basis. Contribution of Working Group I to the Third Assessment Report of the Intergovernmental Panel on Climate Change, Cambridge: Cambridge University Press, pp. 639–693
Intergovernmental Panel on Climate Change (2001). Climate Change 2001. The Scientific Basis. Contribution of Working Group I to the Third Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge: Cambridge University Press
Intrieri, J. M. and Shupe, M. D. (2004). Characteristics and radiative effect of diamond dust over the western Arctic Ocean region. J. Climate 17, 2953–29602.0.CO;2>CrossRefGoogle Scholar
Intrieri, J. M., Fairall, C. W., Shupe, M. D. et al. (2002). Annual cycle of Arctic surface cloud forcing at Surface Heat Budget of the Arctic Ocean. J. Geophys. Res. 107(C10), DOI: 10.1029/2000JC000439CrossRef
Ives, J. D. (1957). Glaciation in the Torngat Mountains, northern Labrador. Arctic 10, 67–87Google Scholar
Ives, J. D. (1962). Indications of recent extensive glacierization in north-central Baffin Island. J. Glaciol. 4, 197–205CrossRefGoogle Scholar
Ives, J. D. (1974). Permafrost. In Ives, J. D. and Barry, R. G. (eds.), Arctic and Alpine Environments. London: Methuen, pp. 159–194Google Scholar
Ives, J. D., Andrews, J. T. and Barry, R. G. (1975). Growth and decay of the Laurentide ice sheet and comparisons with Fenno-Scandinavia. Naturwissenschaften 62, 118–125CrossRefGoogle Scholar
Jackson, C. I. (1959a). Operation Hazen: The Meteorology of Lake Hazen, N. W. T. Based on Observations Made During the International Geophysical Year 1957–58. Montreal, Canada: Defence Research Board, Department of National Defence, Arctic Meteorology Research Group, Publication in Meteorology No. 15–16, McGill University, Montreal, Parts I–IV, 295 pp
Jackson, C. I. J. (1959b). Coastal and inland weather contrasts in the Canadian Arctic. J. Geophys. Res. 64, 1451–1455CrossRefGoogle Scholar
Jacobs, J. D., Barry, R. G. and Weaver, R. L. (1975). Fast ice characteristics with special reference to the eastern Canadian Arctic. Polar Record 17, 521–536CrossRefGoogle Scholar
Jeffries, M. K. (1992). Arctic ice shelves and ice islands: Origin, growth and disintegration, physical characteristics, structural stratigraphic variability, and dynamics. Rev. Geophys. 30, 245–267CrossRefGoogle Scholar
Johannessen, O. M., Bengtsson, L., Miles, M. W.et al. (2004). Arctic climate change: observed and modelled temperature and sea ice variability. Tellus 56A, 328–341CrossRefGoogle Scholar
Johnson, G. L., Pogrebisky, J. and Macnab, R. (1994). Arctic structural evolution: Relationship to Paleoceanography. In Johannessen, O. M., Muench, R. D., and Overland, J. E. (eds.), The Polar Oceans and their Role in Shaping the Global Environment. Geophys. Monogr. 85. Washington, DC: American Geophysical Union, pp. 285–94CrossRefGoogle Scholar
Jones, P. D. (1987). The twentieth century Arctic high – fact or fiction?Clim. Dynam. 1, 63–75CrossRefGoogle Scholar
Jones, P. D. and Moberg, A. (2003). Hemispheric and large-scale surface air temperature variation: an extensive revision and update to 2001. J. Climate 16, 206–2232.0.CO;2>CrossRefGoogle Scholar
Jones, P. D., New, M., Parker, D. E., Martin, S. and Rigor, I. G. (1999). Surface air temperature and its changes over the past 150 years. Rev. Geophys. 37, 173–199CrossRefGoogle Scholar
Kageyama, M., Valdes, , Ramstein, P. J., Hemitt, G., , C. and Wyputta, U. (1999). Northern Hemisphere storm tracks in present day and Last Glacial Maximum climate simulations: A comparison of the European PMIP models. J. Climate 12, 742–7602.0.CO;2>CrossRefGoogle Scholar
Kahl, J. D. (1990). Characteristics of the low-level temperature inversion along the Alaskan Arctic coast. Int. J. Climatol. 10, 537–548CrossRefGoogle Scholar
Kalnay, E., Kanamitsu, M., Kistler, R.et al. (1996). The National Centers for Environmental Prediction/National Center for Atmospheric Research 40-year re-analysis project. Bull. Amer. Meteorol. Soc. 77, 437–4712.0.CO;2>CrossRefGoogle Scholar
Kane, D. L., Hinzman, L. D., Benson, C. S. and Liston, G. E. (1991). Snow hydrology of a headwater Arctic basin, I. Water Resour. Res. 27, 1099–1109CrossRefGoogle Scholar
Kane, D. L., Hinzman, L. D., Woo, M. and Everett, K. (1992). Arctic hydrology and climate change. In Arctic Ecosystems in a Changing Climate. San Diego, California: Academic Press, pp. 35–57
Kane, E. K. (1856). Arctic Explorations: The Second Grinnell Expedition in Search of Sir John Franklin, 1853, '54,'55. Philadelphia: Childs and Peterson, Vol. 1, 464 pp., Vol. 2, 467 ppCrossRefGoogle Scholar
Kaufman, D. S., Ager, T. A. Anderson, et al. (2004). Holocene thermal maximum in the western Arctic (0-180° W). Quatern. Sci. Rev. 23, 529–560CrossRefGoogle Scholar
Keegan, T. J. (1958). Arctic synoptic activity in winter. J. Meteorol. 15, 513–5212.0.CO;2>CrossRefGoogle Scholar
Kellogg, W. W. (1973). Climatic feedback mechanisms involving the polar regions. In Weller, G. and Bowling, S. A. (eds.), Climate of the Arctic. Fairbanks, Alaska: Geophysical Institute, University of Alaska, pp. 111–116Google Scholar
Kerr, R. A. (1987). Milankovich climate cycles through the ages. Science 235, 973–994CrossRefGoogle ScholarPubMed
Key, J. R. and Intrieri, J. (2000). Cloud particle phase determination with Advanced Very High Resolution Radiometer. J. Appl. Meteorol. 36, 1797–1805CrossRefGoogle Scholar
Key, J. R., Wang, X., Stroeve, J. and Fowler, C. (2001). Estimating the cloudy-sky albedo of sea ice and snow from space. J. Geophys. Res. 106, 12489–12497CrossRefGoogle Scholar
Khrol, V. P. (1976). Isparenie s poverkhnosti Severnogo Ledovitogo Okeana (Evaporation from the Arctic Ocean surface.). Trudy Arkt. Antarkt. Nauchno.-issled. Inst. 323, 148–155Google Scholar
Khrol, V. P. (ed.) (1996). Atlas of Water Balance of the Northern Polar Area. Leningrad: GidrometeoizdatGoogle Scholar
Kirwan, L. P. (1962). A History of Polar Exploration. London: Penguin BooksGoogle Scholar
Kistler, R., Kalnay, E., Collins, W.et al. (2001). The National Centers for Environmental Prediction-National Center for Atmospheric Research 50-year reanalysis: Monthly means CD-ROM and Documentation. Bull. Amer. Meteorol. Soc. 82, 247–2672.3.CO;2>CrossRefGoogle Scholar
Kittel, T. G., Steffen, W. L. and Chapin, F. S. III (2000). Global and regional modeling of Arctic-boreal vegetation distribution and its sensitivity to altered forcing. Global Change Biology 6 (Supplement 1), 1–18CrossRefGoogle Scholar
Klein, T. and Heinemann, G. (2002). Interaction of katabatic winds and mesocyclones near the eastern coast of Greenland. Meteorol. Appl. 9, 407–422CrossRefGoogle Scholar
Kleman, J., Hãtterstrand, C., Borgström, I. and Stroeven, A. (1997). Fennoscandian paleoglaciology reconstructed using a glacial-geological inversion model. J. Glaciol. 43, 283–299CrossRefGoogle Scholar
Koc, N., Jansen, E. and Haflidason, H. (1993). Paleoceanographic reconstructions of surface ocean conditions in the Greenland, Iceland and Norwegian seas through the last 14ka based on diatoms. Quatern. Sci. Rev. 12, 115–140CrossRefGoogle Scholar
Koch, K. R. (1891). History of the supplementary expedition under K. R. Koch to Labrador. In Neumayer, G. (ed.), Die Deutschen Expeditionen und ihre Ergebnisse. Band 1. Geschichtlicher Theil, Berlin: A. Asher, pp. 145–188Google Scholar
Kodera, K. and Chiba, M. (1995). Tropospheric circulation changes associated with stratospheric sudden warming: A case study. J. Geophys. Res. 100 (D6), 11055–11068CrossRefGoogle Scholar
Koenig, L. S., Greenaway, K. R., Dunbar, M. and Hattersley-Smith, G. (1952). Arctic Ice Islands. Arctic 5, 62–102Google Scholar
Koerner, R. M. (1970). Weather and ice observations of the British Trans-Arctic Expedition 1968–69. Weather 25, 218–228CrossRefGoogle Scholar
Koerner, R. M. (1989). Ice core evidence for extensive melting of the Greenland Ice Sheet in the last Interglacial. Science 244, 964–968CrossRefGoogle ScholarPubMed
Kolfschoten, T. van., Gibbard, P. L. and Knudsen, K.-L. (2003). The Eemian Interglacial: a global perspective. Introduction. Global Planet. Change 36, 17–49Google Scholar
Konzelmann, T. and Ohmura, A. (1995). Radiative fluxes and their impact on the energy balance of the Greenland ice sheet. J. Glaciol. 41, 490–502CrossRefGoogle Scholar
Korotkevich, E. S. (1972). Polarnye pustyni (Polar Deserts). Leningrad: GidrometeoizdatGoogle Scholar
Koryakin, V. S. (1990). Ledniki Novoi Zemli i klimat (Glaciers of Novaya Zemlya and climate). Priroda (No.1), 23–29Google Scholar
Korzun, V. I. (1976). Atlas of World Water Balance (in Russian). Leningrad: GidrometeoizdatGoogle Scholar
Koster, R. D. and Suarez, M. J. (1992). Modeling the land surface boundary in climate models as a composite of independent vegetation stands. J. Geophys. Res. 97 (D3), 2697–2715CrossRefGoogle Scholar
Kotlyakov, V. M. (ed.) (1997). World Atlas of Snow and Ice Resources. Moscow: Russian Academy of SciencesGoogle Scholar
Kovaks, A. and Mellor, M. (1974). Sea ice morphology and ice as a geological agent in the southern Beaufort Sea. In Reed, J. C. and Sater, J. E. (eds.), The Coast and Shelf of the Beaufort Sea. Arlington, Virginia: AINA, pp. 113–124Google Scholar
Krebs, S. J. and Barry, R. G. (1970). The Arctic front and the tundra-taiga boundary in Eurasia. Geogr. Rev. 60, 548–554CrossRefGoogle Scholar
Krenke, A. N. (1961). The ice dome with firn nourishment in Franz Josef Land (translated in 1997). In Kotlyakov, V. M. (ed.), 34 Selected Papers on Main Ideas in Soviet Glaciology, 1940s–1980s. Moscow: Institute of Geography, R. A. S., pp. 132–144Google Scholar
Kreutz, K. J., Mayewski, , Meeker, P. A., , L. D.et al. (1997). Bipolar changes in atmospheric circulation during the Little Ice Age. Science 277, 1294–1296CrossRefGoogle Scholar
Kriner, G., Mangerud, J., Jacomsson, M.et al. (2004). Enhanced ice sheet growth in Eurasia owing to adjacent ice-dammed lakes. Nature 427, 429–432CrossRefGoogle Scholar
Kristjánsson, J. E. and McInnes, H. (1999). The impact of Greenland on cyclone evolution in the North Atlantic. Q. J. R. Meteorol. Soc. 125, 2819–2834CrossRefGoogle Scholar
Kukla, G. J., Michael, L., Bender, J.-L., et al. (2002a). Last Interglacial climates. Quatern. Res. 58, 2–13CrossRefGoogle Scholar
Kukla, G. J., Clement, A. C., Cane, M. A., Gavin, J. E. and Zebiak, S. E. (2002b). Last Interglacial and early glacial El-Niñno Southern Oscillation. Quatern. Res. 58, 27–31CrossRefGoogle Scholar
Kurashima, A. (1968). Studies on the summer and winter monsoons in east Asia based on dynamic concept. Geographical Magazine (Tokyo) 34, 145–236Google Scholar
Kutzbach, J. E. (1970). Large-scale features of monthly mean Northern Hemisphere anomaly maps of sea level pressure. Mon. Wea. Rev. 98, 708–7162.3.CO;2>CrossRefGoogle Scholar
Kwok, R. (2004). Annual cycles of multiyer sea ice coverage of the Arctic Ocean: 1999–2002. J. Geophys. Res. 109, C11004, DOI: 10.1029/2003JC002238CrossRef
Kwok, R. and Rothrock, D. A. (1999). Variability of Fram Strait ice flux and North Atlantic Oscillation. J. Geophys. Res. 104 (C3), 5177–5189CrossRefGoogle Scholar
Kwok, R., Zwally, H. J. and Yi, D. (2004). ICESat observations of Arctic sea ice: A first look. Geophys. Res. Lett. 31, L16401, DOI: 10.1029/2004GL020309CrossRef
Labitzke, K. (1968). Midwinter warmings in the upper stratosphere in 1966. Q. J. R. Meteorol. Soc. 94, 279–291CrossRefGoogle Scholar
Labitzke, K. (1981). Stratospheric-mesospheric midwinter disturbances: A summary of observed characteristics. J. Geophys. Res. 86, 9665–9678CrossRefGoogle Scholar
Labitzke, K. (1982). On interannual variability of the middle stratosphere during northern winters. J. Meteorol. Soc. Japan 60, 124–139CrossRefGoogle Scholar
Lafleur, P. M. and Rouse, W. R. (1995). Energy partitioning at treeline forest and tundra sites and its sensitivity to climate change. Atmosphere-Ocean 33, 121–133CrossRefGoogle Scholar
Lamb, H. H. (1955). Two-way relationships between the snow or ice limit and 1000–500 mb thickness in the overlying atmosphere. Q. J. R. Meteorol. Soc. 81, 172–189CrossRefGoogle Scholar
Lammers, R. B., Shiklomonov, A. I., Vörösmarty, C. J., Fekete, B. M. and Peterson, B. J. (2001). Assessment of contemporary Arctic river runoff based on observational records. J. Geophys. Res. 106 (D4), 3321–3334CrossRefGoogle Scholar
Larsen, E., Funder, S. and Thiede, J. (1999). Late Quaternary history of northern Russia and adjacent shelves – a synopsis. Boreas 28, 6–11CrossRefGoogle Scholar
Larsen, J. A. (1974). Ecology of the northern forest border. In Ives, J. D. and Barry, R. G. (eds.) Arctic and Alpine Environments. London: Methuen, pp. 341–368Google Scholar
Laursen, V. (1959). The Second International Polar Year. Annals Int. Geophys. Year (Pergamon) 1, 211–234Google Scholar
Laursen, V. (1982). The Second International Polar Year (1932/33). WMO Bull. 31, 214–226Google Scholar
Lazier, J. R. N. (1980). Oceanographic conditions at weather station Bravo, 1960–1974. Atmosphere-Ocean 18, 18227–18238Google Scholar
Lean, J., Beer, J. and Bradley, R. S. (1995). Reconstructions of solar irradiance since 1610: Implications for climate change. Geophys. Res. Lett. 22, 3195–3198CrossRefGoogle Scholar
Lebedev, V. V. (1938). Rost l'do ⅴ arkticheskikh rekakh i moriakh ⅴ zavisimosti ot otritsatel' nykh temperatur vozdukha (Growth of ice in Arctic rivers and seas and its dependence on negative air temperatures). Problemy Arktiki 5, 9–25Google Scholar
Leck, C., Norman, M., Bigg, E. K. and Hillamo, R. (2002). Chemical composition and sources of the High Arctic aerosol relevant for cloud formation. J. Geophys. Res. 107(D12), DOI: 10.1029/2001JD001463CrossRef
LeDrew, E. F. (1984). The role of local heat sources in synoptic activity in the Arctic Basin. Atmosphere-Ocean 22, 309–327CrossRefGoogle Scholar
LeDrew, E. F. (1988). Development processes for five depression systems within the Polar Basin. J. Climatol. 8, 125–153CrossRefGoogle Scholar
LeDrew, E. F. (1989). Modes of synoptic development within the Polar Basin. Geojournal 18, 79–85CrossRefGoogle Scholar
Legates, D. R. and Willmott, C. J. (1990). Mean seasonal and spatial variability in gauge-corrected, global precipitation. Int. J. Climatol. 10, 111–127CrossRefGoogle Scholar
Lehman, S. J. and Keigwin, L. D. (1992). Sudden changes in North Atlantic circulation during the last deglaciation. Nature 356, 757–762CrossRefGoogle Scholar
Letreguilly, A., Reeh, N. and Huybrechts, P. (1991). The Greenland ice sheet through the last glacial-interglacial cycle. Global Planet. Change 90, 385–394CrossRefGoogle Scholar
Levere, T. H. (1993). Science and the Canadian Arctic. A Century of Exploration 1818–1918. Cambridge: Cambridge University PressGoogle Scholar
Levi, B. G. (1992). Arctic measurements indicate chilly prospect of ozone depletion. Physics Today 45, 17–19Google Scholar
Levitus, S. (1984). Annual cycle of temperature and heat storage in the world ocean. J. Phys. Oceanogr. 14, 727–7462.0.CO;2>CrossRefGoogle Scholar
Limpasuvan, V., Thompson, D. W. J. and Hartmann, D. L. (2004). The lifecycle of the Northern Hemisphere sudden stratospheric warmings. J. Climate 17, 2584–25962.0.CO;2>CrossRefGoogle Scholar
Lindsay, R. W. and Zhang, J. (2005). The thinning of Arctic Sea ice, 1988–2003: have we passed a tipping point? J. Climate (in press)
Lindstrom, D. R. and MacAyeal, D. R. (1986). Paleoclimatic constraints on the maintenance of possible ice-shelf cover in the Norwegian and Greenland seas. Paleoceanography 1, 313–337CrossRefGoogle Scholar
Locke, C. W. and Locke, W. W. III (1977). Little Ice Age snow cover extent and paleoglaciation thresholds: north-central Baffin Island, N. W. T., Canada. Arct. Alp. Res. 9, 291–300CrossRefGoogle Scholar
Loewe, F. (1936). The Greenland Ice Cap as seen by a meteorologist. Q. J. R. Meteorol. Soc. 62, 359–377CrossRefGoogle Scholar
Loewe, F. (1963). On the radiation economy. Particularly on ice and snow-covered regions. Beiträge F. Geophysik 72, 371–376Google Scholar
Lorenz, E. N. (1951). Seasonal and irregular variations of the Northern Hemisphere sea-level pressure profile. J. Meteorol. 8, 52–592.0.CO;2>CrossRefGoogle Scholar
Lotz, J. R. and Sagar, R. B. (1963). Northern Ellesmere Island – an Arctic desert. Geogr. Annal. A44, 366–377Google Scholar
Lunardini, V. J. (1993). Permafrost formation time. In Permafrost, Sixth International Conference Proceedings, Vol. 1. South China University of Technology Press, pp. 420–425
Lydolph, P. E. (1977). World Survey of Climatology, Vol. 7, Climates of the Soviet Union (Landsberg, H. E., ed. in chief). Amsterdam: ElsevierGoogle Scholar
Lynch, A. H., Chapman, W. L., Walsh, J. E. and Weller, G. (1995). Development of a regional climate model of the western Arctic. J. Climate 8, 1555–15702.0.CO;2>CrossRefGoogle Scholar
Lynch, A. H., Bonan, G. B., Chapin,, F. S. and Wu, W. (1999a). Impact of tundra ecosystems on the surface energy budget and climate of Alaska. J. Geophys. Res. 106 (D6), 6647–6660CrossRefGoogle Scholar
Lynch, A. H., Chapin, F. S. III, Hinzman, L. D.et al. (1999b). Surface energy balance on the Arctic tundra: Measurements and models. J. Climate 12, 2585–26062.0.CO;2>CrossRefGoogle Scholar
Lynch, A. H., Maslanik, J. A. and Wu, W. (2001a). Mechanisms in the development of anomalous sea ice extent in the western Arctic: A case study. J. Geophys. Res. 106 (D22), 28097–28105CrossRefGoogle Scholar
Lynch, A. H., Slater, A. G. and Serreze, M. (2001b). The Alaskan frontal zone: Forcing by orography, coastal contrast and the boreal forest. J. Climate 14, 4351–43622.0.CO;2>CrossRefGoogle Scholar
MacAyeal, D. R. (1993). Binge/purge oscillation of the Laurentide ice sheet as a cause of the North Atlantic Heinrich events. Paleoceanography 8, 775–784CrossRefGoogle Scholar
Magee, N., Curtes, J. and Wendler, G. (1999). The urban heat island effect at Fairbanks, Alaska. Theor. Appl. Climatol., 64, 39–47CrossRefGoogle Scholar
Makhover, Z. M. (1983). Klimatologiya Tropopauzy (Climatology of the Tropopause). Leningrad: Gidrometeoizdat, 215 ppGoogle Scholar
Makshtas, A. P. (1984). The Heat Budget of Arctic Ice in Winter (in Russian). St. Petersburg, Russia: Gidrometeoizdat (English translation, E. L. Andreas, International Glaciological Society, Cambridge, England, 1991)Google Scholar
Manabe, S. (1969). Climate and the ocean circulation. 1. The atmospheric circulation and the hydrology of the earth's surface. Mon. Wea. Rev. 97, 739–7742.3.CO;2>CrossRefGoogle Scholar
Manabe, S. and Stouffer, R. J. (1999). The role of thermohaline circulation in climate. Tellus 51A-B, 91–109Google Scholar
Mansir, A. R. (1989). Quest for the Northeast Passage. Montrose, California: Kittiwake PublGoogle Scholar
Mantua, N., Hare, S., Zhang, Y., Wallace, J. and Francis, R. (1997). A Pacific interdecadal climate oscillation with impacts on salmon production. Bull. Amer. Meteorol. Soc. 78, 1069–10792.0.CO;2>CrossRefGoogle Scholar
Marincovitch, L. Jr. and Gladenkov, A. Yu. (1999). Evidence for an early opening of the Bering Strait. Nature 397, 149–151Google Scholar
Marshall, S. J., Tarasov, I., Clarke, G. K. C. and Peltier, W. R. (2000). Glaciological reconstruction of the Laurentide ice sheet: physical processes and modeling challenges. Can. J. Earth Sci. 37, 769–793CrossRefGoogle Scholar
Martin, C. (1988). William Scoresby Jr. (1789–1857) and the Open Polar Sea – myth and reality. Arctic 41, 39–47CrossRefGoogle Scholar
Martin, S., Munoz, E. A. and Drucker, R. (1997). Recent observations of a spring-summer surface warming over the Arctic Ocean. Geophys. Res. Lett. 24, 1259–1262CrossRefGoogle Scholar
Martinson, D. G., Pisias, N. G., Hayes, J. D.et al. (1987). Age dating and the orbital theory of the ice ages: development of a high-resolution 0–300,000 year chronostratigraphy. Quatern. Res. 27, 1–29CrossRefGoogle Scholar
Maslanik, J. A., and Maybee, H. (1994). Assimilating remotely-sensed data into a dynamic-thermodynamic sea ice model. In Proc. International Geosci. Remote Sens. Symp., Pasadena, California, pp. 1306–1308
Maslanik, J. A., Fowler, C., Key, J.et al. (1997). Advanced Very High Resolution Radiometer-based Polar Pathfinder products for modeling applications. Ann. Glaciol. 25, 388–392CrossRefGoogle Scholar
Maslanik, J. A., Serreze, M. C. and Agnew, T. (1999). On the record reduction in 1998 western Arctic sea-ice cover. Geophys. Res. Lett. 26, 1905–1908CrossRefGoogle Scholar
Maslowski, W., Newton, B., Schlosser, P., Semtner, A. and Martinson, D. (2000). Modeling recent climate variability in the Arctic Ocean. Geophys. Res. Lett. 27, 3743–3746CrossRefGoogle Scholar
Maslowski, W., Marble, D. C. and Walezowski, (2001). Recent trends in Arctic Sea Ice. Ann. Glaciol. 33, 545–550CrossRefGoogle Scholar
Matthes, F. E. (1946). The glacial anticyclone theory examined in light of recent meteorological data from Greenland. Part I. Trans. Amer. Geophys. Union 27, 324–341CrossRefGoogle Scholar
Matthes, F. E. and Belmont, A. D. (1946). The glacial anticyclone theory examined in light of recent meteorological data from Greenland. Part II. Trans. Amer. Geophys. Union 31, 174–182CrossRefGoogle Scholar
Mayewski, P. A., Meeker, L. D., Whitlow, , , S.et al. (1993). The atmosphere during the Younger Dryas. Science 261, 195–198CrossRefGoogle ScholarPubMed
Maykut, G. A. (1978). Energy exchange over young sea ice in the central Arctic. J. Geophys. Res. 83 (C7), 3646–3658CrossRefGoogle Scholar
Maykut, G. A. (1982). Large-scale heat exchange and ice production in the central Arctic. J. Geophys. Res. 87, 7971–7984CrossRefGoogle Scholar
Maykut, G. A. (1985). An Introduction to Ice in the Polar Oceans. Seattle, Washington: Applied Physics Laboratory, University of Washington, APL-UW 8510, September 1985Google Scholar
Maykut, G. A. (1986). The surface heat and mass balance. In Untersteiner, N. (ed.), The Geophysics of Sea Ice. NATO ASI Ser., Ser. B Phys., Vol. 146. New York: Plenum, pp. 395–464CrossRefGoogle Scholar
Maykut, G. A. and Untersteiner, N. (1971). Some results from a time dependent, thermodynamic model of sea ice. J. Geophys. Res. 76, 1550–1575CrossRefGoogle Scholar
McClelland, J. W., Holmes, R. M., Peterson, B. J. and Stieglitz, M. (2004). Increasing river discharge in the Eurasian Arctic: consideration of dams, permafrost thaw, and fires as potential agents of change. J. Geophys. Res. 109, D18102, DOI: 10.1029/2004JD004583CrossRef
McClintock, F. L. (1862). Meteorological Observations in the Arctic Seas by Sir Francis Leopold McClintock, R. N., Made on Board the Arctic Searching Yacht ‘Fox’ in Baffin Bay and Prince Regent's Inlet in 1857, 1858, and 1859. Reduced and Discussed … by Charles A Schott. Smithsonian Contrib. to Knowledge, 13, art. 2
McConnell, A. (1986). The scientific life of William Scoresby Jr. with a catalogue of his instruments and apparatus in the Whitby Museum. Ann. Sci. 43, 257–286CrossRefGoogle Scholar
McDonald, G. and Gajewski, K. (1992). The northern treeline of Canada. In Janelle, D. G. (ed.) Geographical Snapshots of North America. New York: Guilford Press, pp. 34–37Google Scholar
McGuffie, K. and Henderson-Sellers, A. (2005). A Climate Modelling Primer, Third Edition. Chichester, UK: Wiley and Sons, LtdCrossRefGoogle Scholar
McGuire, A. D., Melillo, J. M., Kicklighter, D. W. and Joyce, L. A. (1995). Equilibrium responses of soil carbon to climate change: Empirical and process-based estimates. J. Biogeogr. 22, 785–796CrossRefGoogle Scholar
McGuire, A. D., Clein, J. S., Melillo, J. M.et al. (2000). Modeling carbon responses of tundra ecosystems to historical and projected climate: Sensitivity of pan-Arctic carbon storage to temporal and spatial variation in climate. Global Change Biol. 6 (Supplement 1), 141–159CrossRefGoogle Scholar
McIntyre, D. P. (1958). The Canadian three-front, three jetstream model. Geophysica (Helsinki) 6, 309–324Google Scholar
McKenna, M. C. (1980). Eocene paleolatitude, climate and mammals of Ellesmere Island. Paleogeog., Paleoclimatol., Paleoecol. 30, 349–362CrossRefGoogle Scholar
McLaren, A. S. (1989). The under-ice thickness distribution of the Arctic Basin as recorded in 1958 and 1970. J. Geophys. Res. 94 (C4), 4971–4983CrossRefGoogle Scholar
McPhee, M. G. (1980). An analysis of pack ice drift in summer. In Pritchard, R. S. (ed.), Sea Ice Processes and Models. Seattle, Washington: University of Washington Press, pp. 339–394Google Scholar
McPhee, M. G., Stanton, T. P., Morison, J. H. and Martinson, D. G. (1998). Freshening of the upper ocean in the central Arctic: Is perennial ice disappearing?Geophys. Res. Lett. 25, 1729–1732CrossRefGoogle Scholar
Meehl, G. A. (1992). Global coupled models. In Trenberth, K. (ed.), Climate System Modeling, Cambridge: Cambridge University Press, pp. 555–581Google Scholar
Meier, W. N. and Maslanik, J. A. (2003). Effect of environmental conditions on observed, modeled, and assimilated sea ice motion errors. J. Geophys. Res. 108(C5), 3152, DOI: 10.1029/2002JC001333CrossRef
Meier, W. N., Maslanik, J. A. and Fowler, C. W. (2000). Error analysis and assimilation of remotely sensed ice motion within an Arctic sea ice model. J. Geophys. Res., 105 (C2), 3339–3356CrossRefGoogle Scholar
Mekis, E. and Hogg, W. D. (1999). Rehabilitation and analysis of Canadian daily precipitation time series. Atmosphere-Ocean 37, 53–85CrossRefGoogle Scholar
Mercer, J. H. (1970). A former ice sheet in the Arctic Ocean. Palaeogeogr., Paleoclimatol., Palaeoecol. 8, 19–27CrossRefGoogle Scholar
Meteorological Council (1879–1888). Contributions to our Knowledge of the Meteorology of the Arctic Regions. London: Meteorological Council, Official, No. 34. Her Majesty's Stationery Office, Part 1 (1879), 1–39 pp. Part 2 (1880), 40–254 pp. Part 3 (1882), 255–414 pp. Part 4 (1885), 413–495 pp. Part 5 (1888), 1–37 pp
Milankovitch, M. (1941). Kanon der Eadbestrahlung und seine Abwendwung auf das Eiszeitproblem (Canon on Insolation and the Ice-Age Problem). Royal Serbian Academy, Special Publication, Vol. 132. Translation (1969), Israel Program for Scientific Translation, Jerusalem
Miles, M. W. and Barry, R. G. (1989). Large-scale characteristics of fractures in multi-year Arctic pack ice. In Axelsson, K. B. E. and Fransson, L. A. (eds.), Proceedings, 10th International Conference on Port and Ocean Engineering Under Arctic Conditions (POAC 89), Vol 1. Lulea, Sweden: Department of Engineering, Lulea University of Technology, 103–112 ppGoogle Scholar
Mirny, J. (1934). To the North. The Story of Arctic Exploration from Earliest Times to the Present. New York: Viking PressGoogle Scholar
Mirrless, S. T. A. (1934). Meteorological Results of the British Arctic Air Route Expedition, 1930–31. Geophys. Mem. 7. London: Meteorological Office
Mitchell, J. M. Jr. (1957). Visual range in the polar regions with special reference to the Alaskan Arctic. J. Atmos. Terr. Phys. Spec. Suppl., 195–211Google Scholar
Mohn, H. (1905). Meteorology, XVII. In Nansen, F. (ed.), The Norwegian North Polar Expedition, 1893–1896. Scientific Results, Vol. 6. New York: Greenwood Press (reprinted 1969)Google Scholar
Mohn, H. (1907). Meteorology. In Report of the Second Norwegian Expedition in the “Fram” 1898–1902, Vol. 1 (4). Kristiana: A. W. Brøgger, Videnskabs, pp. 1–399
Montgomery, M. R. (1952). Further notes on ice islands in the Canadian Arctic. Arctic 5, 183–187CrossRefGoogle Scholar
Morison, J. H., Steele, M. and Andersen, R. (1998). Hydrography in upper Arctic Ocean measured from the nuclear submarine USS Pargo. Deep Sea Res. Part 1 45, 15–38CrossRefGoogle Scholar
Moritz, R. E. (1979). Synoptic Climatology of the Beaufort Sea Coast. Occasional Paper No. 30. Boulder, Colorado: Institute of Arctic and Alpine Research, University of ColoradoGoogle Scholar
Moritz, R. E. (1988). The Ice Budget of the Greenland Sea. Tech. Rep. APL-UW TR 8812. Seattle, Washington: Applied Physics Laboratory, University of Washington
Mueller, D. R., Vincent, W. F. and Jeffries, M. O. (2003). Break-up of the largest Arctic ice shelf and associated loss of an epishelf lake. Geophys. Res. Lett. 30, DOI: 10.1029/2003GLO1731CrossRef
Müller, F. and Roskin-Sharlin, N. (1967). A High Arctic Climate Study on Axel Heiburg Island, Canadian Archipelago, Summer 1961. Part I, General Meteorology. Axel Heiburg Island Reports on Meteorology 3. Montreal, Canada: McGill University
Murgatroyd, R. J. (1969). The structure and dynamics of the stratosphere. In Corby, G. A. (ed.), The Global Circulation of the Atmosphere. London: Royal Meteorological Society, pp. 159–195Google Scholar
Mynemi, R. B., Keeling, C. D., Tucker, C. J., Asrar, G. and Nemani, R. R. (1997). Increased plant growth in the northern high latitudes from 1981–1991. Nature 386, 698–702CrossRefGoogle Scholar
Mysak, L. A. and Huang, F. I. (1992). A latent- and sensible-heat polynya model for the North Water, northern Baffin Bay. J. Phys. Oceanogr. 22, 596–6082.0.CO;2>CrossRefGoogle Scholar
Mysak, L. A. and Venegas, S. A. (1998). Decadal climate oscillations in the Arctic: A new feedback loop for atmosphere-ice-ocean interactions. Geophys. Res. Lett. 25, 3606–3619CrossRefGoogle Scholar
Nagurny, A. P. (1998). Climatic characteristics of the tropopause over the Arctic Basin. Annal. Geophysicae 16, 110–115CrossRefGoogle Scholar
Nakamura, N. and Oort, A. H. (1988). Atmospheric heat budgets of the polar regions. J. Geophys. Res. 93 (D8), 9510–9524CrossRefGoogle Scholar
Nakicenovic, N. J.Alcamo, J., Davis, G., Vries, B., Fenhann, J., et al. (2000). Intergovernmental Panel on Climate Change Special Report on Emissions Scenarios. Cambridge and New York: Cambridge University PressGoogle Scholar
Nansen, F. (1898). Farthest North, Vols. 1 and 2. London: George NewnesGoogle Scholar
Nansen, F. (1902). The Norwegian Polar Expedition, 1893–1896, Scientific Results. Oslo: Jacob Dybwad, 6 volsGoogle Scholar
Nemani, R. R., Keeling, C. D., Hashimoto, H.et al. (2003). Climate-driven increases in global terrestrial net primary production from 1982–1999. Science 300, 1560–1562CrossRefGoogle Scholar
Nichols, H. (1976). Historical aspects of the Canadian forest tundra-ecotone. Arctic 29, 38–47CrossRefGoogle Scholar
Nolin, A. W. and Liang, S. (2000). Progress in bidirectional reflectance modeling and applications for surface particulate media: snow and soils. Remote Sensing Review 18, 307–342CrossRefGoogle Scholar
National Snow and Ice Data Center (National Snow and Ice Data Center) (1996). Arctic Ocean Snow and Meteorological Observations from the North Pole Drifting Stations: 1937, 1950–1991. Boulder, Colorado: National Snow and Ice Data Center, CD-ROM
O'Cofaigh, C., Lemmen, D. S., Evans, D. J. A. and Benarski, J. (1999). Glacial landform-sediment assemblages in the Canadian High Arctic and their implications for late Quaternary Glaciation. Ann. Glaciol. 28, 195–201CrossRefGoogle Scholar
Oechel, W. C., Vourlitis, G. L., Hastings, S. J. and Bocharev, S. A. (1995). Change in Arctic CO2 flux over two decades: Effects of climate change at Barrow, Alaska. Ecol. Appl. 5, 846–855CrossRefGoogle Scholar
Oelke, C., Zhang, T., Serreze, M. and Armstrong, R. (2003). Regional-scale modeling of soil freeze/thaw over the Arctic drainage basin. J. Geophys. Res. 108(D10), DOI: 10.1029/2002JD002722CrossRef
Ogi, M., Yamazaki, K. and Tachibana, Y. (2003). Solar cycle modulation of the seasonal linkage of the North Atlantic Oscillation. Geophys. Res. Lett. 30, 2170, DOI: 10.1029/2003GL018545CrossRef
Ohmura, A. (1984a). On the cause of the ‘Fram’ type seasonal change in diurnal amplitude of air temperature in polar regions. J. Climatol. 4, 325–338CrossRefGoogle Scholar
Ohmura, A. (1984b). Comparative energy balance study for Arctic tundra, sea surface, glaciers and boreal forest. Geojournal 8, 221–228CrossRefGoogle Scholar
Ohmura, A. (2000). Climate on tundra and thoughts on causes of regional climate differences. Ann. Glaciol. 31, 10–14CrossRefGoogle Scholar
Ohmura, A., Calanca, P., Wild, M. and Anklin, M. A. (1999). Precipitation, accumulation and mass balance of the Greenland ice sheet. Zeitschr. Gletscherk. Glazialgeol. 35, 1–20Google Scholar
Oke, T. R. (1987). Boundary Layer Climates 2nd Edition New York: RoutledgeGoogle Scholar
Okhuizen, E. (1995). The cartography of the Northern Sea Route, 15th–19th centuries. In Kitagama, H. (ed.), Northern Sea Route: Future and Perspective. (The Proceedings of INSROP Symposium, Tokyo ‘95.) Tokyo: Ship and Ocean Foundation, pp. 567–576Google Scholar
Oltmans, S. J., Schnell, R. C., Sheridan, P. J.et al. (1989). Seasonal surface ozone and filterable bromine relationship in the high Arctic. Atmos. Environ. 23, 2431–2441CrossRefGoogle Scholar
Orvig, S. (1954). Glacial meteorological observations on ice-caps in Baffin Island. Geogr. Annal., 36, 193–318CrossRefGoogle Scholar
Osterkamp, T. E., and Romanovsky, V. E. (1999). Evidence for warming and thawing of discontinuous permafrost in Alaska. Permafrost and Periglacial Processes 10, 17–373.0.CO;2-4>CrossRefGoogle Scholar
Overland, J. E. and Guest, P. S. (1991). The snow and air temperature budget over sea ice during winter. J. Geophys. Res. 96 (C3), 4651–4662CrossRefGoogle Scholar
Overland, J. E. and Turet, P. (1994). Variability of the atmospheric energy flux across 70°N computed from the Geophysical Fluid Dynamics Laboratory data set. In Johannessen, O. M., Muench, R. D. and Overland, J. E. (eds.), The Polar Oceans and Their Role in Shaping the Global Environment, The Nansen Centennial Volume. Geophys. Monogr. 85, American Geophysical Union, pp. 313–325Google Scholar
Overland, J. E., Turet, P. and Oort, A. H. (1996). Regional variations of moist static energy flux into the Arctic. J. Climate 9, 54–652.0.CO;2>CrossRefGoogle Scholar
Overland, J. E., Miletta Adams, J. and Bond, N. A. (1997). Regional variation of winter temperatures in the Arctic. J. Climate 10, 821–8372.0.CO;2>CrossRefGoogle Scholar
Overland, J. E., McNutt, S. L., Groves, J.et al. (2000). Regional sensible and radiative heat flux estimates for the winter Arctic during the Surface Heat Budget of the Arctic Ocean (Surface Heat Budget of the Arctic Ocean) experiment. J. Geophys. Res. 105 (C6), 14093–14102CrossRefGoogle Scholar
Overland, J. E., Spillane, M. C., Percival, D. B., Wang, M. and Mofjeld, H. O. (2004). Seasonal and regional variation of pan-Arctic surface air temperature over the instrumental record. J. Climate 17, 3263–32822.0.CO;2>CrossRefGoogle Scholar
Overpeck, J., Hughen, K., Hardy, D.et al. (1997). Arctic environmental change of the last four centuries. Science 278, 1251–1256CrossRefGoogle Scholar
Palmén, E. (1951). The role of atmospheric disturbances in the general circulation. Q. J. R. Meteorol. Soc. 77, 337–354CrossRefGoogle Scholar
Palmén, E. and Newton, C. W. (1969). Atmospheric Circulation Systems: Their Structure and Physical Interpretation.San Diego, California: Academic PressGoogle Scholar
Parish, T. R. and Cassano, J. J. (2003). Diagnosis of the katabatic wind influence on the wintertime Antarctic surface wind field from numerical simulations. Mon. Wea. Rev. 131, 1128–11392.0.CO;2>CrossRefGoogle Scholar
Parkinson, C. L. and Washington, W. M. (1979). A large-scale numerical model of sea ice. J. Geophys. Res. 84 (CI), 311–337CrossRefGoogle Scholar
Parkinson, C.L, Comiso, J. O., Zwally, H. J.et al. (1987). Arctic Sea Ice, 1973–1976: Satellite Passive Microwave Observations. Washington, DC: National Aeronautics and Space Administration SP-489, National Aeronautics and Space Administration Scientific and Technical Information Branch.Google Scholar
Parry, W. E. (1821). Journal of a Voyage for the Discovery of a Northwest Passage from the Atlantic to the Pacific: Performed in the Years 1819–1820, in Her Majesty's Ships Hecla and Griper, With an Appendix, Containing the Scientific and Other Observations.London: John Murray (reprinted New York, 1968)Google Scholar
Passarge, S. (1920). Die Grundlagen der Landschaftskunde. Hamburg: L. Friedericken and CompanyGoogle Scholar
Pavlov, A. V. (1994). Current changes of climate and permafrost in the Arctic and sub-Arctic of Russia. Permafrost and Periglacial Processes 5, 101–110CrossRefGoogle Scholar
Pawson, S. and Kubitz, T. (1996). Climatology of planetary waves in the northern stratosphere. J. Geophys. Res. 101 (D12), 16987–16996CrossRefGoogle Scholar
Peltier, W. R. (1994) Ice age paleotopography. Science 265, 195–201CrossRefGoogle ScholarPubMed
Peltier, W. R. (2004). Global glacial isostacy and the surface of the Ice Age earth: The ICE-5G(VM2) model and GRACE. Annu. Rev. Earth Planet. Sci. 32, 111–150CrossRefGoogle Scholar
Penner, C. M. (1955). A three-front model for synoptic analyses. Q. J. R. Meteorol. Soc. 81, 89–91CrossRefGoogle Scholar
Perlwitz, J. and Harnik, N. (2003). Observational evidence of a stratospheric influence on the troposphere by planetary wave refraction. J. Climate 16, 3011–30262.0.CO;2>CrossRefGoogle Scholar
Persson, P., Ola, G., Fairall, C. W. et al. (2002). Measurements near the Atmospheric Surface Flux group tower at Surface Heat Budget of the Arctic Ocean: Near-surface conditions and surface energy budget. J. Geophys. Res. 107(C10), DOI: 10.1029/2000JC000705CrossRef
Petersen, G. N., Olafsson, H. and Kristjansson, J. E. (2003). Flow in the lee of idealized mountains and Greenland. J. Atmos. Sci. 60, 2183–21952.0.CO;2>CrossRefGoogle Scholar
Peterson, B. J., Holmes, R. M., McClelland, J. W.et al. (2002). Increasing river discharge to the Arctic Ocean. Science 298, 2171–2173CrossRefGoogle ScholarPubMed
Petit, J. R., Jouzel, J., Raynaud, D.et al. (1999). Climate and atmospheric history of the past 420,000 years from the Vostok ice core, Antarctica. Nature 399, 429–436CrossRefGoogle Scholar
Pettersen, S. (1950). Some aspects of the general circulation of the atmosphere. Centenary Proceedings of the Royal Meteorological Society, London, 120–155Google Scholar
Petty, G. W. (1995). Frequencies and characteristics of global precipitation from ship-board present-weather reports. Bull. Amer. Meteorol. Soc. 76, 1593–16162.0.CO;2>CrossRefGoogle Scholar
Petzold, D. E. (1977). An estimation technique for snow surface albedo. Climatological Bulletin 26, 1–11Google Scholar
Pielke, R. A. and Vidale, P. L. (1996). The boreal forest and the polar front. J. Geophys. Res. 100 (D12), 25755–25758CrossRefGoogle Scholar
Piexoto, J. P. and Oort, A. H. (1992). The Physics of Climate. New York: American Institute of PhysicsGoogle Scholar
Polyak, L., Edwards, M. H., Coakley, B. J. and Jakobsson, M. (2001). Ice shelves in the Pleistocene Arctic Ocean inferred from glaciogenic deep-sea bedforms. Nature 410, 453–457CrossRefGoogle ScholarPubMed
Polyakov, I. V. and Johnson, M. A. (2000). Arctic decadal and interdecadal variability. Geophys. Res. Lett. 27, 4097–4100CrossRefGoogle Scholar
Polyakov, I. V., Alekseev, G. V., Bekryaev, R. V. et al. (2002). Observationally based assessment of polar amplification of global warming. Geophys. Res. Lett. 29, DOI: 10.1029/2001GL011111CrossRef
Polyakov, I. V., Alekseev, G. V., Timokhov, L. A.et al. (2004). Variability of the intermediate Atlantic water of the Arctic Ocean over the last 100 years. J. Climate 23, 4485–4497CrossRefGoogle Scholar
Pomeroy, J. W. and Essery, R. L. H. (1999). Turbulent fluxes during blowing snow: field tests of model sublimation predictions. Hydrological Processes 13, 2963–29753.0.CO;2-9>CrossRefGoogle Scholar
Pomeroy, J. W., Gray, D. M. and Landine, P. G. (1993). The Prairie Blowing Snow Model: Characteristics, validation, operation. J. Hydrol. 144, 165–192CrossRefGoogle Scholar
Portis, D. H., Walsh, J. E., El Hambly, M. and Lamb, P. (2001). Seasonality of the North Atlantic Oscillation. J. Climate 14, 2069–20782.0.CO;2>CrossRefGoogle Scholar
Post, A. and Mayo, L. R. (1971). Glacier dammed lakes and outburst floods in Alaska. Hydrological Investigations Atlas HA-455. Washington, DC: U.S. Geological Survey.
Proshutinsky, A. Y. and Johnson, M. A. (1997). Two circulation regimes of the wind-driven Arctic Ocean. J. Geophys. Res. 102 (C6), 12493–12514CrossRefGoogle Scholar
Przybylak, R. (2000). Temporal and spatial variation of surface air temperature over the period of instrumental observations in the Arctic. Int. J. Climatol. 20, 587–6143.0.CO;2-H>CrossRefGoogle Scholar
Pryzbylak, R. (2003). The Climate of the Arctic. Dordrecht, the Netherlands: Kluwer Academic PublishersCrossRefGoogle Scholar
Putnins, P. (1969). The climate of Greenland. In Orvig, S. (ed.), Climates of the Polar Regions, World Survey of Climatology, Vol. 14. Amsterdam: H. E. Landsberg (ed. in chief), Elsevier, pp. 3–128Google Scholar
Quinn, P. K., Miller, T. L., Bates, T. S. et al. (2002). A 3-year record of simultaneously measured aerosol chemical and optical properties at Barrow. J. Geophys. Res. 107(D11), DOI: 10.1029/2001JD001248CrossRef
Raatz, W. E., Schnell, R. C., Shapiro, M. A., Oltmans, S. J. and Bodhaine, B. A. (1985). Intrusions of stratospheric air into Alaska's troposphere. Proc. Third Symp. Arctic Air Chemistry, Downsview, March 1983. 2153–2158
Radok, U. (1968). Deposition and Erosion of Snow by the Wind. Res. Rep. 230. Hanover, New Hampshire: U.S. Army CRRELGoogle Scholar
Rahmsdorf, S. and Alley, R. (2002). Stochastic resonance in glacier climate. EOS, Trans. Amer. Geophys. Union, 83, 129–135CrossRefGoogle Scholar
Rahn, K. A., Borys, R. D. and Shaw, G. E. (1977). The Asian source of Arctic haze bands. Nature 268, 713–715CrossRefGoogle Scholar
Ramanathan, V., Cess, R. D., Harrison, E. F.et al. (1989). Cloud-radiative forcing and climate: Results from the Earth Radiation Budget Experiment. Science 243, 57–63CrossRefGoogle ScholarPubMed
Rasmussen, E. (1979). The polar low as an extratropical Conditional Instability of the Second Kind disturbance. Q. J. R. Meteorol. Soc. 105, 531–549CrossRefGoogle Scholar
Rasmussen, E. and Turner, J. (2002). Polar Lows: Mesoscale Weather Systems in the Polar Regions. Cambridge: Cambridge University PressGoogle Scholar
Ray, P. H. (1885). Report of the International Polar Expedition to Point Barrow, Alaska. Washington, DC: Arctic Publications, U.S. Signals Office, Government Printing OfficeGoogle Scholar
Raynaud, D., Barmola, J.-M., Chappellaz, J.et al. (2000). The ice record of greenhouse gases; a view in the context of future changes. Quatern. Sci. Rev. 19, 9–18CrossRefGoogle Scholar
Reed, R. J. (1960). Principal frontal zones of the Northern Hemisphere in winter and summer. Bull. Amer. Meteorol. Soc. 41, 591–598Google Scholar
Reed, R. J. (1962). Arctic Forecast Guide. Norfolk, Virginia: U.S. Navy Weather Research Facility 16-0462-058Google Scholar
Reed, R. J. and Kunkel, B. A. (1960). The Arctic circulation in summer. J. Meteorol. 17, 489–5062.0.CO;2>CrossRefGoogle Scholar
Reiter, E. R. (1975). The Natural Stratosphere of 1974. CIAP Monograph 1. Washington, DC: Department of Transportation DOT-TST-75-51Google Scholar
Renfrew, I. A. (2003). Polar Lows. In Holton, J. R., Curry, J. A. and Pyle, J. A. (eds.), Encyclopedia of Atmospheric Sciences. London and San Diego: Academic Press, pp. 1761–1768Google Scholar
Riedlinger, S. H. and Preller, R. H. (1991). The development of a coupled ice-ocean model for forecasting ice conditions in the Arctic. J. Geophys. Res. 96 (C9), 16955–16978CrossRefGoogle Scholar
Rigor, I. G. and Wallace, J. M. (2004). Variations in the age of Arctic sea-ice and summer sea-ice extent. Geophy. Res. Lett. 31, L09401, DOI: 10.1029/2004GL019492CrossRef
Rigor, I. G., Colony, R. L. and Martin, S. (2000). Variations in surface air temperature in the Arctic, 1979–97. J. Climate 13, 896–9142.0.CO;2>CrossRefGoogle Scholar
Rigor, I. G., Wallace, J. M. and Colony, R. L. (2002). Response of sea ice to the Arctic Oscillation. J. Climate 15, 2648–26632.0.CO;2>CrossRefGoogle Scholar
Rikhter, G. D. (1954). Snow Cover, its Formation and Properties. Transl. No. 6. Hanover, New Hampshire: U.S. Army CRREL, 66 ppGoogle Scholar
Rind, D., Shindell, D., Perlwitz, J.et al. (2004). The relative importance of solar and anthropogenic forcing of climate change between the Maunder Minimum and the present. J. Climate 17, 906–9292.0.CO;2>CrossRefGoogle Scholar
Rochon, A., Vernal, A., Sejrup, H. P. and Haflidason, H. (1998). Palynological evidence of climate and oceanographic changes in the North Sea during the last deglaciation. Quatern. Res. 49, 197–207CrossRefGoogle Scholar
Rodwell, M. J., Rowell, D. P. and Folland, C. K. (1999). Oceanic forcing of the wintertime North Atlantic Oscillation and European climate. Nature 398, 320–323CrossRefGoogle Scholar
Roe, G. H. and Lindzen, R. S. (2001). The mutual interaction between continental-scale ice sheets and atmospheric stationary waves. J. Climate 14, 1450–14652.0.CO;2>CrossRefGoogle Scholar
Rogers, A. N., Bromwich, D. H., Sinclair, E. N. and Cullather, R. I. (2001). The atmospheric hydrologic cycle over the Arctic Basin from reanalyses Part 2. Interannual variability. J. Climate 14, 2414–24292.0.CO;2>CrossRefGoogle Scholar
Rogers, J. C. (1978). Meteorological factors affecting interannual variability of summertime ice extent in the Beaufort Sea. Mon. Wea. Rev. 106, 890–8972.0.CO;2>CrossRefGoogle Scholar
Rogers, J. C. (1984). Association between the North Atlantic Oscillation and the Southern Oscillation in the Northern Hemisphere. Mon. Wea. Rev. 112, 1999–20152.0.CO;2>CrossRefGoogle Scholar
Romanov, I. P. (1991). Ledyanoi Pokrov Arkticheskogo Basseina (Ice Cover of the Arctic Basin, in Russian). St. Petersburg, Russia: Arctic and Antarctic Research InstituteGoogle Scholar
Romanov, I. P. (1995). Atlas of Ice and Snow of the Arctic Basin and Siberian Shelf Seas (Second edition of atlas and monograph). New York: Backbon Publishing CompanyGoogle Scholar
Romanov, I. P., Konstantinov, Yu. B. and Kornilov, N. A. (2000). North Pole Drifting Stations (19371991). The Arctic Climatology Project Arctic Meteorology and Climate Atlas. Boulder, Colorado: National Snow and Ice Data Center, CD-ROM
Rooth, C. (1982). Hydrology and ocean circulation. Prog. Oceanog. 11, 131–149CrossRefGoogle Scholar
Ross, Sir John (1835). Narrative of a Second Voyage in Search of a North-West Passage: and of a Residence in the Arctic Regions During the Years 1829, 1830, 1831, 1832, 1833. LondonCrossRefGoogle Scholar
Rossow, W. B. and Duenas, E. N. (2004). The International Cloud Climatology Project (International Satellite Cloud Climatology Project) web site. Bull. Amer. Meteorol. Soc. 85, 167–172Google Scholar
Rossow, W. and Schiffer, R. A. (1991). International Satellite Cloud Climatology Project cloud data products. Bull Amer. Meteorol. Soc. 72, 2–202.0.CO;2>CrossRefGoogle Scholar
Rossow, W. B., Walker, A. W., Beuschel, D. E. and Roiter, M. S. (1996). International Satellite Cloud Climatology Project (International Satellite Cloud Climatology Project) Documentation of New Cloud Datasets. WMO/TD-No. 737. Geneva: World Meteorological OrganizationGoogle Scholar
Rothrock, D. A. and Thomas, D. R. (1990). The Arctic Ocean multiyear ice balance. Ann. Glaciol. 14, 252–255CrossRefGoogle Scholar
Rothrock, D. A. and Zhang, J. (2005). Arctic Ocean sea ice volume: What explains its recent depletion? J. Geophys. Res. 110, C01002, DOI: 10.1029/2004JC002282CrossRef
Rothrock, D. A., Yu, Y. and Maykut, G. A. (1999). Thinning of the Arctic sea ice cover. Geophys. Res. Lett. 26, 3469–3472CrossRefGoogle Scholar
Rothrock, D. A., Zhang, J. and Yu, Y. (2003). The Arctic ice thickness anomaly of the 1990s: A consistent view from observations and models. J. Geophys. Res. 108(C3), 3083, DOI: 10.1039/2001JC001208CrossRef
Rozenbaum, G. E. and Shpolyanskaya, N. A. (2000). Pozdnekainozoiskaya Istoriya Kriolitozony Arktiki I Tendentsii ee Budushchego Razvitiya (Late Cainozoic History of the Cryolithozones of the Arctic and Tendencies of their Future Development). Moscow: Nauchnyi MirGoogle Scholar
Ryder, C. (1896). Isforholdene I Nordhavet, 1877–1892. Copenhagen: Tidsskr. f. SovaesenGoogle Scholar
Sahsamanoglou, H. S., Makrogiannis, T. J. and Kallimopolous, P. P. (1991). Some aspects of the basic characteristics of the Siberian anticyclone. Int. J. Climatol. 11, 827–839CrossRefGoogle Scholar
Saladin d'Anglure, B. (1984). The route to China: Northern Europe's Arctic delusions. Arctic 37, 446–452CrossRefGoogle Scholar
Sankar-Rao, M., Lau, K. M. and Yang, S. (1996). On the relationship between Eurasian snow-cover and the Asian summer monsoon. Int. J. Climatol. 11, 827–839Google Scholar
Sater, J. E. (Coordinator) (1968). Arctic Drifting Stations. A Report on Activities Supported by the Office of Naval Research: Proceedings of the Symposium. Washington, DC: Arctic Institute of North AmericaGoogle Scholar
Savours,, A. (Mrs. Shirley) (1984). “A very interesting point in geography”: The 1773 Phipps expedition towards the North Pole. Arctic 37, 402–428CrossRefGoogle Scholar
Scherhag, R. (1960). Stratospheric temperature changes and the associated changes in pressure distribution. J. Meteorol. 17, 575–5822.0.CO;2>CrossRefGoogle Scholar
Schlesinger, M. E. (1985). Analysis of results from energy balance and radiative-convective models. In MacCracken, M. C. and Luther, F. M. (eds.), Projecting the Climatic Effects of Increasing Carbon Dioxide. Washington, DC: U.S. Department of Energy, Department of Energy/ER-0237, pp. 81–147CrossRefGoogle Scholar
Schnell, R. C., Barry, R. G., Miles, M. W.et al. (1989). Lidar studies of leads in Arctic sea ice. Nature 339, 530–532CrossRefGoogle Scholar
Schweiger, A. J. and Key, J. R. (1992). Arctic cloudiness: Comparison of International Satellite Cloud Climatology Project-C2 and Nimbus-7 satellite derived cloud products with a surface-based cloud climatology. J. Climate 5, 1514–15272.0.CO;2>CrossRefGoogle Scholar
Schweiger, A. J. and Key, J. R. (1994). Arctic Ocean radiative fluxes and cloud forcing estimated from the International Satellite Cloud Climatology Project C2 cloud dataset, 1983–1990. J. Appl. Meteorol. 33, 948–9632.0.CO;2>CrossRefGoogle Scholar
Schweiger, A. J., Lindsay, R. W., Key, J. R. and Francis, J. A. (1999). Arctic clouds in multiyear satellite data sets. Geophys. Res. Lett. 26, 1845–1848CrossRefGoogle Scholar
Scoresby, W. (1811–1816). On the Greenland or Polar ice. Mem. Wererian Soc. Natural History (Edinburgh) 2, 261–338Google Scholar
Scoresby, W. (1820). An Account of the Arctic Regions with a History and Description of the Northern Whale-Fishery. Vol. I, The Arctic. Reprint (1969) New York: A. M. Kelley Publishers, 551 pp. and AppendixGoogle Scholar
Selinger, F. and Glen, A. (1983). Arctic meteorological operations and counter-operations during World War II. Polar Record 21, 559–567CrossRefGoogle Scholar
Semenov, V. A. and Bengtsson, L. (2003). Modes of wintertime Arctic temperature variability. Geophys. Res. Lett. 30, 1781, DOI: 10.1029/2003GLO17112CrossRef
Semtner, A. J. (1987). A numerical study of sea ice and ocean circulations in the Arctic. J. Phys. Oceanogr. 17, 1077–10992.0.CO;2>CrossRefGoogle Scholar
Serreze, M. C. (1995). Climatological aspects of cyclone development and decay in the Arctic. Atmosphere-Ocean 33, 1–23CrossRefGoogle Scholar
Serreze, M. C. and Bradley, R. S. (1987). Radiation and cloud observations on a high Arctic plateau ice cap. J. Glaciol. 33 (114), 162–168CrossRefGoogle Scholar
Serreze, M. C. and Etringer, A. J. (2003). Precipitation characteristics of the Eurasian Arctic drainage system. Int. J. Climatol. 23, 1267–1291CrossRefGoogle Scholar
Serreze, M. C. and Francis, J. (2005). The Arctic amplification debate. (Submitted to Climate Change)
Serreze, M. C. and Hurst, C. M. (2000). Representation of mean Arctic precipitation from National Centers for Environmental Prediction-National Center for Atmospheric Research and ERA reanalyses. J. Climate 13, 182–2012.0.CO;2>CrossRefGoogle Scholar
Serreze, M. C., Barry, R. G. and McLaren, A. S. (1989). Seasonal variations in sea ice motion and effects on sea ice concentration in the Canada Basin. J. Geophys. Res. 94 (C8), 10955–10970CrossRefGoogle Scholar
Serreze, M. C., Kahl, J. D., Andreas, E. L.et al. (1992a). Theoretical heights of buoyant convection above open leads in the winter Arctic pack ice cover. J. Geophys. Res. 97 (C6), 9411–9422CrossRefGoogle Scholar
Serreze, M. C., Kahl, J. D. and Schnell, R. C. (1992b). Low-level temperature inversions of the Eurasian Arctic and comparisons with Soviet drifting station data. J. Climate 5, 615–6292.0.CO;2>CrossRefGoogle Scholar
Serreze, M. C., Barry, R. G. and Walsh, J. E. (1995a). Atmospheric water vapor characteristics at 70°N. J. Climate 8, 719–7312.0.CO;2>CrossRefGoogle Scholar
Serreze, M. C., Maslanik, J. A., Key, J. R., Kokaly, R. F. and Robinson, D. A. (1995b). Diagnosis of the record minimum in Arctic sea ice area during 1990 and associated snow cover extremes. Geophys. Res. Lett. 22, 2183–2186CrossRefGoogle Scholar
Serreze, M. C., Carse, F., Barry, R. G. and Rogers, J. C. (1997a). Icelandic Low cyclone activity: climatological features, linkages with the North Atlantic Oscillation, and relationships with recent changes in the Northern Hemisphere circulation. J. Climate 10, 453–4642.0.CO;2>CrossRefGoogle Scholar
Serreze, M. C., Maslanik, J. A. and Key, J. R. (1997b). Atmospheric and Sea Ice Characteristics of the Arctic Ocean and the Surface Heat Budget of the Arctic Ocean Field Region in the Beaufort Sea. Special Report – 4, National Snow and Ice Data Center, Boulder, ColoradoGoogle Scholar
Serreze, M. C., Key, J. R., Box, J. E., Maslanik, J. A. and Steffen, K. (1998). A new monthly climatology of global radiation for the Arctic and comparisons with National Centers for Environmental Prediction-National Center for Atmospheric Research reanalysis and International Satellite Cloud Climatology Project-C2 fields. J. Climate 11, 121–1362.0.CO;2>CrossRefGoogle Scholar
Serreze, M. C., Walsh, J. E., Chapin,, F. S. III et al. (2000). Observational evidence of recent change in the northern high latitude environment. Clim. Change 46, 159–207CrossRefGoogle Scholar
Serreze, M. C., Lynch, A. H. and Clark, M. P. (2001). The Arctic frontal zone as seen in the National Centers for Environmental Prediction-National Center for Atmospheric Research reanalysis. J. Climate 14, 1550–15672.0.CO;2>CrossRefGoogle Scholar
Serreze, M. C., Bromwich, D. H., Clark, M. P. et al. (2003a). The large-scale hydro-climatology of the Arctic drainage. J. Geophys. Res108(D2), DOI: 10.1029/2001JD000919CrossRef
Serreze, M. C., Clark, M. P. and Bromwich, D. H. (2003b). Monitoring precipitation over the Arctic terrestrial drainage system: Data requirements, shortcomings and applications of atmospheric reanalysis. J. Hydrometeorol. 4, 387–4072.0.CO;2>CrossRefGoogle Scholar
Serreze, M. C., Maslanik, J. A., Scambos, T. A. et al. (2003c). A record minimum Arctic sea ice extent and area in 2002. Geophys. Res. Lett. 30, DOI: 10.1029/2002GL016406CrossRef
Severinghaus, J. P., Sowers, T., Brook, E. J., Alley, R. B. and Bender, M. L. (1998). Timing of abrupt climate change at the end of the Younger Dryas interval from thermally fractionated gases in polar ice. Nature 391, 141–146CrossRefGoogle Scholar
Shackleton, N. J., Fernanda Sanchez-Goni, M., Pailler, D. and Lancelot, Y. (2003). Marine isotope substage 5e and the Eemian Interglacial. Global Planet. Change 36, 151–155CrossRefGoogle Scholar
Shahgedanova, M. (ed.) (2002). The Physical Geography of Northern Eurasia. Oxford: Oxford University PressGoogle Scholar
Shahgedanova, M., Perov, V. and Mudrow, Y. (2002). The mountains of northern Russia. In Shahgedanova, M. (ed.), The Physical Geography of Northern Eurasia. Oxford: Oxford University Press, pp. 284–313Google Scholar
Shapiro, M. A. (1985). Dropwinsonde observations of an Icelandic low and a Greenland mountain-lee wave. Mon. Wea. Rev. 113, 680–6832.0.CO;2>CrossRefGoogle Scholar
Shapiro, M. A., Schnell, R. C., Parungo, F. P., Oltmans, S. J. and Bodhaine, B. A. (1984). El Chichon volcanic debris in an Arctic tropopause fold. Geophys. Res. Lett. 11, 421–424CrossRefGoogle Scholar
Shapiro, M. A., Fedor, L. S and Hampel, T. (1987a). Research aircraft measurements of a polar low over the Norwegian Sea. Tellus 39A, 272–306CrossRefGoogle Scholar
Shapiro, M. A., Hampel, T. and Krueger, A. J. (1987b). The Arctic tropopause fold. Mon. Wea. Rev. 115, 444–4542.0.CO;2>CrossRefGoogle Scholar
Shiklomanov, I. A., Shiklomanov, A. I., Lammers, R. B., Peterson, B. J. and Vörösmarty, C. J. (2000). The dynamics of river water inflow to the Arctic Ocean. In Lewis, E. L., et al. (eds.), The Freshwater Budget of the Arctic Ocean. NATO Science Series 2. Environmental Security, Vol. 70. Dordrecht, the Netherlands: Kluwer Academic Publishers, pp. 281–296Google Scholar
Shine, K. P. (1984). Parameterization of shortwave flux over high albedo surfaces as a function of cloud thickness and surface albedo. Q. J. R. Meteorol. Soc. 110, 747–764CrossRefGoogle Scholar
Siegert, M. J. (2001). Ice Sheets and Late Quaternary Environmental Change. Chichester, UK: John Wiley and SonsGoogle Scholar
Siegert, M. J., Dowdeswell, J. A. and Melles, M. (1999). Late Weichselian glaciation of the Eurasian High Arctic. Quatern. Res. 52, 273–285CrossRefGoogle Scholar
Slater, A. G., Schlosser, C. A., Desborough, C. E.et al. (2001). The representation of snow in land surface schemes; results from Project for Intercomparison of Land Surface Parameterization Schemes 2(d). J. Hydrometeorol. 2, 7–252.0.CO;2>CrossRefGoogle Scholar
Smith, E. H., Soule, F. M. and Mosby, O. (1937). The ‘Marion’ and ‘General Green’ Expeditions to Davis Strait and Labrador Sea, Under Direction of the United States Coast Guard, 1928–1931–1933–1934–1935: Part 2: Scientific Results. Washington, DC: Bulletin U.S. Coast GuardGoogle Scholar
Smith, S. D., Anderson, R. O., Hartog, G., Topham, D. R. and Perkin, R. G. (1983). An investigation of a polynya in the Canadian Archipelago, 2, Structure of turbulence and sensible heat flux. J. Geophys. Res. 88 (C5), 2900–2910CrossRefGoogle Scholar
Sokratov, S. A. and Barry, R. G. (2002). Intraseasonal variations in the thermoinsulation effect of snow cover on soil temperature and energy balance. J. Geophys. Res. 107(D10) DOI: 10.1029/2001JD000489CrossRef
Solomon, S. (1999). Stratospheric ozone depletion: a review of concept and history. Rev. Geophys. 37, 275–316CrossRefGoogle Scholar
Souchez, R. (1997). The buildup of the ice sheet in central Greenland. J. Geophys. Res. 102 (C12), 26317–26323CrossRefGoogle Scholar
Stamnes, K. H., Tsay, S.-C., Wiscombe, W. and Jayaweera, K. (1988). Numerical stable algorithm for discreet-ordinate radiative transfer in multiple scattering and emitting layered media. Appl. Opt. 27, 2502–2509CrossRefGoogle ScholarPubMed
Steele, M. and Boyd, T. (1998). Retreat of the cold halocline layer in the Arctic Ocean. J. Geophys. Res. 103, 10419–10435CrossRefGoogle Scholar
Steele, M., Thomas, D. and Rothrock, D. (1996). A simple model study of the Arctic Ocean freshwater balance, 1979–1985. J. Geophys. Res. 101 (C9), 20833–20848CrossRefGoogle Scholar
Steele, M., Ermold, W., Häkkinen, S.et al. (2001). Adrift in the Beaufort Gyre: A model comparison. Geophys. Res. Lett. 28, 2935–2938CrossRefGoogle Scholar
Steffen, K. (1985). Warm water cells in the North Water, northern Baffin Bay during winter. J. Geophys. Res. 90 (5), 9129–9136CrossRefGoogle Scholar
Steffen, K. and Box, J. E. (2001). Surface climatology of the Greenland ice sheet: Greenland Climate Network 1995–1999. J. Geophys. Res. 106 (D24), 33951–33964CrossRefGoogle Scholar
Steffen, K., Box, J. E. and Abdalati, W. (1996). Greenland Climate Network: GC-Net. In Colbeck, S. C. (ed.), CRREL 96-27 Special Report on Glaciers, Ice Sheets and Volcanoes (tribute to M. Meier). Hanover, New Hampshire: U.S. Army, pp. 98–103Google Scholar
Steiner, N., Holloway, G., Gerdes, R.et al. (2004). Comparing modeled streamfunction, heat and freshwater content in the Arctic Ocean. Ocean Modeling 6, 265–284CrossRefGoogle Scholar
Stern, H. L. and Moritz, R. E. (2002). Sea ice kinematics and surface properties from RADARSAT synthetic aperature radar during the Surface Heat Budget of the Arctic Ocean drift. J. Geophys. Res. 107(C10), 8028, DOI: 10.1029/2000JC000472CrossRef
Stigebrandt, A. (2000). Oceanic freshwater fluxes in the climate system. In , E. L. Lewis,et al. (eds.), The Freshwater Budget of the Arctic Ocean. NATO Science Series 2. Environmental Security, Vol. 70. Dordrecht, the Netherlands: Kluwer Academic Publishers, pp. 1–20Google Scholar
Sturm, M. M., Holmgren, J. and Liston, G. E. (1995). A seasonal snow cover classification system for local to global application. J. Climate 8, 1261–12832.0.CO;2>CrossRefGoogle Scholar
Sturm, M., Racine, C. and Tape, K. (2001). Climatic change: Increasing shrub abundance in the Arctic. Nature 411, 546–547CrossRefGoogle Scholar
Subetto, D. A., Wohlfarth, B., Davydona, N. N.et al. (2002). Climate and environment on the Karelian Isthmus, northwestern Russia, 13000-9000 cal. yrs BP. Boreas 31, 1–19CrossRefGoogle Scholar
Svendsen, J. I., Astakhov, V. I., Bolshiyanov, D. Y.et al. (1999). Maximum extent of the Eurasian ice sheets in the Barents and Kara Sea region during the Late Weichselian. Boreas 28, 234–242CrossRefGoogle Scholar
Sverdrup, H. U. (1933). The Norwegian North Polar Expedition with the “Maud”, 1918–1925, Volume II: Meteorology. Bergen: John Griegs, BoktrykkeriGoogle Scholar
Thomas, D. R. and Rothrock, D. A. (1989). Blending sequential Scanning Multichannel Microwave Radiometer and buoy data into a sea ice model. J. Geophys. Res. 94 (C8), 10907–10920CrossRefGoogle Scholar
Thomas, D. R., and Rothrock, D. A. (1993). The Arctic Ocean ice balance: A Kalman smoother estimate. J. Geophys. Res. 98 (C6), 10053–10067CrossRefGoogle Scholar
Thomas, D. R., Martin, S., Rothrock, D. A. and Steele, M. (1996). Assimilating satellite concentrations into an Arctic mass balance model: 1979–1985. J. Geophys. Res. 101 (C9), 20849–20868CrossRefGoogle Scholar
Thomas, R. N. (2001). Program for Arctic Regional Climate Assessment (Program for Arctic Regional Climate Assessment): Goals, key findings, and future directions. J. Geophys. Res. 106 (D24), 33691–33705CrossRefGoogle Scholar
Thompson, D. W. J and Wallace, J. M. (1998). The Arctic Oscillation signature in the wintertime geopotential height and temperature fields. Geophys. Res. Lett. 25, 1297–1300CrossRefGoogle Scholar
Thompson, D. W. J. and Wallace, J. M. (2000). Annular modes in the extratropical circulation. Part I: Month-to-month variability. J. Climate 13, 1000–10162.0.CO;2>CrossRefGoogle Scholar
Thompson, D. W. J., Wallace, J. M. and Hegerl, G. (2000). Annular modes in the extratropical circulation. Part II: Trends. J. Climate 13, 1018–10362.0.CO;2>CrossRefGoogle Scholar
Thorndike, A. S. (1986). Kinematics of sea ice. In Untersteiner, N. (ed.), The Geophysics of Sea Ice, NATO ASI Ser., Ser. B Phys., Vol. 146. New York: Plenum Press, pp. 489–549CrossRefGoogle Scholar
Thorndike, A. S. and Colony, R. (1982). Sea ice motion in response to geostrophic winds. J. Geophys. Res. 87 (C8), 5845–5852CrossRefGoogle Scholar
Trenberth, K. E. (1998). Atmospheric moisture residence times and cycling: implications for rainfall rates and climatic change. Clim. Change 39, 667–694CrossRefGoogle Scholar
Trenberth, K. E. and Caron, J. M. (2001). Estimates of meridional atmosphere and ocean heat transports. J. Climate 15, 3433–34432.0.CO;2>CrossRefGoogle Scholar
Trenberth, K. E. and Paolino, D. A. (1980). The Northern Hemisphere sea-level pressure data set: Trends, errors and discontinuities. Mon. Wea. Rev. 108, 855–8722.0.CO;2>CrossRefGoogle Scholar
Trenberth, K. E. and Stepaniak, D. P. (2003). Co-variability of components of poleward atmospheric energy transports on seasonal and interannual timescales. J. Climate 16, 3706–37222.0.CO;2>CrossRefGoogle Scholar
Trenberth, K. E., Caron, J. M. and Stepaniak, D. P. (2001). The atmospheric energy budget and implications for surface fluxes and ocean heat transports. Clim. Dynam. 17, 259–276CrossRefGoogle Scholar
Tsukernik, M., Chase, T. N., Serreze, M. C. et al. (2004). On the regulation of minimum mid-tropospheric temperatures in the Arctic. Geophys. Res. Lett. 31, L06112, DOI: 10.1029/2003GLO18831CrossRef
Tumel, N. (2002). Permafrost. In Shahgenanova, M. (ed.), The Physical Geography of Northern Eurasia. Oxford: Oxford University Press, pp. 149–168Google Scholar
Tyndall, J. (1872). The Forms of Water in Clouds and Rivers, Ice and Glacier.Akron, Ohio: The Werner CoGoogle Scholar
UK Meteorological Office (1964). Weather in Home Fleet Waters, Vol. 1. London: Her Majesty's Stationery Office
Uttal, T.,Curry, J. A., McPhee, M. G., Perovich, D. K., et al. (2002). Surface heat budget of the Arctic Ocean. Bull. Amer. Meteorol. Soc. 83, 255–2752.3.CO;2>CrossRefGoogle Scholar
Hurk, B. J. J. M. and Viterbo, P. (2002). The Torne-Kalix Project for Intercomparison of Land Surface Parameterization Schemes 2(e) experiment as a test bed for modifications to the European Centre for Medium-range Weather Forecasts land surface scheme. Global Planet. Change 38, 165–173CrossRefGoogle Scholar
Veen, C. J., Bromwich, D. H. and Castho, C. K. (2001). Trend surface analysis of Greenland accumulation. J. Geophys. Res. 106 (D24), 33909–33918CrossRefGoogle Scholar
Loon, H. (1967). The half-yearly oscillation in middle and high southern latitudes and the coreless winter. J. Atmos. Sci. 24, 472–4862.0.CO;2>CrossRefGoogle Scholar
Loon, H. and Rogers, J. C. (1978). Seesaw in winter temperatures between Greenland and Northern Europe. Part I: General description. Mon. Wea. Rev. 106, 296–3102.0.CO;2>CrossRefGoogle Scholar
Vasil'chuk, Yu. K. and Kotlyakov, V. M. (2000). Osnovy Izotopnoi Geokriologii I Glatsiologii (Principles of Isotope Geocryology and Glaciology). Moscow: Moscow University PressGoogle Scholar
Vaughan, R. (1999). The Arctic: A History. Stroud, UK: Sutton PublishingGoogle Scholar
Velichko, A. A. and Spasskaya, I. (2002). Climate change and the development of landscapes. In Shahgedanova, M. (ed.), The Physical Geography of Northern Eurasia. Oxford: Oxford University Press, pp. 36–69Google Scholar
Velichko, A. A., Isayewa, L. L., Makeyev, V. M., Matishov, G. G. and Faustova, M. A. (1984). Late Pleistocene glaciation of the Arctic Shelf and the reconstruction of Eurasian ice sheets. In Velichko, A. A. (ed.), Late Quaternary Environments of the Soviet Union. Minneapolis: University of Minnesota Press, pp. 35–44Google Scholar
Velichko, A. A., Isayeva, L. L., Oreshkin, D. B. and Faustova, M. A. (1989). The last glaciation in Eurasia. In Herman, Y. (ed.), The Arctic Seas. Climatology, Oceanography, Geology and Biology. New York: Van Nostrand, Reinhold, pp. 729–758Google Scholar
VEMAP Members (1995). Vegetation/Ecosystem Modeling and Analysis Project (VEMAP): Comparing biogeography and biogeochemistry models in continental-scale study of terrestrial ecosystem responses to climate change and CO2 doubling. Global Biogeochemical Cycles 3, 241–265
Verseghy, D. L. (1991). Canadian Land Surface Scheme: A Canadian Land Surface Scheme for Global Climate Model (or General Circulation Model)s. I. Soil model. Int. J. Climatol. 11, 111–133CrossRefGoogle Scholar
Verseghy, D. L., McFarlane, K. A. and Lazar, M. (1993). Canadian Land Surface Scheme: A Canadian Land Surface Scheme for Global Climate Model (or General Circulation Model)s. II. Vegetation model and coupled runs. Int. J. Climatol. 13, 347–370CrossRefGoogle Scholar
Vigdorchik, M. E. (1980). Arctic Pleistocene History and the Development of Submarine Permafrost. Boulder, Colorado: Westview PressGoogle Scholar
Vinje, T. (2001). Fram Strait ice fluxes and atmospheric circulation: 1950–2000. J. Climate 14, 3508–35172.0.CO;2>CrossRefGoogle Scholar
Vinje, T. E. and Finnekasa, O. (1986). The Ice Transport through Fram Strait. Report NR 186. Oslo: Norsk PolarinsttuttGoogle Scholar
Viterbo, P. and Beljaars, A. C. M. (1995). An improved land surface parameterization scheme in the European Centre for Medium-range Weather Forecasts model and its validation. J. Climate 8, 2716–27482.0.CO;2>CrossRefGoogle Scholar
Vogt, P. R. (1986). Seafloor topography, sediments and paleoenvironments. In Hurdle, B. G. (ed.), The Nordic Seas. New York: Springer Verlag, pp. 237–410CrossRefGoogle Scholar
Helmhotz, H. (1888). Uber Atmospharische Bewegungen. Meteor. Zeit. 5, 329–340Google Scholar
Neumayer, G. and Boergen, C. N. J. (eds.) (1886). Die Internationale Polarforschung 1882–1883. Die Beobachtungs Ergebnisse der Deutschen Stationen, Vol. 1, Kingua-Fjord und die meteorologischen Stationen. Vol. 2, Ordnung in Labrador, Hebron, Okak, Nain, Zoar, Hoffenthal, Rama, sowie die magnetischen Observatorien in Breslau und Goettingen. BerlinGoogle Scholar
Vörösmarty, C. J., Fekete, B., Meybeck, M. and Lammers, R. B. (2000). The global system of rivers: its role on organizing continental landmass and defining land-to-ocean linkages. Global Biogeochemical Cycles 14, 599–621CrossRefGoogle Scholar
Vowinkel, E. and Orvig, S. (1967). The Inversion Layer over the Polar Ocean. World Meteorological Organization Technical Note No. 87. Geneva: Polar Meteorology: Proc. WMO/SCAR/ICPM Symp. Polar MeteorologyGoogle Scholar
Vowinkel, E. and Orvig, S. (1970). The climate of the North Polar Basin. In Orvig, S. (ed.), World Survey of Climatology, Vol. 14: Climates of the Polar Regions. Amsterdam: Elsevier, pp. 129–226Google Scholar
Wadhams, P. (1980). Ice characteristics in the seasonal ice zone. Cold Reg. Sci. Technol. 2, 37–87CrossRefGoogle Scholar
Wadhams, P. (1983). Sea ice thickness distribution in Fram Strait. Nature 305, 108–111CrossRefGoogle Scholar
Wadhams, P. (1990). Evidence for thinning of the Arctic ice cover north of Greenland. Nature 345, 795–797CrossRefGoogle Scholar
Wadhams, P. (1992). Sea ice thickness distribution in the Greenland Sea and Eurasian Basin. J. Geophys. Res. 97 (C4), 5331–5348CrossRefGoogle Scholar
Wadhams, P. (2000). Ice in the Ocean, London: Taylor and FrancisGoogle Scholar
Walker, D. A., Gould, W. A., Maier, H. A. and Raynolds, M. K. (2002). The Circumpolar Arctic Vegetation Map. Advanced Very High Resolution Radiometer-derived base maps, environmental conditions, and integrated mapping procedures. Int. J. Remote Sensing 23, 4551–4570CrossRefGoogle Scholar
Walker, G. T. and Bliss, E. W. (1932). World weather. V. Mem. R. Meteorol. Soc. 103, 29–64CrossRefGoogle Scholar
Walker, J. M. (1967). Subterranean isobars. Weather 22, 296–297CrossRefGoogle Scholar
Wallace, J. M. (1983). The climatological mean stationary waves: Observational evidence. In Hoskins, B. and Pearce, R. (eds.), Large Scale Dynamical Processes in the Atmosphere. San Diego, California: Academic Press, pp. 27–53Google Scholar
Wallace, J. M. (2000). North Atlantic Oscillation/annual mode: Twoparadigms–onephenomenon. Q. J. R. Meteorol. Soc. 126, 791–805CrossRefGoogle Scholar
Wallace, J. M. and Gutzler, D. S. (1981). Teleconnections in the geopotential height field during the Northern Hemisphere winter. Mon. Wea. Rev. 109, 784–8122.0.CO;2>CrossRefGoogle Scholar
Walland, D. J. and Simmonds, I. (1997). Modeled atmospheric response to change in Northern Hemisphere snow-cover. Clim. Dynam. 13, 25–34CrossRefGoogle Scholar
Wallis, H. (1984). England's search for the Northern Passages in the sixteenth and early seventeenth centuries. Arctic 37, 453–472CrossRefGoogle Scholar
Walsh, J. E. (1978). Temporal and spatial scales of the Arctic circulation. Mon. Wea. Rev. 106, 1532–15442.0.CO;2>CrossRefGoogle Scholar
Walsh, J. E. and Chapman, W. L. (1990). Arctic contribution to upper-ocean variability in the North Atlantic. J. Climate 3, 1462–14732.0.CO;2>CrossRefGoogle Scholar
Walsh, J. E., Hibler, W. D. III and Ross, B. (1985). Numerical simulation of northern hemisphere sea ice variability, 1951–1980. J. Geophys. Res. 90 (C3), 4847–4865CrossRefGoogle Scholar
Walsh, J. E., Zhou, X, Portis, D. and Serreze, M. C. (1994). Atmospheric contributions to hydrologic variations in the Arctic. Atmosphere-Ocean 32, 733–755CrossRefGoogle Scholar
Walsh, J. E., Chapman, W. L. and Shy, T. L. (1996). Recent decrease of sea level pressure in the central Arctic. J. Climate 9, 480–4862.0.CO;2>CrossRefGoogle Scholar
Walsh, J. E., Vinnikov, K. and Chapman, W. L. (1999). On the use of historical sea ice charts in assessments of century-scale climatic variations. In World Climate Research Arctic Climate System Study (Arctic Climate System Study), Proceedings of the Workshop in Sea Ice Charts in the Arctic, Seattle, WA, 5–7 August 1998, WMO/TD No. 949, IAPO Publication No. 3, pp. 1–3
Walsh, J. E., Kattsov, V. M., Chapman, W. L., Govorkova, V. and Pavlova, T. (2002). Comparison of Arctic climate simulations by uncoupled and coupled global climate models. J. Climate 15, 1429–14462.0.CO;2>CrossRefGoogle Scholar
Wang, B. and Allard, M. (1995). Recent climatic trend and thermal response of permafrost at Salluit, Northern Quebec, Canada. Permafrost and Periglacial Processes 6, 221–234CrossRefGoogle Scholar
Wang, X. and Key, J. R. (2003) Recent trends in Arctic surface, cloud and radiation properties from space. Science 299, 1725–1728CrossRefGoogle ScholarPubMed
Warren, B. A. (1983). Why is no deep water formed in the North Pacific?J. Mar. Res. 41, 327–347CrossRefGoogle Scholar
Warren, S. G. (1982). Optical properties of snow. Rev. Geophys. Space Phys. 2, 67–89CrossRefGoogle Scholar
Warren, S. G., Hahn, C. J., London, J., Chervin, R. M. and Jenne, R. (1988). Global Distribution of Total Cloud Cover and Cloud Type Amounts Over the Ocean. National Center for Atmospheric Research Technical Note, TN – 317 + STR. Boulder, Colorado: National Center for Atmospheric ResearchCrossRefGoogle Scholar
Watkins, H. G. (1932). The British Arctic Air Route Expedition. Geogr. J. 79, 353–367; 466–501CrossRefGoogle Scholar
Waugh, D. W. (1997). Elliptical diagnostics of stratospheric polar vortices. Q. J. R. Meteorol. Soc. 123, 1725–1748CrossRefGoogle Scholar
Waugh, D. W. and Randel, W. J. (1999). Climatology of Arctic and Antarctic polar vortices using elliptical diagnostics. J. Atmos. Sci. 56, 1594–16132.0.CO;2>CrossRefGoogle Scholar
Weaver, A. J., Bitz, C. M., Fanning, A. F. and Holland, M. M. (1999). Thermohaline circulation: High-latitude phenomena and the difference between the Pacific and Atlantic. Ann. Rev. Earth Planet. Sci. 27, 231–285CrossRefGoogle Scholar
Webber, P. J. (1974). Tundra primary productivity. In Ives, J. D. and Barry, R. G. (eds.), Arctic and Alpine Environments. London: Methuen, pp. 445–473Google Scholar
Weeks, W. F. and Ackley, S. F. (1986). The growth, structure and properties of sea ice. In Untersteiner, N. (ed.), The Geophysics of Sea Ice, NATO ASI Ser., Ser. B Phys., Vol. 146. New York: Plenum Press, pp. 9–164CrossRefGoogle Scholar
Weller, G. and Holmgren, B. (1974). The microclimates of the Arctic Tundra. J. Appl. Meteor. 11, 854–8622.0.CO;2>CrossRefGoogle Scholar
Weller, G., Cubley, S., Parker, S., Trabant, D. and Benson, C. (1972). The tundra microclimate during snow melt at Barrow, Alaska. Arctic 24, 291–300Google Scholar
Welsh, J. P., Ketchum, R. D. Jr., Lohanick, A. W.et al. (1986). A Compendium of Arctic Environmental Information. Naval Ocean Res. Dev. Activity Report 138. Michigan: NSTLGoogle Scholar
Wendler, G. W., Easton, F. D. and Ohtake, T. (1981). Multiple reflection effects on irradiance in the presence of Arctic stratus clouds. J. Geophys. Res. 86 (C3), 2049–2057CrossRefGoogle Scholar
Wexler, H. (1936). Cooling in the lower atmosphere and the structure of polar continental air. Mon. Wea. Rev. 64, 122–1362.0.CO;2>CrossRefGoogle Scholar
Weyl, P. K. (1968). The role of the oceans in climatic change: A theory of the ice ages. Meteorol. Monographs 8, 38–62Google Scholar
Whittaker, L. M. and Horn, L. H. (1984). Northern Hemisphere extratropical cyclone activity for four mid-season months. J. Climatol. 4, 297–310CrossRefGoogle Scholar
Williams, R. S. and Ferrigno, J. G. (eds.) (2002). Satellite Image Atlas of Glaciers of the WorldNorth America. Washington DC: U.S. Geological Survey, Professional paper, 1386-JGoogle Scholar
Wilson, C. (1969). Climatology of the Cold Regions. Northern Hemisphere II. Cold Regions Science and Engineering Monograph I-A3b. Hanover, New Hampshire: U.S. Army CRRELGoogle Scholar
Wilson, C. V. (1958). Synoptic Regimes of the Lower Arctic Troposphere During 1955. Arctic Meteorology Research Group, Publication in Meteorology No. 8. Montreal, Canada: McGill UniversityGoogle Scholar
Wilson, C. V. and Godson, W. L. (1962). The Stratospheric Temperature Field at High Latitudes. Arctic Meteorology Research Group Publication in Meteorology No. 46. Montreal, Canada: McGill UniversityGoogle Scholar
Wilson, C. V. and Godson, W. L. (1963). The structure of the Arctic winter stratosphere over a 10-year period. Q. J. R. Meteorol. Soc. 89, 205–224CrossRefGoogle Scholar
Wilson, L. D., Curry, J. A. and Ackerman, T. P. (1993). Satellite retrieval of lower-tropospheric ice crystal clouds in the polar regions. J. Climate 6, 1467–14722.0.CO;2>CrossRefGoogle Scholar
Wiscombe, W. J. and Warren, S. G. (1980). A model for the spectral albedo of snow. I. Pure snow. J. Atmos. Sci. 37, 2712–27332.0.CO;2>CrossRefGoogle Scholar
Wohlleben, T. M. H. and Weaver, A. J. (1995). Interdecadal climate variability in the subpolar North Atlantic. Clim. Dynam. 11, 459–467CrossRefGoogle Scholar
Wolfe, A. P. and King, R. H. (1999). A paleolimnological constraint to the extent of the last glaciation on northern Devon Island, Canadian high Arctic. Quatern. Sci. Rev. 18, 1563–1568CrossRefGoogle Scholar
Woo, M.-K., Heron, R., Marsh, P. and Steer, P. (1983). Comparison of weather station snowfall with winter snow accumulation in high Arctic basins. Atmosphere-Ocean 21, 312–325CrossRefGoogle Scholar
Woodgate, R. A. and Aagaard, K. (2005). Revising the Bering Strait freshwater flux into the Arctic Ocean. Geophys. Res. Lett., 32, L02602, DOI: 10.1029/2004GL021747CrossRef
World Meteorological Organization (1989). WMO Sea-Ice Nomenclature, Terminology, Codes and Illustrated Glossary. Geneva: WMO/OMM/BMO 259, TP 145, Secretariat WMO, Vol. 1
Wright, J. K. (1953). The open polar sea. Geogr. Rev. 63, 338–365CrossRefGoogle Scholar
Wu. P., Wood, R. and Stott, P. (2005). Human influence on increasing Arctic river discharges. Geophys. Res. Lett. 32, L02707, DOI: 10.1029/2004GL021570CrossRef
Xie, P. and Arkin, P. A. (1997) Global precipitation: A 17-year monthly analysis based on gauge observations, satellite estimates and numerical model outputs. Bull. Amer. Meteorol. Soc. 78, 2539–25582.0.CO;2>CrossRefGoogle Scholar
Yang, D. (1999). An improved precipitation climatology for the Arctic Ocean. Geophys. Res. Lett. 26, 1525–1528CrossRefGoogle Scholar
Yang, D., Goodison, B., Metcalfe, J.et al. (2001). Compatibility evaluation of national precipitation gauge measurements. J. Geophys. Res. 106 (D2), 1481–1491CrossRefGoogle Scholar
Yang, D., Kane, D. L., Hinzman, L. D. et al. (2002). Siberian Lena river hydrologic regime and recent change. J. Geophys. Res. 107(D23), DOI: 10.1029/2002JD002542CrossRef
Ye, B., Yang, D. and Kane, D. (2003). Changes in Lena River streamflow hydrology: Human impacts versus natural variations. Water Resour. Res. 39(7), DOI: 10.1029/2003WR001991CrossRef
Yukimoto, S. and Kodera, K. (2005). Interdecadal Arctic Oscillation in twentieth century climate simulations viewed as internal variability and response to external forcing. Geophys. Res. Lett. 32, L03707, DOI: 10.1029/2004GJ021870CrossRef
Zangl, G. and Hoinka, K. P. (2001). The tropopause in the polar regions. J. Climate 14, 3117–31392.0.CO;2>CrossRefGoogle Scholar
Zazula, G. D., Froese, D. G., Telka, A. M., Mathewes, R. W. and Westgate, J. A. (2002). Plants, bugs and giant mammoth tusk: Paleoecology of Last Chance Creek, Yukon Territory. In Yukon Exploration and Geology, 2002, pp. 251–258
Zhang, J., Rothrock, D. and Steele, M. (2000). Recent changes in Arctic sea ice: The interplay between ice dynamics and thermodynamics. J. Climate 13, 3099–31142.0.CO;2>CrossRefGoogle Scholar
Zhang, J., Thomas, D. R., Rothrock, D. A., Lindsay, R. W. and Yu, Y. (2003). Assimilation of ice motion observations and comparisons with submarine ice thickness data. J. Geophys. Res. 108(C6), 3170, DOI: 10.1029/2001JC001041CrossRef
Zhang, T., Stamnes, K. and Bowling, S. A. (2001). Impact of atmospheric thickness on the atmospheric downwelling longwave radiation and snowmelt under clear-sky conditions in the Arctic and subarctic. J. Climate 14, 920–9392.0.CO;2>CrossRefGoogle Scholar
Zhang, T.-J., Barry, R. G., Knowles, K., Heginbottom, J. A. and Brown, J. (1999). Statistics and characteristics of permafrost and frozen ground ice distribution in the Northern Hemisphere. Polar Geog. 23, 147–169Google Scholar
Zhang, T.-J., Heginbottom, J. A., Barry, R. G. and Brown, J. (2001). Further statistics on the distribution of permafrost and frozen ground in the Northern Hemisphere. Polar Geog. 24, 14–19Google Scholar
Zhang, X., Walsh, J. E., Zhang, J., Bhatt, U. S. and Ikeda, M. (2004). Climatology and interannual variability of Arctic cyclone activity, 1948–2002. J Climate 15, 2300–23172.0.CO;2>CrossRefGoogle Scholar
Zhou, L., Tucker, C. J., Kaufmann, R. K.et al. (2001). Variations in northern vegetation activity inferred from satellite data of vegetation index during 1981 to 1999. J. Geophys. Res. 106 (D17) 20069–20083CrossRefGoogle Scholar
Zhu, Y. and Newell, R. E. (1998). A proposed algorithm for moisture fluxes from atmospheric rivers. Mon. Wea. Rev. 126, 725–7352.0.CO;2>CrossRefGoogle Scholar
Zubenok, Z. T. (1976). Isparenie s sushi vodosbornogo basseina Severnogo Ledovitogo Okeana (Evaporation from the basins draining into the Arctic). Trudy Arkt. Antarkt. Nauchno.-issled. Inst. 323, 87–100Google Scholar
Zubov, N. N. (1945). L'dy Arktiki. Moscow: Glavsevmorputi, 491 pp. (English translation, Arctic Sea Ice, Transl. 217, 360 pp., U.S. Naval Hydrographic Office, Suitland, Maryland, 1963. Available as AD426972 from National Technical Information Service, Springfield, Virginia)Google Scholar
Zwally, H. J. and Giovinetto, M. B. (2001). Balance mass flux and ice velocity across the equilibrium line in drainage systems of Greenland. J. Geophys. Res. 106 (D24), 33717–33728CrossRefGoogle Scholar
Aagaard, K. and Carmack, E. C. (1989). The role of sea ice and other fresh waters in the Arctic circulation. J. Geophys. Res. 94 (C10), 14485–14498CrossRefGoogle Scholar
Aagaard, K. and Greisman, P. (1975). Toward new mass and heat budgets for the Arctic Ocean. J. Geophys. Res. 80, 3821–3827CrossRefGoogle Scholar
Abdalati, W. and Steffen, K. (1995). Passive microwave-derived snow melt regions on the Greenland ice sheet. Geophys. Res. Lett. 22, 787–790CrossRefGoogle Scholar
Abdalati, W. and Steffen, K. (1997). Snowmelt on the Greenland ice sheet as derived from passive microwave satellite data. J. Climate 10, 165–1752.0.CO;2>CrossRefGoogle Scholar
Abdalati, W. and Steffen, K. (2001). Greenland ice sheet melt extent: 1979–1999. J. Geophys. Res. 106 (D24), 33983–33988CrossRefGoogle Scholar
Arctic Climate Impact Assessment (2005). Impacts of a Warming Climate: Arctic Climate Impact Assessment. Cambridge: Cambridge University Press
Agnew, T. A., Le, H. and Hirose, T. (1997). Estimation of aggregate-scale sea ice motion from SSM/I 85 GH2 imagery. Ann. Glaciol. 25, 305–311CrossRefGoogle Scholar
Albright, M. (1980). Geostrophic wind calculations for AIDJEX. In Pritchard, R. S. (ed.), Sea Ice Processes and Models. Seattle, WA: University of Washington Press, pp. 402–409Google Scholar
Alexander, M. A., Bhatt, U. S., Walsh, J. E., Timlin, M. S., Miller, J. S. and Scott, J. P. (2004). The atmospheric response to realistic Arctic sea ice anomalies in an Atmospheric Global Climate Model (or General Circulation Model) during winter. J. Climate 17, 890–9052.0.CO;2>CrossRefGoogle Scholar
Alexandrova, V. (1970). The vegetation of the tundra zones in the USSR and data about its productivity. In Fuller, W. A. and Kevan, P. G. (eds.), Productivity and Conservation in Northern Circumpolar Lands. Morges, Switzerland: International Union for Conservation of Nature and Natural Resources. IUCN Publication No. 16, pp. 93–114Google Scholar
Alley, R. B., Meese, D. A., Schuman, C. A.et al. (1993). Abrupt increase in Greenland snow accumulation at the end of the Younger Dryas event. Nature 362, 527–529CrossRefGoogle Scholar
Alley, R. B., Mayewski, P. A., Sowers, T.et al. (1997). Holocene climatic instability: A prominent widespread event 8200 years ago. Geology 25, 483–4862.3.CO;2>CrossRefGoogle Scholar
Alley, R. B., Anandakrishnan, S. and Jung, P. (2001). Stochastic resonance in the North Atlantic. Paleoceanography 16, 190–198CrossRefGoogle Scholar
Alley, R. B., Nordhaus, W. D., Overpeck, J. T.et al. (2003). Abrupt climate change. Science 299, 2005–2010CrossRefGoogle ScholarPubMed
Alt, B. T. (1975). The Energy Balance Climate of Meighen Ice Cap, N. W. T.Polar Continental Shelf Project, Energy, Mines and Resources, Canada. Vol. 1Google Scholar
Alt, B. T., Labine, C. L., Atkinson, D. E. and Wolfe, P. M. (2000). Automatic weather station results from Fosheim Peninsula, Ellesmere Island, Nunavut. Geol. Surv. Canada Bull. 529, 37–97Google Scholar
Ambaum, M. H. P. and Hoskins, B. J. (2002). The North Atlantic Oscillation troposphere- stratosphere connection. J. Climate 15, 1969–19782.0.CO;2>CrossRefGoogle Scholar
Ambaum, M. H., Hoskins, B. J. and Stephenson, D. B. (2001). Arctic Oscillation or North Atlantic Oscillation?J. Climate 14, 3495–35072.0.CO;2>CrossRefGoogle Scholar
Ananjeva, G. V. (2000). Study of the distribution of lakes in Russian Arctic with the use of GIS technologies. Kriosfera Zemli 4, 67–73Google Scholar
Anderson, D. L. (1961). Growth rate of sea ice. J. Glaciol. 3, 1170–1172CrossRefGoogle Scholar
Anderson, P. M. and Brubaker, L. B. (1994). Vegetation history of North Central Alaska: A mapped summary of Late Quaternary pollen data. Quatern. Sci. Rev. 13, 71–92CrossRefGoogle Scholar
Anderson, R., Boville, B. and McClellan, D. E. (1955). An operational frontal contour analysis model. Q. J. R. Meteorol. Soc. 81, 588–599CrossRefGoogle Scholar
Andreas, E. L., Paulson, C. S., Williams, R. M., Lindsay, R. W. and Businger, J. A. (1979). The turbulent heat flux from Arctic leads. Boundary Layer Meteorol. 17, 57–91CrossRefGoogle Scholar
Andreas, E. L., Miles, M. W., Barry, R. G. and Schnell, R. C. (1990). Lidar-derived particle concentrations in plumes from Arctic leads. Ann. Glaciol. 14, 9–12CrossRefGoogle Scholar
Andrews, D. G., Holton, J. R. and Leovy, C. B. (1987). Middle Atmosphere Dynamics. Orlando, Florida: Academic PressGoogle Scholar
Arbatskaya, M. K. and Vaganov, E. A. (1997). Long-term variation in fire frequency and radial increment in pine from the middle taiga subzone of central Siberia. Russian J. Ecol. 28, 291–297Google Scholar
Arbetter, T. E., Curry, J. A. and Maslanik, J. A. (1999). Effects of rheology and ice thickness distribution in a dynamic- thermodynamic sea ice model. J. Oceanogr. 29, 2656–2670Google Scholar
Arctic Climatology Project (1997). Environmental Working Group Joint U.S.-Russian Atlas of the Arctic Ocean–Winter Period. Timokhov, L. and Tanis, F. (eds.). Ann Arbor, Michigan: Environmental Research Institute of Michigan with the National Snow and Ice Data Center, CD-ROMGoogle Scholar
Arctic Climatology Project (1998). Environmental Working Group Joint U.S.-Russian Atlas of the Arctic Ocean – Summer Period. Timokhov, L. and Tanis, F. (eds.). Ann-Arbor, Michigan: Environmental Research Institute of Michigan with the National Snow and Ice Data Center, CD-ROMGoogle Scholar
Arctic Climatology Project (2000). Environmental Working Group Arctic Meteorology and Climate Atlas. Fetterer, F. and Radionov, V. (eds.), National Snow and Ice Data Center, CD-ROMGoogle Scholar
Armstrong, T. E. (1952). The Northern Sea Route. Soviet Exploitation of the North-east Passage. Cambridge: Cambridge University PressGoogle Scholar
Armstrong, T. E. (1984). In search of a northern sea-route to Siberia, 1553–1619. Arctic 37, 429–440CrossRefGoogle Scholar
Armstrong, T. E. (1995). The Soviet Northern Sea Route. Geogr. Rev. 121, 136–148Google Scholar
Arnell, N. W. (1995). Grid mapping of river discharge. J. Hydrol. 167, 39–56CrossRefGoogle Scholar
Badgley, R. I. (1966). Heat budget at the surface of the Arctic Ocean. In Fletcher, J. O. (ed.), Proceedings of the Symposium on the Arctic Heat Budget and Atmospheric Circulation, Memo. RM-5233-National Science Foundation. Santa Monica, CA: Rand Corp., pp. 267–277Google Scholar
Baer, K. E. (1838). On the ground ice or frozen soil of Siberia. J. R. Geog. Soc. 8, 210–213Google Scholar
Baldwin, M. P. and Dunkerton, T. J. (1999). Propagation of the Arctic Oscillation from the stratosphere to the troposphere. J. Geophys. Res. 104, 30937–30946CrossRefGoogle Scholar
Baldwin, M. P. and Dunkerton, T. J. (2001). Stratospheric harbingers of anomalous weather regimes. Science 294, 581–584CrossRefGoogle ScholarPubMed
Baldwin, M. P. and Holton, J. R. (1988). Climatology of the stratosphere polar vortex and planetary wave breaking. J. Atmos. Sci. 45, 1123–11422.0.CO;2>CrossRefGoogle Scholar
Bales, R. C., McConnell, J. R., Mosley-Thompson, E. and Csatho, B. (2001). Accumulation over the Greenland ice sheet from historical and recent records. J. Geophys. Res. 106 (D24), 33813–33825CrossRefGoogle Scholar
Bamber, J. L., Layberry, S. F. and Gogineni, S. P. (2001). A new ice thickness and bed data set for the Greenland ice sheet. J. Geophys. Res. 106 (D24), 33773–33780CrossRefGoogle Scholar
Barnston, A. G. and Livezy, R. E. (1987). Classification, seasonality and persistence of low-frequency atmospheric circulation patterns. Mon. Wea. Rev. 115, 1083–11262.0.CO;2>CrossRefGoogle Scholar
Barr, W. (1978). The voyage of the Sibiryakov, 1932. Polar Record 19, 253–266CrossRefGoogle Scholar
Barr, W. (1985). The Expeditions of the First International Polar Year. Tech. Paper No. 29. Calgary: Arctic Institute of North AmericaGoogle Scholar
Barr, W. (1991). The Arctic Ocean in Russian history to 1945. In Brigham, L. W. (ed.), The Soviet Maritime Arctic. Annapolis, Maryland: Naval Institute Press, pp. 11–32Google Scholar
Barrie, L. A. (1986). Arctic air pollution: An overview of current knowledge. Atmos. Environ. 20, 643–663CrossRefGoogle Scholar
Barrie, L. A., Bottenheim, J. W., Schnell, R. C., Crutzen, R. C. and Rasmussen, R. A. (1988). Ozone destruction and photochemical reactions at polar sunrise in the lower Arctic atmosphere. Nature 334, 138–141CrossRefGoogle Scholar
Barrow, J. (1818). A Chronological History of Voyages into the Arctic Regions. London: John Murray (reprinted 1971, Barnes and Noble, New York)Google Scholar
Barry, R. G. (1966). Meteorological aspects of the glacial history of Labrador-Ungava with special reference to vapor transport. Geogr. Bull. (Ottawa) 8, 319–340Google Scholar
Barry, R. G. (1967). Seasonal location of the Arctic front over North America. Geogr. Bull. 9, 79–95Google Scholar
Barry, R. G. (1989). The present climate of the Arctic Ocean and possible past and future states. In Herman, Y. (ed.), The Arctic Seas. Climatology, Oceanography, Geology, and Biology. New York: Van Nostrand Reinhold, pp. 1–46Google Scholar
Barry, R. G. (1992). Mountain Weather and Climate 2nd Edition. London: Methuen and Company LtdCrossRefGoogle Scholar
Barry, R. G. (1996). The parameterization of surface albedo for sea ice and its snow cover. Prog. Phys. Geogr. 20, 63–79CrossRefGoogle Scholar
Barry, R. G. and Andrews, J. T. (1967). Remarks on the retreat of the North American ice sheet (in Russian). Izv. Vsesoyuz. Greogr. Obsch., Leningrad, 99, 230–231, also Soviet Geog. (1968), 9, 882–885Google Scholar
Barry, R. G. and Carleton, A. M. (2001). Synoptic and Dynamic Climatology. London: RoutledgeCrossRefGoogle Scholar
Barry, R. G. and Chorley, R. (2003). Atmosphere, Weather, and Climate 8th Edition. New York: Routledge, Taylor and Francis GroupGoogle Scholar
Barry, R. G. and Jackson, C. I. (1969). Summer weather conditions at Tanquary Fiord, N. W. T. 1963–67. Arct. Alp. Res. 1, 169–180CrossRefGoogle Scholar
Barry, R. G. and Kiladis, G. N. (1982). Climatic characteristics of Greenland. In Radok, U. (ed.), Climatic and Physical Characteristics of the Greenland Ice Sheet, Vol. 1. Boulder, Colorado: Cooperative Institute for Research in Environmental Sciences, University of Colorado, pp. 7–33Google Scholar
Barry, R. G. and Serreze, M. C. (2000). Atmospheric components of the Arctic Ocean freshwater balance and their interannual variability. In Lewis, E. L.et al. (eds.), The Freshwater Budget of the Arctic Ocean. NATO Science Series 2. Environmental Security, Vol. 70. Dordrecht, the Netherlands: Kluwer Academic Publishers, pp. 45–56Google Scholar
Barry, R. G., Moritz, R. E. and Rogers, J. C. (1979). The fast ice regimes of the Beaufort and Chukchi Sea coasts, Alaska. Cold Regions Sci. Technol. 1, 129–152CrossRefGoogle Scholar
Barry, R. G., Courtin, G. M. and Labine, C. (1981). Tundra climates. In Bliss, L. C., Heal, A. W. and Moore, J. (eds.), Tundra Ecosystems: A Comparative Analysis. Cambridge: Cambridge University Press, pp. 81–114Google Scholar
Barry, R. G., Crane, R. G., Schweiger, A. and Newell, J. (1987). Arctic cloudiness in spring from satellite imagery. Int. J. Climatol. 7, 428–451Google Scholar
Barry, R. G., Serreze, M. C., Maslanik, J. A. and Preller, R. H. (1993). The Arctic sea-ice climate system: Observations and modeling. Rev. Geophys. 31, 397–422CrossRefGoogle Scholar
Beesley, J. A. and Moritz, R. E. (1999). Toward an explanation of the annual cycle of cloudiness over the Arctic Ocean. J. Climate 12, 395–4152.0.CO;2>CrossRefGoogle Scholar
Belchansky, G. I., Douglas, D. C. and Platonov, N. G. (2004). Duration of the Arctic melt season: Regional and interannual variability, 1979–2001. J. Climate 17, 67–802.0.CO;2>CrossRefGoogle Scholar
Belkin, I. M., Levitus, S., Antonov, J. and Malmberg, S. A. (1998). The “Great Salinity Anomalies” in the North Atlantic. Prog. Oceanogr. 41, 1–68CrossRefGoogle Scholar
Belov, M. I. (1969). Istoriya Otkrytiya Osvoyeniya Severnogo Morskogo Puti. IV. 1933–1945. (History of the Discovery and Exploitation of the Northern Sea Route. IV. 1933–1945). Leningrad: GidrometeoizdatGoogle Scholar
Bender, G. (1984). The Distribution of Snow Accumulation on the Greenland Ice Sheet, M. S. Thesis. Fairbanks, Alaska: Geophysical Institute, University of Alaska. (Available from Geophysical Institute, University of Alaska, PO Box 7555780, Fairbanks, AK 99775– 5780)Google Scholar
Bengtsson, L., Semenov, V. and Johannessen, O. M. (2004). The early twentieth century warming in the Arctic – a possible mechanism. J. Climate 17, 4045–40572.0.CO;2>CrossRefGoogle Scholar
Benn, D. I. and Evans, D. J. A. (1998). Glaciers and Glaciation. London: ArnoldGoogle Scholar
Benson, C. S. (1969). The Seasonal Snow Cover of Arctic Alaska. Arctic Institute of North America Technical Report No. 51. Calgary, Alberta: Arctic Institute of North AmericaGoogle Scholar
Benson, C. S. (1970). Ice Fog. Low Temperature Air Pollution Defined with Fairbanks, Alaska as Type Locality. CRREL Research Report 121. U.S. Army, Cold Regions Research and Engineering Laboratory, Hanover, New HampshireGoogle Scholar
Benson, C. S. and Bowling, S. A. (1975). The sub-Arctic heat island as studied at Fairbanks, Alaska. In Weller, G. and Bowling, S. A. (eds.), Climate of the Arctic, Fairbanks, Alaska: Geophysical Institute, University of Alaska, pp. 309–311Google Scholar
Beringer, J., Tapper, N. J., McHugh, I.et al. (2001). Impact of Arctic treeline on synoptic climate. Geophys. Res. Lett. 28, 4247–4250CrossRefGoogle Scholar
Betts, A. K. (2000). Offset of the potential carbon sink from boreal forestation by decreases in surface albedo. Nature 408, 187–190CrossRefGoogle ScholarPubMed
Bigg, E. K. and Leck, C. (2001). Properties of the aerosol over the central Arctic Ocean. J. Geophys. Res. 106 (D23), 32101–32109CrossRefGoogle Scholar
Bilello, M. A. (1957). A Survey of Arctic Snow-cover Properties as Related to Climatic Conditions. Research Report 39. Hanover, New Hampshire: U.S. Army CRRELGoogle Scholar
Birks, H. H., Paus, , Svendsen, A., , J. I.et al. (1994). Late Weichselian environmental change in Norway, including Svalbard. J. Quatern. Sci. 9, 133–145CrossRefGoogle Scholar
Bitz, C. M., Batitisti, D. S., Moritz, R. E. and Beesley, J. A. (1996). Low-frequency variability in the Arctic atmosphere, sea ice and upper-ocean climate system. J. Climate 9, 394–4082.0.CO;2>CrossRefGoogle Scholar
Blanchet, J.-P. and Girard, E. (1995). Water vapour–temperature feedback in the formation of continental Arctic air: Implication for climate. Sci. Total. Environ. 160/161, 793–802CrossRefGoogle Scholar
Bliss, L. C. (1997). Arctic ecosystems of North America. In Wielgolaski, F. E. (ed.), Polar and Alpine Tundra, Ecosystems of the World, Vol. 3. Amsterdam: Elsevier, pp. 551–683Google Scholar
Blyth, J. D. M. (1951). German meteorological activities in the Arctic, 1940–1945. Polar Record 6, 185–226CrossRefGoogle Scholar
Bojkov, R. D. and Fiolotov, V. E. (1995). Estimating the global ozone characteristics during the last 30 years. J. Geophys. Res. 100 (D8), 16537–16551CrossRefGoogle Scholar
Bokoye, A. I., Royer, A., O'Neill, N. T. and McArthur, B. (2002). A North American Arctic aerosol climatology using ground-based sun photometers. Arctic 55, 215–228CrossRefGoogle Scholar
Bonan, G. B. (1995). Sensitivity of a Global Climate Model (or General Circulation Model) simulation to inclusion of inland water surfaces. J. Climate 8, 2691–27042.0.CO;2>CrossRefGoogle Scholar
Bonan, G. B., Pollard, D. and Thompson, S. L. (1992). Effects of boreal forest vegetation on global climate. Nature 359, 716–718CrossRefGoogle Scholar
Bonan, G. B., Chapin, F. S. III and Thompson, S. L. (1995). Boreal forest and tundra ecosystems as components of the climate system. Clim. Change 29, 145–167CrossRefGoogle Scholar
Bond, G. C. and Lotti, R. (1995). Iceberg discharges into the North Atlantic on millennial time scales during the last glaciation. Science 267, 1005–1010CrossRefGoogle ScholarPubMed
Bond, G., Broecker, W., Johnsen, S.et al. (1993). Correlations between climate records from North Atlantic sediments and Greenland ice. Nature 365, 143–147CrossRefGoogle Scholar
Bond, G. C., Showers, W., Cheseby, M.et al. (1997). A pervasive millennial-scale cycle in North Atlantic Holocene and glacial climates. Science 278, 1257–1266CrossRefGoogle Scholar
Bond, G. C., Kromer, B., Beer, J.et al. (2001). Persistent solar influence on North Atlantic climate during the Holocene. Science 294, 2130–2136CrossRefGoogle ScholarPubMed
Borisov, A. A. (1975). Klinaty SSSR ⅴ Proshlom, Nastoyashchemi i Budushchem (Climates of the USSR, Past, Present and Future). Leningrad: Leningrad UniversityGoogle Scholar
Borodachev, B. E. and Shil'nikov, V. I. (2002). Istoriya L'dovoi Aviatsinnoi Razvedki ⅴ Arktikei na Zamerzayushchikh Moryakh Rossii (1914–1993 gg) (The History of Aerial Ice Reconnaissance in the Arctic and Ice-covered Seas of Russia, 1914–1993). St. Petersburg: GidrometeoizdatGoogle Scholar
Bourke, R. H. and Garrett, R. P. (1987). Sea ice thickness distribution in the Arctic Ocean. Cold Regions Sci. Technol. 13, 259–280CrossRefGoogle Scholar
Bourke, R. H. and McLaren, A. S. (1992). Contour mapping of Arctic basin ice draft and roughness parameters. J. Geophys. Res. 97 (C11), 17715–17728CrossRefGoogle Scholar
Bourke, R. H. and Paquette, R. G. (1989). Estimating the thickness of sea ice. J. Geophys. Res. 94, 919–923CrossRefGoogle Scholar
Boville, B. W., MacFarlane, M. A. and Steiner, H. A. (1959). An Atlas of Stratospheric Circulation, October 1958–March 1959. Arctic Meteorology Research Group, Publication in Meteorology No. 37. Montreal, Canada: McGill University, Defense Research Board, Department of National Defense
Bovis, M. J. and Barry, R. G. (1974). A climatological analysis of north polar desert areas. In Smiley, T. L. and Zumberge, J. H. (eds.), Polar Deserts and Modern Man. Tucson, Arizona: University of Arizona Press, pp. 23–31Google Scholar
Bowling, L. C., Lettenmaier, D. P. and Matheussen, B. V. (2000). Hydroclimatology of the Arctic drainage basin. In Lewis, E. L.et al. (eds.), The Freshwater Budget of the Arctic Ocean. NATO Science Series 2. Environmental Security, Vol. 70. Dordrecht, the Netherlands: Kluwer Academic Publishers, pp. 57–90Google Scholar
Bowling, L. C., Letternmaier, D. P., Nijssen, B.et al. (2003). Simulation of hydrologic responses in the Torne-Kalix basIn Project for Intercomparison of Land Surface Parameterization Schemes Phase 2(e) 1: Experiment description and summary intercomparisons. Global Planet. Change 38, 1–30CrossRefGoogle Scholar
Bowling, S. A. (1986). Climatology of high-latitude air pollution as illustrated by Fairbanks and Anchorage, Alaska. J. Clim. Appl. Meteor. 25, 22–342.0.CO;2>CrossRefGoogle Scholar
Box, J. E. and Steffen, K. (2001). Sublimation on the Greenland ice sheet from automated weather station observations. J. Geophys. Res. 106 (D24), 33965–33981CrossRefGoogle Scholar
Boyd, T. J., Steele, M., Muench, R. D. and Gunn, J. T. (2002). Partial recovery of the Arctic Ocean halocline. Geophys. Res. Lett. 29, 1647, DOI: 10.1029/2001GL014047CrossRef
Bradley, R. S. (1999). Paleoclimatology: Reconstructing Climates of the Quaternary. San Diego, California: Academic PressGoogle Scholar
Bradley, R. S. and Serreze, M. C. (1987). Topoclimatic studies of a high Arctic plateau ice cap. J. Glaciol. 33, 149–158CrossRefGoogle Scholar
Bridgman, H. A., Schnell, R. C., Kahl, J. D., Herbert, G. A. and Joranger, E. (1989). A major haze event near Point Barrow, Alaska: Analysis of probable source regions and transport pathways. Atmos. Environ. 23, 2537–2549CrossRefGoogle Scholar
Brinkman, W. and Barry, R. G. (1972). Paleoclimatological aspects of the synoptic climatology of Keewatin, Northwest Territories, Canada. Paleogeogr., Paleoclimatol., Paleoecol. 11, 87–91CrossRefGoogle Scholar
Broecker, W. D. (1990). Salinity history of the northern Atlantic during the last glaciation. Paleoceanography 5, 459–467CrossRefGoogle Scholar
Broecker, W. S., Kennet, J. P., Flower, B. P.et al. (1989). Routing of meltwater from the Laurentide Ice Sheet during the Younger Dryas episode. Nature 341, 318–321CrossRefGoogle Scholar
Broecker, W. S., Bond, G., Klas, M., Bonani, G. and Wolfi, W. (1990). A salt oscillator in the glacial North Atlantic? 1. The concept. Paleoceanography 5, 469–477CrossRefGoogle Scholar
Bromwich, D. H., Keen, R. A. and Bolzan, J. F. (1993). Modeled variations of precipitation over the Greenland ice sheet. J. Climate 6, 1253–12682.0.CO;2>CrossRefGoogle Scholar
Bromwich, D. H., Cassano, J. J., Klein, T.et al. (2001a). Mesoscale modeling of katabatic winds over Greenland with Polar MM5. Mon. Wea. Rev. 129, 2290–23092.0.CO;2>CrossRefGoogle Scholar
Bromwich, D. H., Qui-shi, Chen, Bai, Le-sheng, Cassano, E. N. and Li, Y. (2001b). Modeled precipitation variability over the Greenland ice sheet. J. Geophys. Res. 106 (D24), 33891–33908CrossRefGoogle Scholar
Bromwich, D. H., Toracinta, E. R. and Wang, S.-H. (2002). Meteorological perspectives on the initiation of the Laurentide ice sheet. Quatern. Internat. 95–96, 113–124CrossRefGoogle Scholar
Bromwich, D. H., Toracinta, E. R., Wei, H.et al. (2004). Polar MM5 simulations of the winter climate of the Laurentide Ice Sheet at the Last Glacial Maximum. J. Climate 17, 3415–34332.0.CO;2>CrossRefGoogle Scholar
Bromwich, D. H., Toracinta, E. R., Oglesby, R. J., Fastook, J. L. and Hughes, T. J. (2005). Last Glacial Maximum summer climate on the southern margin of the Laurentide Ice Sheet: Wet or dry? J. Climate (in press)
Brooks, C. E. P. (1931). The vertical temperature gradient in the Arctic. Meteorol. Mag. 66, 267–268Google Scholar
Brown, J., Ferrians, O. J. Jr., Heginbottom, A. J. and Melnikov, S. E. [1997]. Circum-Arctic Map of Permafrost and Ground-Ice Conditions. U.S. Geological Survey Circum-Pacific Map Series, CP-45Google Scholar
Brubaker, K. L., Entekhabi, D. and Eagleson, P. S. (1993). Estimation of continental-scale precipitation recycling. J. Climate 6, 1077–10892.0.CO;2>CrossRefGoogle Scholar
Bryan, K. (1969). Climate and the ocean circulation. III. The ocean model. Mon. Wea. Rev. 97, 806–8272.3.CO;2>CrossRefGoogle Scholar
Bryazgin, N. N. (1976). Yearly mean precipitation in the Arctic region accounting for measurement error (in Russian). Proc. Arctic. Ant. Res. Inst. 323, 40–74Google Scholar
Bryson, R. A. (1966). Air masses, stream- lines, and the boreal forest. Geogr. Bull. 8, 228–269Google Scholar
Bulatov, V. and Popov, G. (1996). Novaya Zemlya: Myfy i real'nost' (Novaya Zemlya: Myths and reality). In Tolkachev, V. F. (ed.), Terra Incognita Arktik. Archangelsk: Pomorskogo Mezhdunarodnogo Pedagogicheskii Universitet, pp. 5–68Google Scholar
Busch, N., Ebel, U., Kraus, H. and Schaller, E. (1982). The structure of the subpolar inversion-capped ABL. Arch. Met. Geophys. Bioklim. 31A, 1–18Google Scholar
Businger, S. and Reed, R. J. (1989). Cyclogenesis in cold air masses. Weather and Forecasting 4, 133–1562.0.CO;2>CrossRefGoogle Scholar
Carleton, A. M. (1996). Satellite climatological aspects of cold air mesocyclones in the Arctic and Antarctic. Global Atmos. Ocean. Syst. 5, 1–42Google Scholar
Carmack, E. C. (1990). Large-scale physical oceanography of polar oceans. In Smith, W. O. Jr. (ed.), Polar Oceanography, Part A, Physical Science. San Diego, California: Academic Publishers, pp. 171–222Google Scholar
Carroll, J. J. and Fitch, B. W. (1981). Effects of solar elevation and cloudiness on snow albedo at the South Pole. J. Geophys. Res. 86, 5271–5276CrossRefGoogle Scholar
Cassau, C. and Terray, L. (2001). Dual role of Atlantic and Pacific Sea Surface Temperature anomalies on the North Atlantic/Europe winter climate. Geophys. Res. Lett. 30, 3195–3198CrossRefGoogle Scholar
Catchpole, A. J. W. and Faurer, M. A. (1983). Summer sea ice severity in Hudson Strait, 1751–1850. Clim. Change 5, 115–139CrossRefGoogle Scholar
Cavalieri, D. J., Parkinson, C. L. and Vinnikov, K. Y. (2003). 30-year satellite records reveal contrasting Arctic and Antarctic decadal sea ice variability. Geophys. Res. Lett. 30, 1970, DOI: 10.1029/2003GL018031CrossRef
Central Intelligence Agency (CIA) (1978). Polar Regions Atlas. Produced by National Foreign Assessment Center, Central Intelligence Agency
Chapin, F. S. III, Shaver, G. R., Giblin, R. E., Nadelhoffer, K. J. and Laundre, J. A. (1995). Responses of Arctic tundra to experimental and observed changes in climate. Ecology 76, 694–711CrossRefGoogle Scholar
Chapin, F. S. III, Matson, P. A. and Mooney, H. A. (2000). Principles of Terrestrial Ecosystem Ecology. New York: Springer VerlagGoogle Scholar
Charlier, R. H. (1969). The geographic distribution of polar desert soil in the Northern Hemisphere. Geol. Soc. Amer. Bull. 80, 1985–1996CrossRefGoogle Scholar
Charney, J., Halem, M. and Jastrow, R. (1969). Use of incomplete historical data to infer the present state of the atmosphere. J. Atmos. Sci. 26, 1160–11632.0.CO;2>CrossRefGoogle Scholar
Chartrand, D. J., Grandpere, J. and McConnell, J. C. (1999). An introduction to stratospheric chemistry. Atmosphere-Ocean 37, 309–367CrossRefGoogle Scholar
Chase, T. N., Herman, B., Peilke, R. S. Sr., Zeng, X. and Leuthold, M. (2002). A proposed mechanism for the regulation of minimum midtropospheric temperatures in the Arctic. J. Geophys. Res. 107(D14), DOI: 10.1029/2001JD001425CrossRef
Chen, Q. S., Bromwich, D. H. and Bai, L. (1997). Precipitation over Greenland retrieved by a dynamic method and its relation to cyclonic activity. J. Climate 10, 839–8702.0.CO;2>CrossRefGoogle Scholar
Cherkauer, K. A., Bowling, L. C. and Lettenmaier, D. P. (2003). Variable Infiltration Capacity (Variable Infiltration Capacity model) cold land process model updates. Global Planet. Change 38, 151–159CrossRefGoogle Scholar
Chernov, Y. I. and Matveyeva, N. V. (1997). Arctic ecosystems in Russia. In Wielgolaski, F. E. (ed.), Polar and Alpine Tundra Ecosystems of the World, Vol. 3. Amsterdam: Elsevier, pp. 361–507Google Scholar
Choudhury, B. J. and Chang, A. T. C. (1981). The albedo of snow for partially cloudy skies. Boundary Layer Meteorol. 20, 371–389CrossRefGoogle Scholar
Christiansen, H. H. (1998). ‘Little Ice Age’ nivation activity in northeast Greenland. Holocene 8, 719–728CrossRefGoogle Scholar
Christiansen, H. H., Bennike, O., Bocher, J.et al. (2002). Holocene environmental reconstruction from deltaic deposits in northeast Greenland. J. Quatern. Sci. 17, 145–160CrossRefGoogle Scholar
Clark, C. D., Knight, J. K. and Gray, J. T. (2000). Geomorphological reconstruction of the Labrador sector of the Laurentide ice sheet. Quatern. Sci. Rev. 19, 1343–1366CrossRefGoogle Scholar
Clark, D. L. (1982). Origin, nature and world climate effect of the Arctic Ocean ice cover. Nature 300, 321–325CrossRefGoogle Scholar
Clark, D. L. and Grantz, A. (2002). Piston cores improve understanding of deep Arctic Ocean. EOS, Trans. Amer. Geophys. Union 83, 417, 422–423CrossRefGoogle Scholar
Clark, M. P., Serreze, M. C. and Barry, R. G. (1996). Characteristics of Arctic Ocean climate based on Comprehensive Ocean Atmosphere Data Set data, 1980–1993. Geophys. Res. Lett. 23, 1953–1956CrossRefGoogle Scholar
Clark, P. U., Marshall, S. J., Clarke, G. K.et al. (2001). Freshwater forcing of abrupt climate change during the last glaciation. Science 293, 283–287CrossRefGoogle ScholarPubMed
Clark, P. U., Pisias, N. G., Stocker, T. F. and Weaver, A. J. (2002). The role of the thermohaline circulation in abrupt climate change. Nature 415, 863–869CrossRefGoogle ScholarPubMed
Clein, J. S., Kwiatkowski, B. L., McGuire, A. D.et al. (2000). Modeling carbon responses of tundra ecosystems to historical and projected climate: A comparison of a plot- and a global-scale ecosystem model to identify process-based uncertainties. Global Change Biol. 6 (Supplement 1), 127–140CrossRefGoogle Scholar
Cohen, J. and Entekhabi, D. (1990). Eurasian snow cover variability and Northern Hemisphere climate predictability. Geophys. Res. Lett. 26, 345–348CrossRefGoogle Scholar
Cohen, J., Saito, K. and Entekhabi, D. (2001). The role of the Siberian High in Northern Hemisphere climate variability. Geophys. Res. Lett. 28, 299–302CrossRefGoogle Scholar
Colony, R., Radionov, V. and Tanis, F. L. (1998). Measurements of precipitation and snow pack at the Russian North Pole drifting stations. Polar Record 34, 3–14CrossRefGoogle Scholar
Comiso, J. (2003). Warming trends in the Arctic from clear-sky satellite observations. J. Climate 16, 3498–35102.0.CO;2>CrossRefGoogle Scholar
Cook, E. R., D'Arrigo, R. D. and Briffa, K. R. (1998). A reconstruction of the North Atlantic Oscillation using tree-ring chronologies from North America and Europe. Holocene 8, 9–17CrossRefGoogle Scholar
Courtin, G. H. and Labine, C. L. (1977). Microclimatological studies of the Truelove Lowland, Devon Island, Northwest Territories. In Bliss, L. C. (ed.), Truelove Lowland, Devon Island, Canada, a High Arctic Ecosystem. Edmonton, Canada: University of Alberta Press, pp. 73–106Google Scholar
Cox, P. M., Betts, R. A., Jones, C. D., Spall, S. A. and Totterdell, I. J. (2000). Acceleration of global warming due to carbon cycle feedbacks in a coupled global model. Nature 408, 184–187CrossRefGoogle Scholar
Crowley, T. J. (2000). Causes of climate change over the past 1000 years. Science 289, 270–276CrossRefGoogle ScholarPubMed
Cuffey, K. M. and Marshall, S. J. (2000). Substantial contribution to sea-level rise during the last interglacial from the Greenland ice sheet. Nature 404, 591–594CrossRefGoogle ScholarPubMed
Cullather, R. I. and Lynch, A. H. (2003). The annual cycle and interannual variability of atmospheric pressure in the vicinity of the North Pole. Int. J. Climatol. 23, 1161–1183CrossRefGoogle Scholar
Cullather, R. I., Bromwich, D. H. and Serreze, M. C. (2000). The atmospheric hydrologic cycle over the Arctic basin from reanalyses. Part I: Comparison with observations and previous studies. J. Climate 13, 923–9372.0.CO;2>CrossRefGoogle Scholar
Curry, J. (1983). On the formation of polar continental air. J. Atmos. Sci. 40, 2278–22922.0.CO;2>CrossRefGoogle Scholar
Curry, J. A. and Ebert, E. E. (1992). Annual cycle of radiation fluxes over the Arctic Ocean: Sensitivity to cloud optical properties. J. Climate 5, 1267–12802.0.CO;2>CrossRefGoogle Scholar
Curry, J. A., Ebert, E. E. and Herman, G. F. (1988). Mean and turbulent structure of the summertime Arctic cloudy boundary layer. Q. J. R. Meteorol. Soc. 114, 715–746CrossRefGoogle Scholar
Curry, J. A., Meyer, F. G., Radke, L. F., Brock, C. A. and Ebert, E. E. (1990). Occurrence and characteristics of lower tropospheric ice crystal in the Arctic. Int. J. Climatol. 10, 749–764CrossRefGoogle Scholar
Curry, J. A., Schramm, J. L. and Ebert, E. E. (1995). On the ice albedo climate feedback mechanism. J. Climate 8, 240–2472.0.CO;2>CrossRefGoogle Scholar
Curry, J. A., Rossow, W. B., Randall, D. and Schramm, J. L. (1996). Overview of Arctic cloud and radiative characteristics. J. Climate 9, 1731–17642.0.CO;2>CrossRefGoogle Scholar
Cushman, S. A. and Wallin, D. O. (2002) Separating the effects of environmental, spatial and disturbance factors on forest community structure in the Russian Far East. For. Ecol. Manage. 168, 201–215CrossRefGoogle Scholar
Danielsen, E. F. (1968). Stratospheric- tropospheric exchange based on radioactivity, ozone and potential vorticity. J. Atmos. Sci. 25, 502–5182.0.CO;2>CrossRefGoogle Scholar
Danilov, I. D. (1989). Geological and paleoclimatic evolution of the Arctic during Late Cenozoic time. In Herman, Y. (ed.), The Arctic Seas. Climatology, Oceanography, Geology, and Biology. New York: Van Nostrand Reinhold, pp. 759–760Google Scholar
Danilov, I. L. (2000). Arkticheckii Okean kak faktor globalnykh klimaticheskikh izmenenuu (The Arctic Ocean as a factor in global climate). In Global Variations of the Environment (Climate and Water Regime) (in Russian). Moscow: Nauchny Mir, pp. 91–121
Dansgaard, W. S., Johnsen, S. J., Clausen, H. B. and Langway, C. C. Jr. (1971). Climatic record revealed by the Camp Century ice core. In Tuekian, K. K. (ed.), The Late Cenozoic Glacial Age. New Haven, Connecticut: Yale University Press, pp. 37–56Google Scholar
Dansgaard, W., White, J. W. C. and Johnsen, S. J. (1989). The abrupt termination of the Younger Dryas event. Nature 339, 532–534CrossRefGoogle Scholar
Dawson, H. P. (1886). Observations of the International Polar Expedition, Fort Rae. London: Eyre and SpottiswoodeGoogle Scholar
Defant, F. and Taba, H. (1957). The threefold structure of the atmosphere and the characteristics of the tropopause. Tellus 9, 259–274CrossRefGoogle Scholar
Delworth, T. L. and Knutson, T. R. (2000). Simulation of early 20th century global warming. Science 287, 2246–2250CrossRefGoogle ScholarPubMed
Delworth, T. L. and Mann, M. E. (2000). Observed and simulated multidecadal variability in the Northern Hemisphere. Clim. Dynam. 16, 661–676CrossRefGoogle Scholar
Denton, G. H. and Hughes, T. (eds.) (1981). The Last Great Ice Sheets. New York: John Wiley and SonsGoogle Scholar
Desborough, C. E. (1999). Surface energy balance complexity in Global Climate Model (or General Circulation Model) land surface models. Clim. Dynam. 15, 389–403CrossRefGoogle Scholar
Deser, C. (2000). On the teleconnectivity of the ‘Arctic Oscillation’. Geophys. Rev. Lett. 27, 779–782CrossRefGoogle Scholar
Deser, C., Walsh, J. E. and Timlin, M. S. (2000). Arctic sea ice variability in the context of recent atmospheric circulation trends. J. Climate 13, 617–6332.0.CO;2>CrossRefGoogle Scholar
Deser, C., Magnusdottir, G., Saravanan, R. and Phillips, A. (2004). The effects of North Atlantic Sea Surface Temperature and sea ice anomalies on the winter circulation in CCM3. Part II: Direct and indirect components of the response. J. Climate 17, 877–8892.0.CO;2>CrossRefGoogle Scholar
Dethloff, K., Rinke, A., Lehmann, R.et al. (1996). Regional climate model of the Arctic atmosphere. J. Geophys. Res. 101 (D18), 23401–23442CrossRefGoogle Scholar
DeVeer, G. (1876). The Three Voyages of Willem Barents to the Arctic Regions. London: Hakluyt SocietyGoogle Scholar
Vernal, A. and Hillaire-Marcel, C. (2000). Sea ice cover, sea surface salinity and halo-1 thermocline structure of the northwest North Atlantic: modern values versus full glacial conditions. Quatern. Sci. Rev. 19, 65–85CrossRefGoogle Scholar
Dickson, R. R., Meincke, J., Malmberg, S. A. and Lee, A. J. (1988). The “Great Salinity Anomaly” in the northern North Atlantic, 1968–1982. Progr. Oceanogr. 20, 103–151CrossRefGoogle Scholar
Dickson, R. R., Osborn, T. J., Hurrell, J. W.et al. (2000). The Arctic Ocean response to the North Atlantic Oscillation. J. Climate 13, 2671–26962.0.CO;2>CrossRefGoogle Scholar
Ding, Y-H. (1990). Build-up, air mass transformation and propagation of the Siberian High and its relation to cold surges in East Asia. Meteorol. Atmos. Phys. 44, 281–292Google Scholar
Dingman, S. L., Barry, R. G., Weller, G. et al. (1980). Climate, snow cover, microclimate and hydrology. In Brown, J.et al. (eds.), An Arctic Ecosystem: The Coastal Tundra at Barrow, Alaska. Stroudsburg, Pennsylvania: Dowden, Hutchinson and Ross, pp. 30–65CrossRefGoogle Scholar
Ditlevsen, P. D., Svensmark, H. and Johnsen, S. (1996). Contrasting atmospheric and climate dynamics of last-glacial and Holocene periods. Nature 379, 810–812CrossRefGoogle Scholar
Doronin, Yu. P. and Kheisin, D. E. (1975). Sea Ice. Leningrad: Gidrometeoizdat (Translation by National Science Foundation, TT75-52088, 1977)Google Scholar
Dorsey, H. G. Jr. (1945). Some meteorological aspect of the Greenland Ice Cap. J. Meteorol. 2, 135–1422.0.CO;2>CrossRefGoogle Scholar
Doyle, J. D. and Shapiro, M. A. (1999). Flow response to large-scale topography: The Greenland tip jet. Tellus 51A, 728–748CrossRefGoogle Scholar
Duchkov, A. D. and Balobaev, V. T. (2001). Geothermal studies of permafrost response to global natural changes. In Paepe, R. and Melnikov, V. (eds.), Permafrost Response on Economic Development, Environmental Security and Natural Resources. Dordrecht, the Netherlands: Kluwer Academic Publishers, pp. 317–332CrossRefGoogle Scholar
Dukhovsky, D. S., Johnson, M. A. and Proshutinsky, A. (2004). Arctic decadal variability: An auto-oscillatory system of heat and fresh water exchange. Geophys. Res. Lett. 31, L03302, DOI: 10.1029/2003GL019023CrossRef
Dunbar, M. and Dunbar, M. J. (1972). The history of the North Water. Proc. R. Soc. Edinburgh B 72, 231–241Google Scholar
Dyke, A. S., Dredge, L. A. and Vincent, J.-S. (1982). Configuration and dynamics of the Laurentide ice sheet during the late Wisconsin maximum. Geogr. Phys. Quaternaire 36, 5–14CrossRefGoogle Scholar
Dymond, J. and Wales, W. (1770). Observations on the state of the air, winds, weather, etc. made at Prince of Wales Fort, on the North-West coast of Hudson Bay. Philas. Trans. R. Soc. Lond. 60, 137–177CrossRefGoogle Scholar
Dyurgerov, M. B. and Meier, M. F. (1997). Year-to-year fluctuation of global mass balance of small glaciers and their contribution to sea level changes. Arct. Alp. Res. 29, 392–402CrossRefGoogle Scholar
Dzerdzeevskii, B. L. (1945). Tsirkulatsionnye skhemy ⅴ troposfere Tsentralnoi Arctike (Circulation schemes for the central Arctic troposphere). Izdat. Akad. Nauk SSSR (Transl. in Sci. Rep. No.3, Contract AF 19 (122)-128, Meteorology Dept., University of California, Los Angeles)
Edwards, M. E., Mock, C. J., Finney, B. P., Barber, V. A. and Bartlein, P. J. (2001). Potential analogues for paleoclimatic variations in eastern interior Alaska during the past 14,000 yr: Atmospheric-circulation controls of regional temperature and moisture responses. Quatern. Sci. Rev. 20, 189–202CrossRefGoogle Scholar
Ehlers, J. and Gibbard, P. L. (2003). Extent and chronology of glaciations. Quatern. Sci. Rev. 22, 1561–1568CrossRefGoogle Scholar
Elias, S. A., Short, S. K., Nelson, C. H. and Birks, H. H. (1996). Life and times of the Bering Land Bridge. Nature 382, 60–63CrossRefGoogle Scholar
Elliott-Fisk, D. L. (1983). The stability of the northern Canadian tree limit. Ann. Assoc. Amer. Geogr. 73, 560–576CrossRefGoogle Scholar
Eltahir, E. A. B. and Bras, R. L. (1996). Precipitation recycling. Rev. Geophys. 34, 367–378CrossRefGoogle Scholar
Emanuel, K. A. and Rotunno, R. (1989). Polar lows as Arctic hurricanes. Tellus 41A, 1–17CrossRefGoogle Scholar
Emery, W. J., Fowler, C. W. and Maslanik, J. A. (1997). Satellite-derived maps of Arctic and Antarctic sea ice motion: A new multi-year record of ice transport. Geophys. Res. Lett. 24, 897–900CrossRefGoogle Scholar
England, J. (1999). Coalescent Greenland and Innuitian ice during the Last Glacial Maximum: Revising the Quaternary of the Canadian High Arctic. Quatern. Sci. Rev. 18, 421–456CrossRefGoogle Scholar
Epenshade, E. B. and Schytt, V. (1956). Problems in Mapping Snow Cover. Research Report 27. Hanover, New Hampshire: U.S. Army CRRELGoogle Scholar
EPICA Community Members (2004). Eight glacial cycles from an Antarctic ice core. Nature 429, 623–628CrossRef
Ezer, T., Mellor, G. L. and Greatbatch, R. G. (1995). On the interpentadal variability of the North Atlantic Ocean: Model simulated changes in transport, meridional heat flux, and coastal sea level between 1955–1959 and 1970–1974. J. Geophys. Res. 100, 10559–10566CrossRefGoogle Scholar
Fanning, A. F. and Weaver, A. J. (1997). Temporal-geographical meltwater influences on the North Atlantic conveyor: implications for the Younger Dryas event. Paleoceanography 12, 307–320CrossRefGoogle Scholar
Farmer, G. L., Barber, D.C. and Andrewa, J. T. (2003). Provenance of late Quaternary ice proximal sediments in the North Atlantic: Nd, Sr and Pd isotopic evidence. Earth Planet. Sci. Lett. 209, 227–243CrossRefGoogle Scholar
Fasullo, J. (2004). A stratified diagnosis of the Indian Monsoon – Eurasian snow cover relationship. J. Climate 17, 1110–11222.0.CO;2>CrossRefGoogle Scholar
Ferguson, H. L., O'Neill, A. D. and Cork, H. F. (1970). Mean evaporation over Canada. Water Resour. Res. 6, 1618–1633CrossRefGoogle Scholar
Fichefet, T., Poncin, C., Goosse, H. et al. (2003). Implications of changes in freshwater flux from the Greenland ice sheet for the climate of the 21st century. Geophys. Res. Lett. 30, DOI: 10.1029/2003GL017826CrossRef
Field, W. O. (ed.) (1975). Mountain Glaciers of the Northern Hemisphere (2 vols). Hanover, New Hampshire: U.S. Army CRRELGoogle Scholar
Fischer, H., Werner, M., Wagenbach, D.et al. (1998). Little Ice Age clearly recorded in northern Greenland ice cores. Geophys. Res. Lett. 25, 1749–1752CrossRefGoogle Scholar
Fisher, R. H. (1984). The early cartography of the Bering Strait region. Arctic 37, 574–589CrossRefGoogle Scholar
Fisheries and Environment Canada (1978). Hydrological Atlas of Canada. Ottawa, Canada: Fisheries and Environment Canada, Minister of Supply and Services
Flato, G. M. and Hibler, W. D. III (1992). Modeling pack ice as a cavitating fluid. J. Phys. Oceanogr. 22, 626–6512.0.CO;2>CrossRefGoogle Scholar
Fleming, G. H. and Semtner, A. J. Jr. (1991). A numerical study of interannual forcing on Arctic ice. J. Geophys. Res. 96 (C3), 4589–4603CrossRefGoogle Scholar
Fleming, J. A. (ed.) (1907). The Ziegler Polar Expedition 1903–1905: Scientific Results Obtained Under the Direction of William J. Peters. Washington, DC: National Geographic Society, Section C, pp. 369–487Google Scholar
Flint, R. F. (1943). Growth and decay of the North American ice sheet during the Wisconsin age. Bull. Amer. Geol. Soc. 54, 325–362CrossRefGoogle Scholar
Foley, J. A., Kutzbach, J. E., Coe, M. T. and Levis, S. (1994). Feedbacks between climate and boreal forests during the Holocene Epoch. Nature 371, 52–54CrossRefGoogle Scholar
Formozov, A. N. (1946). Snow Cover as an Integral Factor of the Environment and its Importance in the Ecology of Mammals and Birds. Materials for Fauna and Flora of the USSR (New Series. Zoology, 5). Edmonton, Canada: Boreal Institute, University of Alberta, English EditionGoogle Scholar
Franklin, J. (1828). Narrative of a Second Expedition to the Shores of the Polar Sea in the Years 1825, 1826 and 1827. London: John Murray (reprinted Rutland, Vermont, 1971)Google Scholar
French, H. M. (1996). The Periglacial Environment 2nd Edition. London: Addison Wesley LongmanGoogle Scholar
Friendly, A. (1977). Beaufort of the Admiralty. The Life of Sir Francis Beaufort 1754–1847. New York: Random House, pp. 301–322Google Scholar
Fyfe, J. C. (2003). Separating extratropical zonal wind variability and mean change. J. Climate 16, 863–8742.0.CO;2>CrossRefGoogle Scholar
Gadbois, P. and Laverdiere, C. (1954). Esquisse geographique de la region de Floeberg Beach, nord de l'isle Ellesmere. Geogr. Bull. Ottawa 6, 17–44Google Scholar
Gaigerov, S. S. (1967). Aerology of the Polar Regions (Moscow, 1964). Jerusalem: Israel Program of Scientific TranslationsGoogle Scholar
Gakkel, Ya. Ya. and Chernenko, M. B. (1959). Sovetskoye Arkitchekoye Moreplavaniye 1917–1932 gg. Istoriya Otkrytiya I. Osvoyeniya Severnogo Morskogo Puti, III (Soviet Arctic Navigation 1917–1932. History of the Discovery and Exploitation of the Northern Sea Route, Vol. 3). Leningrad: Morsko TransportGoogle Scholar
Galloway, J. L. (1958). The three-front model: Its philosophy, nature, construction and use. Weather 13, 395–403CrossRefGoogle Scholar
Ganopolski, A. and Rahmsdorf, S. (2001). Rapid changes of glacial climate simulated in a coupled climate model. Nature 409, 153–158CrossRefGoogle Scholar
Gates, W. L. (1992). Atmospheric Model Intercomparison Project: The atmospheric model intercomparison project. Bull. Amer. Meteorol. Soc. 73, 1962–19702.0.CO;2>CrossRefGoogle Scholar
Gavrilov, A. V. (2001). Geocryological mapping of Arctic shelves. In Paepe, R. and Melnikov, V. (eds.), Permafrost Response on Economic Development, Environmental Security and Natural Resources. Dordrecht, the Netherlands: Kluwer Academic Publishers, pp. 69–86CrossRefGoogle Scholar
Gerrard, A. J., Kane, T. L., Thayer, J. P. et al. (2002). Synoptic scale study of the Arctic polar vortex's influence on the middle atmosphere. 1. Observations. J. Geophys. Res. 107(D16), DOI: 10.1029/2001JD000681CrossRef
Ghil, M. and Malanotte-Rizzoli, P. (1991). Data assimilation in meteorology and oceanography. Adv. Geophys. 33, 141–266CrossRefGoogle Scholar
Gillett, N. P., Baldwin, M. P. and Allen, M. R. (2003). Climate change and the North Atlantic Oscillation. In The North Atlantic Oscillation: Climate Significance and Environmental Impact. Geophysical Monograph 134, American Geophysical Union, pp. 193–209
Glazovsky, A. F. (2003). Glacier changes in the Russian Arctic. In Papers and Recommendations: Snow Watch 2002 Workshop and Assessing Global Glacier Recession. Glaciol. Data Report GD-32. National Snow and Ice Data Center/WDC for Glaciology, Boulder, pp. 78–82
Golubchikov, Y. N. (1996). Geografiya Gornykh i Polyarnikh Stran (The Geography of Mountain and Polar Lands). Moscow: Moscow University Press, 304 ppGoogle Scholar
Goodrich, L. E. (1982). Efficient numerical technique for one-dimensional thermal problems with phase change. Int. J. Heat Mass Transfer 21, 615–621CrossRefGoogle Scholar
Gorshkov, S. G. (ed.) (1983). World Ocean Atlas, Vol. 3, Arctic Ocean (in Russian). Oxford: Pergamon PressGoogle Scholar
Govorukha, L. S. (1988). Sovremennoe Nazemnoe Oledenenie Sovyetskoi Arktiki (Modern Terrestrial Glaciation of the Soviet Arctic). Leningrad: GidrometeoizdatGoogle Scholar
Gow, A. J. and Tucker, W. B. III (1987). Physical properties of sea ice discharge from Fram Strait. Science 236, 236–439CrossRefGoogle Scholar
Greatbatch, R. J., Fanning, A. F., Goulding, A. D. and Levitus, S. (1991). A diagnosis of interpentadal circulation changes in the North Atlantic. J. Geophys. Res. 96, 22009–22023CrossRefGoogle Scholar
Greely, A. W. (1896). Three Years of Arctic Service. An Account of the Lady Franklin Bay Expedition of 1881–84 and the Attainment of the Farthest North. New York: Charles Scribner's Sons, Vols. 1 and 2Google Scholar
Grell, G. A., Dudhia, J. and Stauffer, D. R. (1995). A Description of the Fifth-generation Penn State/National Center for Atmospheric Research Mesoscale Model (MM5). National Center for Atmospheric Research Technical Note NCSR/TN-382+STR. Boulder, Colorado: National Center for Atmospheric Research
Groisman, P. Y., Koknaeva, V. V., Belokrylova, T. A. and Karl, T. R. (1991). Overcoming biases of precipitation: A history of the USSR experience. Bull. Amer. Meteorol. Soc. 72, 1725–17332.0.CO;2>CrossRefGoogle Scholar
Grønas, S. and Kvamstø, N. G. (1995). Numerical simulations of the synoptic conditions and development of Arctic outbreak polar lows. Tellus 47A, 797–814CrossRefGoogle Scholar
Grootes, P. M. and Stuiver, M. (1997). Oxygen 18/16 variability in Greenland snow and ice with 103-to-105 year time resolution. J. Geophys. Res. 102, 26455–26470CrossRefGoogle Scholar
Grosswald, M. G. (1980). Late Wiechselian ice sheet of northern Eurasia. Quatern. Res. 13, 1–32CrossRefGoogle Scholar
Grossvald, M. G. (1999). Evraziiskie Gidrosvernye Katastrofy I Oledenenie Arktiki (Eurasian Hydrospheric Catastrophes and the Glaciation of the Arctic). Moscow: Nauchnu MirGoogle Scholar
Grosswald, M. G. and Hughes, T. J. (1999). The case for an ice shelf in the Pleistocene Arctic Ocean. Polar Geog. 23, 23–54CrossRefGoogle Scholar
Grove, J. M. (2004). Little Ice Ages: Ancient and Modern. 2nd Edition. London/New York: RoutledgeGoogle Scholar
Gyakum, J. R. (2000). Moisture transports to Arctic drainage basins relating to significant precipitation events and cyclogenesis. In Lewis, E. L.et al. (eds.), The Freshwater Budget of the Arctic Ocean. NATO Science Series 2. Environmental Security, Vol. 70. Dordrecht, the Netherlands: Kluwer Academic Publishers, pp. 1978–2008Google Scholar
Hagglund, M. G. and Thompson, H. A. (1964). A Study of Sub-zero Canadian Temperatures. Memoir No. 16, Meteorological Branch, Department of Transport, CanadaGoogle Scholar
Hahn, C. J., Warren, S. G. and London, J. (1995). The effect of moonlight on observations of cloud cover at night and application to cloud climatology. J. Climate 8, 1429–14462.0.CO;2>CrossRefGoogle Scholar
Hahn, D. G. and Shukla, D. (1976). An apparent relationship between Eurasian snow cover and Indian monsoon rainfall. J. Atmos. Sci. 33, 2461–24622.0.CO;2>CrossRefGoogle Scholar
Häkkinen, S. (1993). An Arctic source for the Great Salinity Anomaly: A simulation of the Arctic ice-ocean system for 1955–1975. J. Geophys. Res. 98 (C9), 16397–16410CrossRefGoogle Scholar
Häkkinen, S. (1999). A simulation of thermohaline effects of a Great Salinity Anomaly. J. Climate 12, 1781–17952.0.CO;2>CrossRefGoogle Scholar
Hall, D. K. and Roswell, C. (1981). The origin of water feeding icings on the eastern North Slope of Alaska. Polar Record 20, 433–438CrossRefGoogle Scholar
Hammer, C., Mayewski, P. A., Peel, D. and Stuiver, M. (1997). Preface. Greenland Summit Ice Cores. Greenland Ice Sheet Project 2/Greenland Ice Core Project. J. Geophys. Res. 102 (C12), 26315–26316CrossRefGoogle Scholar
Harden, D., Barnes, P. and Reimnitz, E. (1977). Distribution and character of naleds in northeastern Alaska. Arctic 30, 28–40CrossRefGoogle Scholar
Hare, F. K. (1958). Weather and climate. In Kimble, G. H. and Good, D. (eds.), Geography of the Northlands. New York: The American Geographical Society and John Wiley and Sons, Inc., pp. 58–83Google Scholar
Hare, F. K. (1960a). The disturbed circulation of the Arctic stratosphere. J. Meteorol. 17, 36–512.0.CO;2>CrossRefGoogle Scholar
Hare, F. K. (1960b). The summer circulation of the Arctic stratosphere below 30 km. Q. J. R. Meteorol Soc. 86, 127–146CrossRefGoogle Scholar
Hare, F. K. (1961). The Circulation of the Stratosphere. Publication in Meteorology No. 43. Montreal, Canada: Arctic Meteorology Research Group, McGill University
Hare, F. K. (1968). The Arctic. Q. J. R. Meteorol. Soc. 94, 439–459CrossRefGoogle Scholar
Hare, F. K. and Orvig, S. (1958). The Arctic Circulation: A Preliminary View. Publication in Meteorology No. 12. Montreal, Canada: Arctic Meteorology Research Group, McGill University
Hare, F. K. and Ritchie, J. C. (1972). The boreal microclimates. Geogr. Rev. 62, 333–365CrossRefGoogle Scholar
Hartmann, B. and Wendler, G. (2005). On the significance of the 1976 Pacific climate shift in the climatology of Alaska. J. Climate (in press)CrossRef
Harris, J. M. and Kahl, J. D. (1994). An analysis of ten-day isentropic flow patterns for Barrow, Alaska. J. Geophys. Res. 99, 25845–25856CrossRefGoogle Scholar
Harris, S. A. (2001). Sequence of glaciations and permafrost events. In Paepe, R. and Melnikov, V. (eds.), Permafrost Response on Economic Development, Environmental Security and Natural Resources. Dordrecht, the Netherlands: Kluwer Academic Publishers, pp. 227–252CrossRefGoogle Scholar
Hartmann, D. L., Wallace, J. M., Limpasuvan, V., Thompson, D. W. J. and Holton, J. R. (2000). Can ozone depletion and global warming interact to produce rapid climate change?Proc. Nat. Acad. Sci. USA 97, 1412–1417CrossRefGoogle ScholarPubMed
Hastings, A. D. Jr. (1961). Atlas of the Arctic Environment. Natick, Massachusetts: U.S. Army Rep. R-33, HQ Quartermaster Res. Eng. CommandGoogle Scholar
Hattersley-Smith, G. (1974). North of Latitude Eighty. The Defense Research Board in Ellesmere Island. Ottawa, Canada: Defense Research BoardGoogle Scholar
Hattersley-Smith, G., Crary, A. P. and Christie, R. L. (1955). Northern Ellesmere Island, 1953 and 1954. Arctic 8, 2–36CrossRefGoogle Scholar
Hayes, J. D., Imbrie, J. and Shackleton, N. J. (1976). Variations in the earth's orbit: Pacemaker of the ice ages. Science 194, 1121–1132CrossRefGoogle Scholar
Hebbeln, D., Dokken, T., Andersen, E. S., Hald, M. and Elverhoi, A. (1994). Moisture supply for northern ice-sheet growth during the Last Glacial Maximum. Nature 370, 357–360CrossRefGoogle Scholar
Hebbeln, D., Heinrich, R. and Baumann, K. H. (1998). Paleoceanography of the last interglacial/glacial cycle in the polar North Atlantic. Quatern. Sci. Rev. 17, 125–153CrossRefGoogle Scholar
Heinemann, G. and Klein, T. (2002). Modeling and observations of the katabatic flow dynamics over Greenland. Tellus 54A, 542–554CrossRefGoogle Scholar
Heinrich, H. (1988). Origin and consequences of cyclic ice rafting in the northeast Atlantic Ocean during the past 130,000 years. Quatern. Res. 29, 142–152CrossRefGoogle Scholar
Herber, A., Thomason, L. W., Gernandt, H. et al. (2002). Continuous day and night aerosol optical depth observations in the Arctic between 1991 and 1999. J. Geophys. Res. 107(D10), DOI: 10.1029/2002JD002079CrossRef
Herman, G. and Goody, R. (1976). Formation and persistence of summertime Arctic stratus clouds. J. Atmos. Sci. 33, 1537–15532.0.CO;2>CrossRefGoogle Scholar
Herman, G. F. (1975). Radiative-Diffusive Models of the Arctic Boundary Layer. Cambridge: Department of Meteorology, Massachusetts Institute of TechnologyGoogle Scholar
Herman, G. F. and Curry, J. A. (1984). Observational and theoretical studies of solar radiation in Arctic stratus clouds. J. Clim. Appl. Meteorol. 23, 5–242.0.CO;2>CrossRefGoogle Scholar
Herman, Y. (1983). Arctic Ocean paleoceanography in late Neogene time and its relationship to global climate. Oceanology 23, 81–87Google Scholar
Herman, Y. (ed.) (1989). The Arctic Seas. Climatology, Oceanography, Geology, and Biology. New York: Van Nostrand, ReinholdGoogle Scholar
Herschel, J. F. W. (ed.) (1851). Admiralty Manual of Scientific Enquiry: Prepared for the Use of Officers in Her Majesty's Navy; and Travellers in General 2nd Edition, London (reprinted Folkestone, UK: Dawson, 1974)Google Scholar
Hewson, T. D. (1998). Objective fronts. Meteorol. Appl. 5, 37–63CrossRefGoogle Scholar
Hibler, W. D. III (1979). A dynamic thermodynamic sea ice model. J. Phys. Oceanogr. 9, 815–8462.0.CO;2>CrossRefGoogle Scholar
Hibler, W. D., III (1980). Modeling a variable thickness sea ice cover. Mon. Wea. Rev. 108, 1943–19732.0.CO;2>CrossRefGoogle Scholar
Hibler, W. D., III (1986). Ice dynamics. In Untersteiner, N. (ed.), The Geophysics of Sea Ice, NATO ASI Ser., Ser. B Phys., Vol. 146. New York: Plenum Press, pp. 577–640CrossRefGoogle Scholar
Hibler, W. D. III, and Bryan, F. (1987). A diagnostic ice-ocean model. J. Phys. Oceanogr. 17, 987–10152.0.CO;2>CrossRefGoogle Scholar
Hibler, W. D. III, and Flato, G. M. (1992). Sea ice models. In Trenberth, K. (ed.), Climate System Modeling, Cambridge: Cambridge University Press, pp. 413–436Google Scholar
Hibler, W. D. and Schulson, E. M. (2000). On modeling the anisotropic failure and flow of flawed sea ice. J. Geophys. Res. 105 (C7), 17105–17120CrossRefGoogle Scholar
Hibler, W. D., Heil, P. and Lytle, V. I. (1998). On simulating high-frequency variability in Antarctic sea-ice dynamics models. Ann. Glaciol. 27, 443–448CrossRefGoogle Scholar
Highwood, E. J., Hoskins, B. J. and Berrisford, P. (2000). Properties of the Arctic tropopause. Q. J. R. Meteorol. Soc. 226, 1515–1532CrossRefGoogle Scholar
Hilmer, M. and Lemke, P. (2000). On the decrease of Arctic sea ice volume. Geophys. Res. Lett. 27, 3751–3754CrossRefGoogle Scholar
Hinkel, K. M., Nelson, F. E., Klene, A. E. and Bett, J. H. (2003). The urban heat island in winter at Barrow, Alaska. Int. J. Climatol. 23, 1889–1905CrossRefGoogle Scholar
Hinzman, L. D., Kane, D. L., Benson, C. S. and Everett, K. R. (1996). Energy balance and hydrological processes in an Arctic watershed. Ecol. Stud. 120, 131–154CrossRefGoogle Scholar
Hinzman, L. D., Bettez, N. D., Bolton, W. R. et al. (2005). Evidence and implications of recent climate change in northern Alaska and other Arctic regions. Clim. Change (in press)CrossRef
Hobbs, W. H. (1910). Characteristics of the inland ice of the Arctic regions. Amer. Phil. Soc. 49, 57–129Google Scholar
Hobbs, W. H. (1926). The Glacial Anticyclones, the Poles for the Atmospheric Circulation. New York: MacMillanGoogle Scholar
Hobbs, W. H. (1945). The Greenland glacial anticyclone. J. Meteorol. 2, 143–1532.0.CO;2>CrossRefGoogle Scholar
Hobbs, W. H. (1948). The climate of the Arctic as viewed by explorer and meteorologist. Science 108, 193–201CrossRefGoogle ScholarPubMed
Hoerling, M. P., Hurrell, J. W. and Xu, T. (2001). Tropical origins for recent North Atlantic climate change. Science 292, 90–92CrossRefGoogle ScholarPubMed
Hoerling, M. P., Hurrell, J. W., Xu, T., Bates, G. T. and Phillips, A. (2004). Twentieth century North Atlantic climate change. Part II: Understanding the effect of Indian Ocean warming. Clim. Dynam. DOI: 10.1007/s00382-004-0433-ⅹCrossRef
Hoinka, K. P. (1998). Statistics of the global tropopause pressure. Mon. Wea. Rev. 126, 3303–33252.0.CO;2>CrossRefGoogle Scholar
Holland, M. M. and Bitz, C. M. (2003). Polar amplification of climate change in coupled models. Clim. Dynam. 21, 221–232CrossRefGoogle Scholar
Holland, M. M., Bitz, C. M., Eby, M. and Weaver, A. J. (2001). The role of ice-ocean interactions in the variability of the North Atlantic thermohaline circulation. J. Climate 14, 656–6752.0.CO;2>CrossRefGoogle Scholar
Holloway, G. and Sou, T. (2002). Has Arctic sea ice rapidly thinned?J. Climate 15, 1691–17012.0.CO;2>CrossRefGoogle Scholar
Holmgren, B. (1971). Climate and Energy Exchange on a Sub-polar Ice Cap in Summer. Part E. Radiation Climate. Meteorologiska Institutionen, Uppsala Universitet, Meddelande Nr. 111Google Scholar
Holton, J. R. (2004). An Introduction to Dynamic Meteorology 4th Edition. San Diego, California: Elsevier Academic PressGoogle Scholar
Hopkins, D. M., Matthews, J. V. Jr., Schweger, C. L. and Young, S. B. (1982). Paleoecology of Beringia. New York: Academic PressGoogle Scholar
Hubberten, H.-W. and Romanovskii, N. N. (2001). Terrestrial and offshore permafrost evolution of the Laptev Sea region during the last Pleistocene- Holocene glacial – eustatic cycle. In Paepe, R. and Melnikov, V. (eds.), Permafrost Response on Economic Development, Environmental Security and Natural Resources. Dordrecht, the Netherlands: Kluwer Academic Publishers, pp. 43–60CrossRefGoogle Scholar
Huffman, G. J., Alder, R. F., Arkin, P. A.et al. (1997). The Global Precipitation Climatology Project (GPCP) Combined Precipitation Data Set. Bull. Amer. Meteorol. Soc. 78, 5–202.0.CO;2>CrossRefGoogle Scholar
Huffman, G. J., Alder, R. F., Morrissey, M. M.et al. (2001). Global precipitation at one-degree daily resolution from multisatellite observations. J. Hydrometeorol. 2, 36–502.0.CO;2>CrossRefGoogle Scholar
Hughes, M. K. and Diaz, H. F. (1994). Was there a ‘Medieval Warm Period’?Clim. Change 26, 109–142CrossRefGoogle Scholar
Hurrell, J. W. (1995). Decadal trends in the North Atlantic Oscillation: regional temperatures and precipitation. Science 269, 676–679CrossRefGoogle ScholarPubMed
Hurrell, J. W. (1996). Influence of variations in extratropical wintertime teleconnections on Northern Hemisphere temperature. Geophys. Res. Lett. 23, 665–668CrossRefGoogle Scholar
Hurrell, J. W. and Loon, H. (1997). Decadal variations in climate associated with the North Atlantic Oscillation. Clim. Change 36, 301–326CrossRefGoogle Scholar
Hurrell, J. W., Kushnir, Y., Ottersen, G. and Visbeck, M. (2003). An overview of the North Atlantic Oscillation. In The North Atlantic Oscillation: Climate Significance and Environmental Impact. Geophysical Monograph 134, American Geophysical Union, pp. 1–35
Hurrell, J. W., Hoerling, M. P., Phillips, A. and Xu, T. (2004). Twentieth century North Atlantic climate change. Part I: Assessing determination. Clim. Dynam., DOI: 10.1007/s00382-004-0432-yCrossRef
Huybrechts, P., Kuhn, M., Lambeck, K., Nhuan, M. T., Qin, D. and Woodworth, P. L. (lead authors) and 28 contributing authors (2001). Changes in sea level. In Climate Change 2001, The Scientific Basis. Contribution of Working Group I to the Third Assessment Report of the Intergovernmental Panel on Climate Change, Cambridge: Cambridge University Press, pp. 639–693
Intergovernmental Panel on Climate Change (2001). Climate Change 2001. The Scientific Basis. Contribution of Working Group I to the Third Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge: Cambridge University Press
Intrieri, J. M. and Shupe, M. D. (2004). Characteristics and radiative effect of diamond dust over the western Arctic Ocean region. J. Climate 17, 2953–29602.0.CO;2>CrossRefGoogle Scholar
Intrieri, J. M., Fairall, C. W., Shupe, M. D. et al. (2002). Annual cycle of Arctic surface cloud forcing at Surface Heat Budget of the Arctic Ocean. J. Geophys. Res. 107(C10), DOI: 10.1029/2000JC000439CrossRef
Ives, J. D. (1957). Glaciation in the Torngat Mountains, northern Labrador. Arctic 10, 67–87Google Scholar
Ives, J. D. (1962). Indications of recent extensive glacierization in north-central Baffin Island. J. Glaciol. 4, 197–205CrossRefGoogle Scholar
Ives, J. D. (1974). Permafrost. In Ives, J. D. and Barry, R. G. (eds.), Arctic and Alpine Environments. London: Methuen, pp. 159–194Google Scholar
Ives, J. D., Andrews, J. T. and Barry, R. G. (1975). Growth and decay of the Laurentide ice sheet and comparisons with Fenno-Scandinavia. Naturwissenschaften 62, 118–125CrossRefGoogle Scholar
Jackson, C. I. (1959a). Operation Hazen: The Meteorology of Lake Hazen, N. W. T. Based on Observations Made During the International Geophysical Year 1957–58. Montreal, Canada: Defence Research Board, Department of National Defence, Arctic Meteorology Research Group, Publication in Meteorology No. 15–16, McGill University, Montreal, Parts I–IV, 295 pp
Jackson, C. I. J. (1959b). Coastal and inland weather contrasts in the Canadian Arctic. J. Geophys. Res. 64, 1451–1455CrossRefGoogle Scholar
Jacobs, J. D., Barry, R. G. and Weaver, R. L. (1975). Fast ice characteristics with special reference to the eastern Canadian Arctic. Polar Record 17, 521–536CrossRefGoogle Scholar
Jeffries, M. K. (1992). Arctic ice shelves and ice islands: Origin, growth and disintegration, physical characteristics, structural stratigraphic variability, and dynamics. Rev. Geophys. 30, 245–267CrossRefGoogle Scholar
Johannessen, O. M., Bengtsson, L., Miles, M. W.et al. (2004). Arctic climate change: observed and modelled temperature and sea ice variability. Tellus 56A, 328–341CrossRefGoogle Scholar
Johnson, G. L., Pogrebisky, J. and Macnab, R. (1994). Arctic structural evolution: Relationship to Paleoceanography. In Johannessen, O. M., Muench, R. D., and Overland, J. E. (eds.), The Polar Oceans and their Role in Shaping the Global Environment. Geophys. Monogr. 85. Washington, DC: American Geophysical Union, pp. 285–94CrossRefGoogle Scholar
Jones, P. D. (1987). The twentieth century Arctic high – fact or fiction?Clim. Dynam. 1, 63–75CrossRefGoogle Scholar
Jones, P. D. and Moberg, A. (2003). Hemispheric and large-scale surface air temperature variation: an extensive revision and update to 2001. J. Climate 16, 206–2232.0.CO;2>CrossRefGoogle Scholar
Jones, P. D., New, M., Parker, D. E., Martin, S. and Rigor, I. G. (1999). Surface air temperature and its changes over the past 150 years. Rev. Geophys. 37, 173–199CrossRefGoogle Scholar
Kageyama, M., Valdes, , Ramstein, P. J., Hemitt, G., , C. and Wyputta, U. (1999). Northern Hemisphere storm tracks in present day and Last Glacial Maximum climate simulations: A comparison of the European PMIP models. J. Climate 12, 742–7602.0.CO;2>CrossRefGoogle Scholar
Kahl, J. D. (1990). Characteristics of the low-level temperature inversion along the Alaskan Arctic coast. Int. J. Climatol. 10, 537–548CrossRefGoogle Scholar
Kalnay, E., Kanamitsu, M., Kistler, R.et al. (1996). The National Centers for Environmental Prediction/National Center for Atmospheric Research 40-year re-analysis project. Bull. Amer. Meteorol. Soc. 77, 437–4712.0.CO;2>CrossRefGoogle Scholar
Kane, D. L., Hinzman, L. D., Benson, C. S. and Liston, G. E. (1991). Snow hydrology of a headwater Arctic basin, I. Water Resour. Res. 27, 1099–1109CrossRefGoogle Scholar
Kane, D. L., Hinzman, L. D., Woo, M. and Everett, K. (1992). Arctic hydrology and climate change. In Arctic Ecosystems in a Changing Climate. San Diego, California: Academic Press, pp. 35–57
Kane, E. K. (1856). Arctic Explorations: The Second Grinnell Expedition in Search of Sir John Franklin, 1853, '54,'55. Philadelphia: Childs and Peterson, Vol. 1, 464 pp., Vol. 2, 467 ppCrossRefGoogle Scholar
Kaufman, D. S., Ager, T. A. Anderson, et al. (2004). Holocene thermal maximum in the western Arctic (0-180° W). Quatern. Sci. Rev. 23, 529–560CrossRefGoogle Scholar
Keegan, T. J. (1958). Arctic synoptic activity in winter. J. Meteorol. 15, 513–5212.0.CO;2>CrossRefGoogle Scholar
Kellogg, W. W. (1973). Climatic feedback mechanisms involving the polar regions. In Weller, G. and Bowling, S. A. (eds.), Climate of the Arctic. Fairbanks, Alaska: Geophysical Institute, University of Alaska, pp. 111–116Google Scholar
Kerr, R. A. (1987). Milankovich climate cycles through the ages. Science 235, 973–994CrossRefGoogle ScholarPubMed
Key, J. R. and Intrieri, J. (2000). Cloud particle phase determination with Advanced Very High Resolution Radiometer. J. Appl. Meteorol. 36, 1797–1805CrossRefGoogle Scholar
Key, J. R., Wang, X., Stroeve, J. and Fowler, C. (2001). Estimating the cloudy-sky albedo of sea ice and snow from space. J. Geophys. Res. 106, 12489–12497CrossRefGoogle Scholar
Khrol, V. P. (1976). Isparenie s poverkhnosti Severnogo Ledovitogo Okeana (Evaporation from the Arctic Ocean surface.). Trudy Arkt. Antarkt. Nauchno.-issled. Inst. 323, 148–155Google Scholar
Khrol, V. P. (ed.) (1996). Atlas of Water Balance of the Northern Polar Area. Leningrad: GidrometeoizdatGoogle Scholar
Kirwan, L. P. (1962). A History of Polar Exploration. London: Penguin BooksGoogle Scholar
Kistler, R., Kalnay, E., Collins, W.et al. (2001). The National Centers for Environmental Prediction-National Center for Atmospheric Research 50-year reanalysis: Monthly means CD-ROM and Documentation. Bull. Amer. Meteorol. Soc. 82, 247–2672.3.CO;2>CrossRefGoogle Scholar
Kittel, T. G., Steffen, W. L. and Chapin, F. S. III (2000). Global and regional modeling of Arctic-boreal vegetation distribution and its sensitivity to altered forcing. Global Change Biology 6 (Supplement 1), 1–18CrossRefGoogle Scholar
Klein, T. and Heinemann, G. (2002). Interaction of katabatic winds and mesocyclones near the eastern coast of Greenland. Meteorol. Appl. 9, 407–422CrossRefGoogle Scholar
Kleman, J., Hãtterstrand, C., Borgström, I. and Stroeven, A. (1997). Fennoscandian paleoglaciology reconstructed using a glacial-geological inversion model. J. Glaciol. 43, 283–299CrossRefGoogle Scholar
Koc, N., Jansen, E. and Haflidason, H. (1993). Paleoceanographic reconstructions of surface ocean conditions in the Greenland, Iceland and Norwegian seas through the last 14ka based on diatoms. Quatern. Sci. Rev. 12, 115–140CrossRefGoogle Scholar
Koch, K. R. (1891). History of the supplementary expedition under K. R. Koch to Labrador. In Neumayer, G. (ed.), Die Deutschen Expeditionen und ihre Ergebnisse. Band 1. Geschichtlicher Theil, Berlin: A. Asher, pp. 145–188Google Scholar
Kodera, K. and Chiba, M. (1995). Tropospheric circulation changes associated with stratospheric sudden warming: A case study. J. Geophys. Res. 100 (D6), 11055–11068CrossRefGoogle Scholar
Koenig, L. S., Greenaway, K. R., Dunbar, M. and Hattersley-Smith, G. (1952). Arctic Ice Islands. Arctic 5, 62–102Google Scholar
Koerner, R. M. (1970). Weather and ice observations of the British Trans-Arctic Expedition 1968–69. Weather 25, 218–228CrossRefGoogle Scholar
Koerner, R. M. (1989). Ice core evidence for extensive melting of the Greenland Ice Sheet in the last Interglacial. Science 244, 964–968CrossRefGoogle ScholarPubMed
Kolfschoten, T. van., Gibbard, P. L. and Knudsen, K.-L. (2003). The Eemian Interglacial: a global perspective. Introduction. Global Planet. Change 36, 17–49Google Scholar
Konzelmann, T. and Ohmura, A. (1995). Radiative fluxes and their impact on the energy balance of the Greenland ice sheet. J. Glaciol. 41, 490–502CrossRefGoogle Scholar
Korotkevich, E. S. (1972). Polarnye pustyni (Polar Deserts). Leningrad: GidrometeoizdatGoogle Scholar
Koryakin, V. S. (1990). Ledniki Novoi Zemli i klimat (Glaciers of Novaya Zemlya and climate). Priroda (No.1), 23–29Google Scholar
Korzun, V. I. (1976). Atlas of World Water Balance (in Russian). Leningrad: GidrometeoizdatGoogle Scholar
Koster, R. D. and Suarez, M. J. (1992). Modeling the land surface boundary in climate models as a composite of independent vegetation stands. J. Geophys. Res. 97 (D3), 2697–2715CrossRefGoogle Scholar
Kotlyakov, V. M. (ed.) (1997). World Atlas of Snow and Ice Resources. Moscow: Russian Academy of SciencesGoogle Scholar
Kovaks, A. and Mellor, M. (1974). Sea ice morphology and ice as a geological agent in the southern Beaufort Sea. In Reed, J. C. and Sater, J. E. (eds.), The Coast and Shelf of the Beaufort Sea. Arlington, Virginia: AINA, pp. 113–124Google Scholar
Krebs, S. J. and Barry, R. G. (1970). The Arctic front and the tundra-taiga boundary in Eurasia. Geogr. Rev. 60, 548–554CrossRefGoogle Scholar
Krenke, A. N. (1961). The ice dome with firn nourishment in Franz Josef Land (translated in 1997). In Kotlyakov, V. M. (ed.), 34 Selected Papers on Main Ideas in Soviet Glaciology, 1940s–1980s. Moscow: Institute of Geography, R. A. S., pp. 132–144Google Scholar
Kreutz, K. J., Mayewski, , Meeker, P. A., , L. D.et al. (1997). Bipolar changes in atmospheric circulation during the Little Ice Age. Science 277, 1294–1296CrossRefGoogle Scholar
Kriner, G., Mangerud, J., Jacomsson, M.et al. (2004). Enhanced ice sheet growth in Eurasia owing to adjacent ice-dammed lakes. Nature 427, 429–432CrossRefGoogle Scholar
Kristjánsson, J. E. and McInnes, H. (1999). The impact of Greenland on cyclone evolution in the North Atlantic. Q. J. R. Meteorol. Soc. 125, 2819–2834CrossRefGoogle Scholar
Kukla, G. J., Michael, L., Bender, J.-L., et al. (2002a). Last Interglacial climates. Quatern. Res. 58, 2–13CrossRefGoogle Scholar
Kukla, G. J., Clement, A. C., Cane, M. A., Gavin, J. E. and Zebiak, S. E. (2002b). Last Interglacial and early glacial El-Niñno Southern Oscillation. Quatern. Res. 58, 27–31CrossRefGoogle Scholar
Kurashima, A. (1968). Studies on the summer and winter monsoons in east Asia based on dynamic concept. Geographical Magazine (Tokyo) 34, 145–236Google Scholar
Kutzbach, J. E. (1970). Large-scale features of monthly mean Northern Hemisphere anomaly maps of sea level pressure. Mon. Wea. Rev. 98, 708–7162.3.CO;2>CrossRefGoogle Scholar
Kwok, R. (2004). Annual cycles of multiyer sea ice coverage of the Arctic Ocean: 1999–2002. J. Geophys. Res. 109, C11004, DOI: 10.1029/2003JC002238CrossRef
Kwok, R. and Rothrock, D. A. (1999). Variability of Fram Strait ice flux and North Atlantic Oscillation. J. Geophys. Res. 104 (C3), 5177–5189CrossRefGoogle Scholar
Kwok, R., Zwally, H. J. and Yi, D. (2004). ICESat observations of Arctic sea ice: A first look. Geophys. Res. Lett. 31, L16401, DOI: 10.1029/2004GL020309CrossRef
Labitzke, K. (1968). Midwinter warmings in the upper stratosphere in 1966. Q. J. R. Meteorol. Soc. 94, 279–291CrossRefGoogle Scholar
Labitzke, K. (1981). Stratospheric-mesospheric midwinter disturbances: A summary of observed characteristics. J. Geophys. Res. 86, 9665–9678CrossRefGoogle Scholar
Labitzke, K. (1982). On interannual variability of the middle stratosphere during northern winters. J. Meteorol. Soc. Japan 60, 124–139CrossRefGoogle Scholar
Lafleur, P. M. and Rouse, W. R. (1995). Energy partitioning at treeline forest and tundra sites and its sensitivity to climate change. Atmosphere-Ocean 33, 121–133CrossRefGoogle Scholar
Lamb, H. H. (1955). Two-way relationships between the snow or ice limit and 1000–500 mb thickness in the overlying atmosphere. Q. J. R. Meteorol. Soc. 81, 172–189CrossRefGoogle Scholar
Lammers, R. B., Shiklomonov, A. I., Vörösmarty, C. J., Fekete, B. M. and Peterson, B. J. (2001). Assessment of contemporary Arctic river runoff based on observational records. J. Geophys. Res. 106 (D4), 3321–3334CrossRefGoogle Scholar
Larsen, E., Funder, S. and Thiede, J. (1999). Late Quaternary history of northern Russia and adjacent shelves – a synopsis. Boreas 28, 6–11CrossRefGoogle Scholar
Larsen, J. A. (1974). Ecology of the northern forest border. In Ives, J. D. and Barry, R. G. (eds.) Arctic and Alpine Environments. London: Methuen, pp. 341–368Google Scholar
Laursen, V. (1959). The Second International Polar Year. Annals Int. Geophys. Year (Pergamon) 1, 211–234Google Scholar
Laursen, V. (1982). The Second International Polar Year (1932/33). WMO Bull. 31, 214–226Google Scholar
Lazier, J. R. N. (1980). Oceanographic conditions at weather station Bravo, 1960–1974. Atmosphere-Ocean 18, 18227–18238Google Scholar
Lean, J., Beer, J. and Bradley, R. S. (1995). Reconstructions of solar irradiance since 1610: Implications for climate change. Geophys. Res. Lett. 22, 3195–3198CrossRefGoogle Scholar
Lebedev, V. V. (1938). Rost l'do ⅴ arkticheskikh rekakh i moriakh ⅴ zavisimosti ot otritsatel' nykh temperatur vozdukha (Growth of ice in Arctic rivers and seas and its dependence on negative air temperatures). Problemy Arktiki 5, 9–25Google Scholar
Leck, C., Norman, M., Bigg, E. K. and Hillamo, R. (2002). Chemical composition and sources of the High Arctic aerosol relevant for cloud formation. J. Geophys. Res. 107(D12), DOI: 10.1029/2001JD001463CrossRef
LeDrew, E. F. (1984). The role of local heat sources in synoptic activity in the Arctic Basin. Atmosphere-Ocean 22, 309–327CrossRefGoogle Scholar
LeDrew, E. F. (1988). Development processes for five depression systems within the Polar Basin. J. Climatol. 8, 125–153CrossRefGoogle Scholar
LeDrew, E. F. (1989). Modes of synoptic development within the Polar Basin. Geojournal 18, 79–85CrossRefGoogle Scholar
Legates, D. R. and Willmott, C. J. (1990). Mean seasonal and spatial variability in gauge-corrected, global precipitation. Int. J. Climatol. 10, 111–127CrossRefGoogle Scholar
Lehman, S. J. and Keigwin, L. D. (1992). Sudden changes in North Atlantic circulation during the last deglaciation. Nature 356, 757–762CrossRefGoogle Scholar
Letreguilly, A., Reeh, N. and Huybrechts, P. (1991). The Greenland ice sheet through the last glacial-interglacial cycle. Global Planet. Change 90, 385–394CrossRefGoogle Scholar
Levere, T. H. (1993). Science and the Canadian Arctic. A Century of Exploration 1818–1918. Cambridge: Cambridge University PressGoogle Scholar
Levi, B. G. (1992). Arctic measurements indicate chilly prospect of ozone depletion. Physics Today 45, 17–19Google Scholar
Levitus, S. (1984). Annual cycle of temperature and heat storage in the world ocean. J. Phys. Oceanogr. 14, 727–7462.0.CO;2>CrossRefGoogle Scholar
Limpasuvan, V., Thompson, D. W. J. and Hartmann, D. L. (2004). The lifecycle of the Northern Hemisphere sudden stratospheric warmings. J. Climate 17, 2584–25962.0.CO;2>CrossRefGoogle Scholar
Lindsay, R. W. and Zhang, J. (2005). The thinning of Arctic Sea ice, 1988–2003: have we passed a tipping point? J. Climate (in press)
Lindstrom, D. R. and MacAyeal, D. R. (1986). Paleoclimatic constraints on the maintenance of possible ice-shelf cover in the Norwegian and Greenland seas. Paleoceanography 1, 313–337CrossRefGoogle Scholar
Locke, C. W. and Locke, W. W. III (1977). Little Ice Age snow cover extent and paleoglaciation thresholds: north-central Baffin Island, N. W. T., Canada. Arct. Alp. Res. 9, 291–300CrossRefGoogle Scholar
Loewe, F. (1936). The Greenland Ice Cap as seen by a meteorologist. Q. J. R. Meteorol. Soc. 62, 359–377CrossRefGoogle Scholar
Loewe, F. (1963). On the radiation economy. Particularly on ice and snow-covered regions. Beiträge F. Geophysik 72, 371–376Google Scholar
Lorenz, E. N. (1951). Seasonal and irregular variations of the Northern Hemisphere sea-level pressure profile. J. Meteorol. 8, 52–592.0.CO;2>CrossRefGoogle Scholar
Lotz, J. R. and Sagar, R. B. (1963). Northern Ellesmere Island – an Arctic desert. Geogr. Annal. A44, 366–377Google Scholar
Lunardini, V. J. (1993). Permafrost formation time. In Permafrost, Sixth International Conference Proceedings, Vol. 1. South China University of Technology Press, pp. 420–425
Lydolph, P. E. (1977). World Survey of Climatology, Vol. 7, Climates of the Soviet Union (Landsberg, H. E., ed. in chief). Amsterdam: ElsevierGoogle Scholar
Lynch, A. H., Chapman, W. L., Walsh, J. E. and Weller, G. (1995). Development of a regional climate model of the western Arctic. J. Climate 8, 1555–15702.0.CO;2>CrossRefGoogle Scholar
Lynch, A. H., Bonan, G. B., Chapin,, F. S. and Wu, W. (1999a). Impact of tundra ecosystems on the surface energy budget and climate of Alaska. J. Geophys. Res. 106 (D6), 6647–6660CrossRefGoogle Scholar
Lynch, A. H., Chapin, F. S. III, Hinzman, L. D.et al. (1999b). Surface energy balance on the Arctic tundra: Measurements and models. J. Climate 12, 2585–26062.0.CO;2>CrossRefGoogle Scholar
Lynch, A. H., Maslanik, J. A. and Wu, W. (2001a). Mechanisms in the development of anomalous sea ice extent in the western Arctic: A case study. J. Geophys. Res. 106 (D22), 28097–28105CrossRefGoogle Scholar
Lynch, A. H., Slater, A. G. and Serreze, M. (2001b). The Alaskan frontal zone: Forcing by orography, coastal contrast and the boreal forest. J. Climate 14, 4351–43622.0.CO;2>CrossRefGoogle Scholar
MacAyeal, D. R. (1993). Binge/purge oscillation of the Laurentide ice sheet as a cause of the North Atlantic Heinrich events. Paleoceanography 8, 775–784CrossRefGoogle Scholar
Magee, N., Curtes, J. and Wendler, G. (1999). The urban heat island effect at Fairbanks, Alaska. Theor. Appl. Climatol., 64, 39–47CrossRefGoogle Scholar
Makhover, Z. M. (1983). Klimatologiya Tropopauzy (Climatology of the Tropopause). Leningrad: Gidrometeoizdat, 215 ppGoogle Scholar
Makshtas, A. P. (1984). The Heat Budget of Arctic Ice in Winter (in Russian). St. Petersburg, Russia: Gidrometeoizdat (English translation, E. L. Andreas, International Glaciological Society, Cambridge, England, 1991)Google Scholar
Manabe, S. (1969). Climate and the ocean circulation. 1. The atmospheric circulation and the hydrology of the earth's surface. Mon. Wea. Rev. 97, 739–7742.3.CO;2>CrossRefGoogle Scholar
Manabe, S. and Stouffer, R. J. (1999). The role of thermohaline circulation in climate. Tellus 51A-B, 91–109Google Scholar
Mansir, A. R. (1989). Quest for the Northeast Passage. Montrose, California: Kittiwake PublGoogle Scholar
Mantua, N., Hare, S., Zhang, Y., Wallace, J. and Francis, R. (1997). A Pacific interdecadal climate oscillation with impacts on salmon production. Bull. Amer. Meteorol. Soc. 78, 1069–10792.0.CO;2>CrossRefGoogle Scholar
Marincovitch, L. Jr. and Gladenkov, A. Yu. (1999). Evidence for an early opening of the Bering Strait. Nature 397, 149–151Google Scholar
Marshall, S. J., Tarasov, I., Clarke, G. K. C. and Peltier, W. R. (2000). Glaciological reconstruction of the Laurentide ice sheet: physical processes and modeling challenges. Can. J. Earth Sci. 37, 769–793CrossRefGoogle Scholar
Martin, C. (1988). William Scoresby Jr. (1789–1857) and the Open Polar Sea – myth and reality. Arctic 41, 39–47CrossRefGoogle Scholar
Martin, S., Munoz, E. A. and Drucker, R. (1997). Recent observations of a spring-summer surface warming over the Arctic Ocean. Geophys. Res. Lett. 24, 1259–1262CrossRefGoogle Scholar
Martinson, D. G., Pisias, N. G., Hayes, J. D.et al. (1987). Age dating and the orbital theory of the ice ages: development of a high-resolution 0–300,000 year chronostratigraphy. Quatern. Res. 27, 1–29CrossRefGoogle Scholar
Maslanik, J. A., and Maybee, H. (1994). Assimilating remotely-sensed data into a dynamic-thermodynamic sea ice model. In Proc. International Geosci. Remote Sens. Symp., Pasadena, California, pp. 1306–1308
Maslanik, J. A., Fowler, C., Key, J.et al. (1997). Advanced Very High Resolution Radiometer-based Polar Pathfinder products for modeling applications. Ann. Glaciol. 25, 388–392CrossRefGoogle Scholar
Maslanik, J. A., Serreze, M. C. and Agnew, T. (1999). On the record reduction in 1998 western Arctic sea-ice cover. Geophys. Res. Lett. 26, 1905–1908CrossRefGoogle Scholar
Maslowski, W., Newton, B., Schlosser, P., Semtner, A. and Martinson, D. (2000). Modeling recent climate variability in the Arctic Ocean. Geophys. Res. Lett. 27, 3743–3746CrossRefGoogle Scholar
Maslowski, W., Marble, D. C. and Walezowski, (2001). Recent trends in Arctic Sea Ice. Ann. Glaciol. 33, 545–550CrossRefGoogle Scholar
Matthes, F. E. (1946). The glacial anticyclone theory examined in light of recent meteorological data from Greenland. Part I. Trans. Amer. Geophys. Union 27, 324–341CrossRefGoogle Scholar
Matthes, F. E. and Belmont, A. D. (1946). The glacial anticyclone theory examined in light of recent meteorological data from Greenland. Part II. Trans. Amer. Geophys. Union 31, 174–182CrossRefGoogle Scholar
Mayewski, P. A., Meeker, L. D., Whitlow, , , S.et al. (1993). The atmosphere during the Younger Dryas. Science 261, 195–198CrossRefGoogle ScholarPubMed
Maykut, G. A. (1978). Energy exchange over young sea ice in the central Arctic. J. Geophys. Res. 83 (C7), 3646–3658CrossRefGoogle Scholar
Maykut, G. A. (1982). Large-scale heat exchange and ice production in the central Arctic. J. Geophys. Res. 87, 7971–7984CrossRefGoogle Scholar
Maykut, G. A. (1985). An Introduction to Ice in the Polar Oceans. Seattle, Washington: Applied Physics Laboratory, University of Washington, APL-UW 8510, September 1985Google Scholar
Maykut, G. A. (1986). The surface heat and mass balance. In Untersteiner, N. (ed.), The Geophysics of Sea Ice. NATO ASI Ser., Ser. B Phys., Vol. 146. New York: Plenum, pp. 395–464CrossRefGoogle Scholar
Maykut, G. A. and Untersteiner, N. (1971). Some results from a time dependent, thermodynamic model of sea ice. J. Geophys. Res. 76, 1550–1575CrossRefGoogle Scholar
McClelland, J. W., Holmes, R. M., Peterson, B. J. and Stieglitz, M. (2004). Increasing river discharge in the Eurasian Arctic: consideration of dams, permafrost thaw, and fires as potential agents of change. J. Geophys. Res. 109, D18102, DOI: 10.1029/2004JD004583CrossRef
McClintock, F. L. (1862). Meteorological Observations in the Arctic Seas by Sir Francis Leopold McClintock, R. N., Made on Board the Arctic Searching Yacht ‘Fox’ in Baffin Bay and Prince Regent's Inlet in 1857, 1858, and 1859. Reduced and Discussed … by Charles A Schott. Smithsonian Contrib. to Knowledge, 13, art. 2
McConnell, A. (1986). The scientific life of William Scoresby Jr. with a catalogue of his instruments and apparatus in the Whitby Museum. Ann. Sci. 43, 257–286CrossRefGoogle Scholar
McDonald, G. and Gajewski, K. (1992). The northern treeline of Canada. In Janelle, D. G. (ed.) Geographical Snapshots of North America. New York: Guilford Press, pp. 34–37Google Scholar
McGuffie, K. and Henderson-Sellers, A. (2005). A Climate Modelling Primer, Third Edition. Chichester, UK: Wiley and Sons, LtdCrossRefGoogle Scholar
McGuire, A. D., Melillo, J. M., Kicklighter, D. W. and Joyce, L. A. (1995). Equilibrium responses of soil carbon to climate change: Empirical and process-based estimates. J. Biogeogr. 22, 785–796CrossRefGoogle Scholar
McGuire, A. D., Clein, J. S., Melillo, J. M.et al. (2000). Modeling carbon responses of tundra ecosystems to historical and projected climate: Sensitivity of pan-Arctic carbon storage to temporal and spatial variation in climate. Global Change Biol. 6 (Supplement 1), 141–159CrossRefGoogle Scholar
McIntyre, D. P. (1958). The Canadian three-front, three jetstream model. Geophysica (Helsinki) 6, 309–324Google Scholar
McKenna, M. C. (1980). Eocene paleolatitude, climate and mammals of Ellesmere Island. Paleogeog., Paleoclimatol., Paleoecol. 30, 349–362CrossRefGoogle Scholar
McLaren, A. S. (1989). The under-ice thickness distribution of the Arctic Basin as recorded in 1958 and 1970. J. Geophys. Res. 94 (C4), 4971–4983CrossRefGoogle Scholar
McPhee, M. G. (1980). An analysis of pack ice drift in summer. In Pritchard, R. S. (ed.), Sea Ice Processes and Models. Seattle, Washington: University of Washington Press, pp. 339–394Google Scholar
McPhee, M. G., Stanton, T. P., Morison, J. H. and Martinson, D. G. (1998). Freshening of the upper ocean in the central Arctic: Is perennial ice disappearing?Geophys. Res. Lett. 25, 1729–1732CrossRefGoogle Scholar
Meehl, G. A. (1992). Global coupled models. In Trenberth, K. (ed.), Climate System Modeling, Cambridge: Cambridge University Press, pp. 555–581Google Scholar
Meier, W. N. and Maslanik, J. A. (2003). Effect of environmental conditions on observed, modeled, and assimilated sea ice motion errors. J. Geophys. Res. 108(C5), 3152, DOI: 10.1029/2002JC001333CrossRef
Meier, W. N., Maslanik, J. A. and Fowler, C. W. (2000). Error analysis and assimilation of remotely sensed ice motion within an Arctic sea ice model. J. Geophys. Res., 105 (C2), 3339–3356CrossRefGoogle Scholar
Mekis, E. and Hogg, W. D. (1999). Rehabilitation and analysis of Canadian daily precipitation time series. Atmosphere-Ocean 37, 53–85CrossRefGoogle Scholar
Mercer, J. H. (1970). A former ice sheet in the Arctic Ocean. Palaeogeogr., Paleoclimatol., Palaeoecol. 8, 19–27CrossRefGoogle Scholar
Meteorological Council (1879–1888). Contributions to our Knowledge of the Meteorology of the Arctic Regions. London: Meteorological Council, Official, No. 34. Her Majesty's Stationery Office, Part 1 (1879), 1–39 pp. Part 2 (1880), 40–254 pp. Part 3 (1882), 255–414 pp. Part 4 (1885), 413–495 pp. Part 5 (1888), 1–37 pp
Milankovitch, M. (1941). Kanon der Eadbestrahlung und seine Abwendwung auf das Eiszeitproblem (Canon on Insolation and the Ice-Age Problem). Royal Serbian Academy, Special Publication, Vol. 132. Translation (1969), Israel Program for Scientific Translation, Jerusalem
Miles, M. W. and Barry, R. G. (1989). Large-scale characteristics of fractures in multi-year Arctic pack ice. In Axelsson, K. B. E. and Fransson, L. A. (eds.), Proceedings, 10th International Conference on Port and Ocean Engineering Under Arctic Conditions (POAC 89), Vol 1. Lulea, Sweden: Department of Engineering, Lulea University of Technology, 103–112 ppGoogle Scholar
Mirny, J. (1934). To the North. The Story of Arctic Exploration from Earliest Times to the Present. New York: Viking PressGoogle Scholar
Mirrless, S. T. A. (1934). Meteorological Results of the British Arctic Air Route Expedition, 1930–31. Geophys. Mem. 7. London: Meteorological Office
Mitchell, J. M. Jr. (1957). Visual range in the polar regions with special reference to the Alaskan Arctic. J. Atmos. Terr. Phys. Spec. Suppl., 195–211Google Scholar
Mohn, H. (1905). Meteorology, XVII. In Nansen, F. (ed.), The Norwegian North Polar Expedition, 1893–1896. Scientific Results, Vol. 6. New York: Greenwood Press (reprinted 1969)Google Scholar
Mohn, H. (1907). Meteorology. In Report of the Second Norwegian Expedition in the “Fram” 1898–1902, Vol. 1 (4). Kristiana: A. W. Brøgger, Videnskabs, pp. 1–399
Montgomery, M. R. (1952). Further notes on ice islands in the Canadian Arctic. Arctic 5, 183–187CrossRefGoogle Scholar
Morison, J. H., Steele, M. and Andersen, R. (1998). Hydrography in upper Arctic Ocean measured from the nuclear submarine USS Pargo. Deep Sea Res. Part 1 45, 15–38CrossRefGoogle Scholar
Moritz, R. E. (1979). Synoptic Climatology of the Beaufort Sea Coast. Occasional Paper No. 30. Boulder, Colorado: Institute of Arctic and Alpine Research, University of ColoradoGoogle Scholar
Moritz, R. E. (1988). The Ice Budget of the Greenland Sea. Tech. Rep. APL-UW TR 8812. Seattle, Washington: Applied Physics Laboratory, University of Washington
Mueller, D. R., Vincent, W. F. and Jeffries, M. O. (2003). Break-up of the largest Arctic ice shelf and associated loss of an epishelf lake. Geophys. Res. Lett. 30, DOI: 10.1029/2003GLO1731CrossRef
Müller, F. and Roskin-Sharlin, N. (1967). A High Arctic Climate Study on Axel Heiburg Island, Canadian Archipelago, Summer 1961. Part I, General Meteorology. Axel Heiburg Island Reports on Meteorology 3. Montreal, Canada: McGill University
Murgatroyd, R. J. (1969). The structure and dynamics of the stratosphere. In Corby, G. A. (ed.), The Global Circulation of the Atmosphere. London: Royal Meteorological Society, pp. 159–195Google Scholar
Mynemi, R. B., Keeling, C. D., Tucker, C. J., Asrar, G. and Nemani, R. R. (1997). Increased plant growth in the northern high latitudes from 1981–1991. Nature 386, 698–702CrossRefGoogle Scholar
Mysak, L. A. and Huang, F. I. (1992). A latent- and sensible-heat polynya model for the North Water, northern Baffin Bay. J. Phys. Oceanogr. 22, 596–6082.0.CO;2>CrossRefGoogle Scholar
Mysak, L. A. and Venegas, S. A. (1998). Decadal climate oscillations in the Arctic: A new feedback loop for atmosphere-ice-ocean interactions. Geophys. Res. Lett. 25, 3606–3619CrossRefGoogle Scholar
Nagurny, A. P. (1998). Climatic characteristics of the tropopause over the Arctic Basin. Annal. Geophysicae 16, 110–115CrossRefGoogle Scholar
Nakamura, N. and Oort, A. H. (1988). Atmospheric heat budgets of the polar regions. J. Geophys. Res. 93 (D8), 9510–9524CrossRefGoogle Scholar
Nakicenovic, N. J.Alcamo, J., Davis, G., Vries, B., Fenhann, J., et al. (2000). Intergovernmental Panel on Climate Change Special Report on Emissions Scenarios. Cambridge and New York: Cambridge University PressGoogle Scholar
Nansen, F. (1898). Farthest North, Vols. 1 and 2. London: George NewnesGoogle Scholar
Nansen, F. (1902). The Norwegian Polar Expedition, 1893–1896, Scientific Results. Oslo: Jacob Dybwad, 6 volsGoogle Scholar
Nemani, R. R., Keeling, C. D., Hashimoto, H.et al. (2003). Climate-driven increases in global terrestrial net primary production from 1982–1999. Science 300, 1560–1562CrossRefGoogle Scholar
Nichols, H. (1976). Historical aspects of the Canadian forest tundra-ecotone. Arctic 29, 38–47CrossRefGoogle Scholar
Nolin, A. W. and Liang, S. (2000). Progress in bidirectional reflectance modeling and applications for surface particulate media: snow and soils. Remote Sensing Review 18, 307–342CrossRefGoogle Scholar
National Snow and Ice Data Center (National Snow and Ice Data Center) (1996). Arctic Ocean Snow and Meteorological Observations from the North Pole Drifting Stations: 1937, 1950–1991. Boulder, Colorado: National Snow and Ice Data Center, CD-ROM
O'Cofaigh, C., Lemmen, D. S., Evans, D. J. A. and Benarski, J. (1999). Glacial landform-sediment assemblages in the Canadian High Arctic and their implications for late Quaternary Glaciation. Ann. Glaciol. 28, 195–201CrossRefGoogle Scholar
Oechel, W. C., Vourlitis, G. L., Hastings, S. J. and Bocharev, S. A. (1995). Change in Arctic CO2 flux over two decades: Effects of climate change at Barrow, Alaska. Ecol. Appl. 5, 846–855CrossRefGoogle Scholar
Oelke, C., Zhang, T., Serreze, M. and Armstrong, R. (2003). Regional-scale modeling of soil freeze/thaw over the Arctic drainage basin. J. Geophys. Res. 108(D10), DOI: 10.1029/2002JD002722CrossRef
Ogi, M., Yamazaki, K. and Tachibana, Y. (2003). Solar cycle modulation of the seasonal linkage of the North Atlantic Oscillation. Geophys. Res. Lett. 30, 2170, DOI: 10.1029/2003GL018545CrossRef
Ohmura, A. (1984a). On the cause of the ‘Fram’ type seasonal change in diurnal amplitude of air temperature in polar regions. J. Climatol. 4, 325–338CrossRefGoogle Scholar
Ohmura, A. (1984b). Comparative energy balance study for Arctic tundra, sea surface, glaciers and boreal forest. Geojournal 8, 221–228CrossRefGoogle Scholar
Ohmura, A. (2000). Climate on tundra and thoughts on causes of regional climate differences. Ann. Glaciol. 31, 10–14CrossRefGoogle Scholar
Ohmura, A., Calanca, P., Wild, M. and Anklin, M. A. (1999). Precipitation, accumulation and mass balance of the Greenland ice sheet. Zeitschr. Gletscherk. Glazialgeol. 35, 1–20Google Scholar
Oke, T. R. (1987). Boundary Layer Climates 2nd Edition New York: RoutledgeGoogle Scholar
Okhuizen, E. (1995). The cartography of the Northern Sea Route, 15th–19th centuries. In Kitagama, H. (ed.), Northern Sea Route: Future and Perspective. (The Proceedings of INSROP Symposium, Tokyo ‘95.) Tokyo: Ship and Ocean Foundation, pp. 567–576Google Scholar
Oltmans, S. J., Schnell, R. C., Sheridan, P. J.et al. (1989). Seasonal surface ozone and filterable bromine relationship in the high Arctic. Atmos. Environ. 23, 2431–2441CrossRefGoogle Scholar
Orvig, S. (1954). Glacial meteorological observations on ice-caps in Baffin Island. Geogr. Annal., 36, 193–318CrossRefGoogle Scholar
Osterkamp, T. E., and Romanovsky, V. E. (1999). Evidence for warming and thawing of discontinuous permafrost in Alaska. Permafrost and Periglacial Processes 10, 17–373.0.CO;2-4>CrossRefGoogle Scholar
Overland, J. E. and Guest, P. S. (1991). The snow and air temperature budget over sea ice during winter. J. Geophys. Res. 96 (C3), 4651–4662CrossRefGoogle Scholar
Overland, J. E. and Turet, P. (1994). Variability of the atmospheric energy flux across 70°N computed from the Geophysical Fluid Dynamics Laboratory data set. In Johannessen, O. M., Muench, R. D. and Overland, J. E. (eds.), The Polar Oceans and Their Role in Shaping the Global Environment, The Nansen Centennial Volume. Geophys. Monogr. 85, American Geophysical Union, pp. 313–325Google Scholar
Overland, J. E., Turet, P. and Oort, A. H. (1996). Regional variations of moist static energy flux into the Arctic. J. Climate 9, 54–652.0.CO;2>CrossRefGoogle Scholar
Overland, J. E., Miletta Adams, J. and Bond, N. A. (1997). Regional variation of winter temperatures in the Arctic. J. Climate 10, 821–8372.0.CO;2>CrossRefGoogle Scholar
Overland, J. E., McNutt, S. L., Groves, J.et al. (2000). Regional sensible and radiative heat flux estimates for the winter Arctic during the Surface Heat Budget of the Arctic Ocean (Surface Heat Budget of the Arctic Ocean) experiment. J. Geophys. Res. 105 (C6), 14093–14102CrossRefGoogle Scholar
Overland, J. E., Spillane, M. C., Percival, D. B., Wang, M. and Mofjeld, H. O. (2004). Seasonal and regional variation of pan-Arctic surface air temperature over the instrumental record. J. Climate 17, 3263–32822.0.CO;2>CrossRefGoogle Scholar
Overpeck, J., Hughen, K., Hardy, D.et al. (1997). Arctic environmental change of the last four centuries. Science 278, 1251–1256CrossRefGoogle Scholar
Palmén, E. (1951). The role of atmospheric disturbances in the general circulation. Q. J. R. Meteorol. Soc. 77, 337–354CrossRefGoogle Scholar
Palmén, E. and Newton, C. W. (1969). Atmospheric Circulation Systems: Their Structure and Physical Interpretation.San Diego, California: Academic PressGoogle Scholar
Parish, T. R. and Cassano, J. J. (2003). Diagnosis of the katabatic wind influence on the wintertime Antarctic surface wind field from numerical simulations. Mon. Wea. Rev. 131, 1128–11392.0.CO;2>CrossRefGoogle Scholar
Parkinson, C. L. and Washington, W. M. (1979). A large-scale numerical model of sea ice. J. Geophys. Res. 84 (CI), 311–337CrossRefGoogle Scholar
Parkinson, C.L, Comiso, J. O., Zwally, H. J.et al. (1987). Arctic Sea Ice, 1973–1976: Satellite Passive Microwave Observations. Washington, DC: National Aeronautics and Space Administration SP-489, National Aeronautics and Space Administration Scientific and Technical Information Branch.Google Scholar
Parry, W. E. (1821). Journal of a Voyage for the Discovery of a Northwest Passage from the Atlantic to the Pacific: Performed in the Years 1819–1820, in Her Majesty's Ships Hecla and Griper, With an Appendix, Containing the Scientific and Other Observations.London: John Murray (reprinted New York, 1968)Google Scholar
Passarge, S. (1920). Die Grundlagen der Landschaftskunde. Hamburg: L. Friedericken and CompanyGoogle Scholar
Pavlov, A. V. (1994). Current changes of climate and permafrost in the Arctic and sub-Arctic of Russia. Permafrost and Periglacial Processes 5, 101–110CrossRefGoogle Scholar
Pawson, S. and Kubitz, T. (1996). Climatology of planetary waves in the northern stratosphere. J. Geophys. Res. 101 (D12), 16987–16996CrossRefGoogle Scholar
Peltier, W. R. (1994) Ice age paleotopography. Science 265, 195–201CrossRefGoogle ScholarPubMed
Peltier, W. R. (2004). Global glacial isostacy and the surface of the Ice Age earth: The ICE-5G(VM2) model and GRACE. Annu. Rev. Earth Planet. Sci. 32, 111–150CrossRefGoogle Scholar
Penner, C. M. (1955). A three-front model for synoptic analyses. Q. J. R. Meteorol. Soc. 81, 89–91CrossRefGoogle Scholar
Perlwitz, J. and Harnik, N. (2003). Observational evidence of a stratospheric influence on the troposphere by planetary wave refraction. J. Climate 16, 3011–30262.0.CO;2>CrossRefGoogle Scholar
Persson, P., Ola, G., Fairall, C. W. et al. (2002). Measurements near the Atmospheric Surface Flux group tower at Surface Heat Budget of the Arctic Ocean: Near-surface conditions and surface energy budget. J. Geophys. Res. 107(C10), DOI: 10.1029/2000JC000705CrossRef
Petersen, G. N., Olafsson, H. and Kristjansson, J. E. (2003). Flow in the lee of idealized mountains and Greenland. J. Atmos. Sci. 60, 2183–21952.0.CO;2>CrossRefGoogle Scholar
Peterson, B. J., Holmes, R. M., McClelland, J. W.et al. (2002). Increasing river discharge to the Arctic Ocean. Science 298, 2171–2173CrossRefGoogle ScholarPubMed
Petit, J. R., Jouzel, J., Raynaud, D.et al. (1999). Climate and atmospheric history of the past 420,000 years from the Vostok ice core, Antarctica. Nature 399, 429–436CrossRefGoogle Scholar
Pettersen, S. (1950). Some aspects of the general circulation of the atmosphere. Centenary Proceedings of the Royal Meteorological Society, London, 120–155Google Scholar
Petty, G. W. (1995). Frequencies and characteristics of global precipitation from ship-board present-weather reports. Bull. Amer. Meteorol. Soc. 76, 1593–16162.0.CO;2>CrossRefGoogle Scholar
Petzold, D. E. (1977). An estimation technique for snow surface albedo. Climatological Bulletin 26, 1–11Google Scholar
Pielke, R. A. and Vidale, P. L. (1996). The boreal forest and the polar front. J. Geophys. Res. 100 (D12), 25755–25758CrossRefGoogle Scholar
Piexoto, J. P. and Oort, A. H. (1992). The Physics of Climate. New York: American Institute of PhysicsGoogle Scholar
Polyak, L., Edwards, M. H., Coakley, B. J. and Jakobsson, M. (2001). Ice shelves in the Pleistocene Arctic Ocean inferred from glaciogenic deep-sea bedforms. Nature 410, 453–457CrossRefGoogle ScholarPubMed
Polyakov, I. V. and Johnson, M. A. (2000). Arctic decadal and interdecadal variability. Geophys. Res. Lett. 27, 4097–4100CrossRefGoogle Scholar
Polyakov, I. V., Alekseev, G. V., Bekryaev, R. V. et al. (2002). Observationally based assessment of polar amplification of global warming. Geophys. Res. Lett. 29, DOI: 10.1029/2001GL011111CrossRef
Polyakov, I. V., Alekseev, G. V., Timokhov, L. A.et al. (2004). Variability of the intermediate Atlantic water of the Arctic Ocean over the last 100 years. J. Climate 23, 4485–4497CrossRefGoogle Scholar
Pomeroy, J. W. and Essery, R. L. H. (1999). Turbulent fluxes during blowing snow: field tests of model sublimation predictions. Hydrological Processes 13, 2963–29753.0.CO;2-9>CrossRefGoogle Scholar
Pomeroy, J. W., Gray, D. M. and Landine, P. G. (1993). The Prairie Blowing Snow Model: Characteristics, validation, operation. J. Hydrol. 144, 165–192CrossRefGoogle Scholar
Portis, D. H., Walsh, J. E., El Hambly, M. and Lamb, P. (2001). Seasonality of the North Atlantic Oscillation. J. Climate 14, 2069–20782.0.CO;2>CrossRefGoogle Scholar
Post, A. and Mayo, L. R. (1971). Glacier dammed lakes and outburst floods in Alaska. Hydrological Investigations Atlas HA-455. Washington, DC: U.S. Geological Survey.
Proshutinsky, A. Y. and Johnson, M. A. (1997). Two circulation regimes of the wind-driven Arctic Ocean. J. Geophys. Res. 102 (C6), 12493–12514CrossRefGoogle Scholar
Przybylak, R. (2000). Temporal and spatial variation of surface air temperature over the period of instrumental observations in the Arctic. Int. J. Climatol. 20, 587–6143.0.CO;2-H>CrossRefGoogle Scholar
Pryzbylak, R. (2003). The Climate of the Arctic. Dordrecht, the Netherlands: Kluwer Academic PublishersCrossRefGoogle Scholar
Putnins, P. (1969). The climate of Greenland. In Orvig, S. (ed.), Climates of the Polar Regions, World Survey of Climatology, Vol. 14. Amsterdam: H. E. Landsberg (ed. in chief), Elsevier, pp. 3–128Google Scholar
Quinn, P. K., Miller, T. L., Bates, T. S. et al. (2002). A 3-year record of simultaneously measured aerosol chemical and optical properties at Barrow. J. Geophys. Res. 107(D11), DOI: 10.1029/2001JD001248CrossRef
Raatz, W. E., Schnell, R. C., Shapiro, M. A., Oltmans, S. J. and Bodhaine, B. A. (1985). Intrusions of stratospheric air into Alaska's troposphere. Proc. Third Symp. Arctic Air Chemistry, Downsview, March 1983. 2153–2158
Radok, U. (1968). Deposition and Erosion of Snow by the Wind. Res. Rep. 230. Hanover, New Hampshire: U.S. Army CRRELGoogle Scholar
Rahmsdorf, S. and Alley, R. (2002). Stochastic resonance in glacier climate. EOS, Trans. Amer. Geophys. Union, 83, 129–135CrossRefGoogle Scholar
Rahn, K. A., Borys, R. D. and Shaw, G. E. (1977). The Asian source of Arctic haze bands. Nature 268, 713–715CrossRefGoogle Scholar
Ramanathan, V., Cess, R. D., Harrison, E. F.et al. (1989). Cloud-radiative forcing and climate: Results from the Earth Radiation Budget Experiment. Science 243, 57–63CrossRefGoogle ScholarPubMed
Rasmussen, E. (1979). The polar low as an extratropical Conditional Instability of the Second Kind disturbance. Q. J. R. Meteorol. Soc. 105, 531–549CrossRefGoogle Scholar
Rasmussen, E. and Turner, J. (2002). Polar Lows: Mesoscale Weather Systems in the Polar Regions. Cambridge: Cambridge University PressGoogle Scholar
Ray, P. H. (1885). Report of the International Polar Expedition to Point Barrow, Alaska. Washington, DC: Arctic Publications, U.S. Signals Office, Government Printing OfficeGoogle Scholar
Raynaud, D., Barmola, J.-M., Chappellaz, J.et al. (2000). The ice record of greenhouse gases; a view in the context of future changes. Quatern. Sci. Rev. 19, 9–18CrossRefGoogle Scholar
Reed, R. J. (1960). Principal frontal zones of the Northern Hemisphere in winter and summer. Bull. Amer. Meteorol. Soc. 41, 591–598Google Scholar
Reed, R. J. (1962). Arctic Forecast Guide. Norfolk, Virginia: U.S. Navy Weather Research Facility 16-0462-058Google Scholar
Reed, R. J. and Kunkel, B. A. (1960). The Arctic circulation in summer. J. Meteorol. 17, 489–5062.0.CO;2>CrossRefGoogle Scholar
Reiter, E. R. (1975). The Natural Stratosphere of 1974. CIAP Monograph 1. Washington, DC: Department of Transportation DOT-TST-75-51Google Scholar
Renfrew, I. A. (2003). Polar Lows. In Holton, J. R., Curry, J. A. and Pyle, J. A. (eds.), Encyclopedia of Atmospheric Sciences. London and San Diego: Academic Press, pp. 1761–1768Google Scholar
Riedlinger, S. H. and Preller, R. H. (1991). The development of a coupled ice-ocean model for forecasting ice conditions in the Arctic. J. Geophys. Res. 96 (C9), 16955–16978CrossRefGoogle Scholar
Rigor, I. G. and Wallace, J. M. (2004). Variations in the age of Arctic sea-ice and summer sea-ice extent. Geophy. Res. Lett. 31, L09401, DOI: 10.1029/2004GL019492CrossRef
Rigor, I. G., Colony, R. L. and Martin, S. (2000). Variations in surface air temperature in the Arctic, 1979–97. J. Climate 13, 896–9142.0.CO;2>CrossRefGoogle Scholar
Rigor, I. G., Wallace, J. M. and Colony, R. L. (2002). Response of sea ice to the Arctic Oscillation. J. Climate 15, 2648–26632.0.CO;2>CrossRefGoogle Scholar
Rikhter, G. D. (1954). Snow Cover, its Formation and Properties. Transl. No. 6. Hanover, New Hampshire: U.S. Army CRREL, 66 ppGoogle Scholar
Rind, D., Shindell, D., Perlwitz, J.et al. (2004). The relative importance of solar and anthropogenic forcing of climate change between the Maunder Minimum and the present. J. Climate 17, 906–9292.0.CO;2>CrossRefGoogle Scholar
Rochon, A., Vernal, A., Sejrup, H. P. and Haflidason, H. (1998). Palynological evidence of climate and oceanographic changes in the North Sea during the last deglaciation. Quatern. Res. 49, 197–207CrossRefGoogle Scholar
Rodwell, M. J., Rowell, D. P. and Folland, C. K. (1999). Oceanic forcing of the wintertime North Atlantic Oscillation and European climate. Nature 398, 320–323CrossRefGoogle Scholar
Roe, G. H. and Lindzen, R. S. (2001). The mutual interaction between continental-scale ice sheets and atmospheric stationary waves. J. Climate 14, 1450–14652.0.CO;2>CrossRefGoogle Scholar
Rogers, A. N., Bromwich, D. H., Sinclair, E. N. and Cullather, R. I. (2001). The atmospheric hydrologic cycle over the Arctic Basin from reanalyses Part 2. Interannual variability. J. Climate 14, 2414–24292.0.CO;2>CrossRefGoogle Scholar
Rogers, J. C. (1978). Meteorological factors affecting interannual variability of summertime ice extent in the Beaufort Sea. Mon. Wea. Rev. 106, 890–8972.0.CO;2>CrossRefGoogle Scholar
Rogers, J. C. (1984). Association between the North Atlantic Oscillation and the Southern Oscillation in the Northern Hemisphere. Mon. Wea. Rev. 112, 1999–20152.0.CO;2>CrossRefGoogle Scholar
Romanov, I. P. (1991). Ledyanoi Pokrov Arkticheskogo Basseina (Ice Cover of the Arctic Basin, in Russian). St. Petersburg, Russia: Arctic and Antarctic Research InstituteGoogle Scholar
Romanov, I. P. (1995). Atlas of Ice and Snow of the Arctic Basin and Siberian Shelf Seas (Second edition of atlas and monograph). New York: Backbon Publishing CompanyGoogle Scholar
Romanov, I. P., Konstantinov, Yu. B. and Kornilov, N. A. (2000). North Pole Drifting Stations (19371991). The Arctic Climatology Project Arctic Meteorology and Climate Atlas. Boulder, Colorado: National Snow and Ice Data Center, CD-ROM
Rooth, C. (1982). Hydrology and ocean circulation. Prog. Oceanog. 11, 131–149CrossRefGoogle Scholar
Ross, Sir John (1835). Narrative of a Second Voyage in Search of a North-West Passage: and of a Residence in the Arctic Regions During the Years 1829, 1830, 1831, 1832, 1833. LondonCrossRefGoogle Scholar
Rossow, W. B. and Duenas, E. N. (2004). The International Cloud Climatology Project (International Satellite Cloud Climatology Project) web site. Bull. Amer. Meteorol. Soc. 85, 167–172Google Scholar
Rossow, W. and Schiffer, R. A. (1991). International Satellite Cloud Climatology Project cloud data products. Bull Amer. Meteorol. Soc. 72, 2–202.0.CO;2>CrossRefGoogle Scholar
Rossow, W. B., Walker, A. W., Beuschel, D. E. and Roiter, M. S. (1996). International Satellite Cloud Climatology Project (International Satellite Cloud Climatology Project) Documentation of New Cloud Datasets. WMO/TD-No. 737. Geneva: World Meteorological OrganizationGoogle Scholar
Rothrock, D. A. and Thomas, D. R. (1990). The Arctic Ocean multiyear ice balance. Ann. Glaciol. 14, 252–255CrossRefGoogle Scholar
Rothrock, D. A. and Zhang, J. (2005). Arctic Ocean sea ice volume: What explains its recent depletion? J. Geophys. Res. 110, C01002, DOI: 10.1029/2004JC002282CrossRef
Rothrock, D. A., Yu, Y. and Maykut, G. A. (1999). Thinning of the Arctic sea ice cover. Geophys. Res. Lett. 26, 3469–3472CrossRefGoogle Scholar
Rothrock, D. A., Zhang, J. and Yu, Y. (2003). The Arctic ice thickness anomaly of the 1990s: A consistent view from observations and models. J. Geophys. Res. 108(C3), 3083, DOI: 10.1039/2001JC001208CrossRef
Rozenbaum, G. E. and Shpolyanskaya, N. A. (2000). Pozdnekainozoiskaya Istoriya Kriolitozony Arktiki I Tendentsii ee Budushchego Razvitiya (Late Cainozoic History of the Cryolithozones of the Arctic and Tendencies of their Future Development). Moscow: Nauchnyi MirGoogle Scholar
Ryder, C. (1896). Isforholdene I Nordhavet, 1877–1892. Copenhagen: Tidsskr. f. SovaesenGoogle Scholar
Sahsamanoglou, H. S., Makrogiannis, T. J. and Kallimopolous, P. P. (1991). Some aspects of the basic characteristics of the Siberian anticyclone. Int. J. Climatol. 11, 827–839CrossRefGoogle Scholar
Saladin d'Anglure, B. (1984). The route to China: Northern Europe's Arctic delusions. Arctic 37, 446–452CrossRefGoogle Scholar
Sankar-Rao, M., Lau, K. M. and Yang, S. (1996). On the relationship between Eurasian snow-cover and the Asian summer monsoon. Int. J. Climatol. 11, 827–839Google Scholar
Sater, J. E. (Coordinator) (1968). Arctic Drifting Stations. A Report on Activities Supported by the Office of Naval Research: Proceedings of the Symposium. Washington, DC: Arctic Institute of North AmericaGoogle Scholar
Savours,, A. (Mrs. Shirley) (1984). “A very interesting point in geography”: The 1773 Phipps expedition towards the North Pole. Arctic 37, 402–428CrossRefGoogle Scholar
Scherhag, R. (1960). Stratospheric temperature changes and the associated changes in pressure distribution. J. Meteorol. 17, 575–5822.0.CO;2>CrossRefGoogle Scholar
Schlesinger, M. E. (1985). Analysis of results from energy balance and radiative-convective models. In MacCracken, M. C. and Luther, F. M. (eds.), Projecting the Climatic Effects of Increasing Carbon Dioxide. Washington, DC: U.S. Department of Energy, Department of Energy/ER-0237, pp. 81–147CrossRefGoogle Scholar
Schnell, R. C., Barry, R. G., Miles, M. W.et al. (1989). Lidar studies of leads in Arctic sea ice. Nature 339, 530–532CrossRefGoogle Scholar
Schweiger, A. J. and Key, J. R. (1992). Arctic cloudiness: Comparison of International Satellite Cloud Climatology Project-C2 and Nimbus-7 satellite derived cloud products with a surface-based cloud climatology. J. Climate 5, 1514–15272.0.CO;2>CrossRefGoogle Scholar
Schweiger, A. J. and Key, J. R. (1994). Arctic Ocean radiative fluxes and cloud forcing estimated from the International Satellite Cloud Climatology Project C2 cloud dataset, 1983–1990. J. Appl. Meteorol. 33, 948–9632.0.CO;2>CrossRefGoogle Scholar
Schweiger, A. J., Lindsay, R. W., Key, J. R. and Francis, J. A. (1999). Arctic clouds in multiyear satellite data sets. Geophys. Res. Lett. 26, 1845–1848CrossRefGoogle Scholar
Scoresby, W. (1811–1816). On the Greenland or Polar ice. Mem. Wererian Soc. Natural History (Edinburgh) 2, 261–338Google Scholar
Scoresby, W. (1820). An Account of the Arctic Regions with a History and Description of the Northern Whale-Fishery. Vol. I, The Arctic. Reprint (1969) New York: A. M. Kelley Publishers, 551 pp. and AppendixGoogle Scholar
Selinger, F. and Glen, A. (1983). Arctic meteorological operations and counter-operations during World War II. Polar Record 21, 559–567CrossRefGoogle Scholar
Semenov, V. A. and Bengtsson, L. (2003). Modes of wintertime Arctic temperature variability. Geophys. Res. Lett. 30, 1781, DOI: 10.1029/2003GLO17112CrossRef
Semtner, A. J. (1987). A numerical study of sea ice and ocean circulations in the Arctic. J. Phys. Oceanogr. 17, 1077–10992.0.CO;2>CrossRefGoogle Scholar
Serreze, M. C. (1995). Climatological aspects of cyclone development and decay in the Arctic. Atmosphere-Ocean 33, 1–23CrossRefGoogle Scholar
Serreze, M. C. and Bradley, R. S. (1987). Radiation and cloud observations on a high Arctic plateau ice cap. J. Glaciol. 33 (114), 162–168CrossRefGoogle Scholar
Serreze, M. C. and Etringer, A. J. (2003). Precipitation characteristics of the Eurasian Arctic drainage system. Int. J. Climatol. 23, 1267–1291CrossRefGoogle Scholar
Serreze, M. C. and Francis, J. (2005). The Arctic amplification debate. (Submitted to Climate Change)
Serreze, M. C. and Hurst, C. M. (2000). Representation of mean Arctic precipitation from National Centers for Environmental Prediction-National Center for Atmospheric Research and ERA reanalyses. J. Climate 13, 182–2012.0.CO;2>CrossRefGoogle Scholar
Serreze, M. C., Barry, R. G. and McLaren, A. S. (1989). Seasonal variations in sea ice motion and effects on sea ice concentration in the Canada Basin. J. Geophys. Res. 94 (C8), 10955–10970CrossRefGoogle Scholar
Serreze, M. C., Kahl, J. D., Andreas, E. L.et al. (1992a). Theoretical heights of buoyant convection above open leads in the winter Arctic pack ice cover. J. Geophys. Res. 97 (C6), 9411–9422CrossRefGoogle Scholar
Serreze, M. C., Kahl, J. D. and Schnell, R. C. (1992b). Low-level temperature inversions of the Eurasian Arctic and comparisons with Soviet drifting station data. J. Climate 5, 615–6292.0.CO;2>CrossRefGoogle Scholar
Serreze, M. C., Barry, R. G. and Walsh, J. E. (1995a). Atmospheric water vapor characteristics at 70°N. J. Climate 8, 719–7312.0.CO;2>CrossRefGoogle Scholar
Serreze, M. C., Maslanik, J. A., Key, J. R., Kokaly, R. F. and Robinson, D. A. (1995b). Diagnosis of the record minimum in Arctic sea ice area during 1990 and associated snow cover extremes. Geophys. Res. Lett. 22, 2183–2186CrossRefGoogle Scholar
Serreze, M. C., Carse, F., Barry, R. G. and Rogers, J. C. (1997a). Icelandic Low cyclone activity: climatological features, linkages with the North Atlantic Oscillation, and relationships with recent changes in the Northern Hemisphere circulation. J. Climate 10, 453–4642.0.CO;2>CrossRefGoogle Scholar
Serreze, M. C., Maslanik, J. A. and Key, J. R. (1997b). Atmospheric and Sea Ice Characteristics of the Arctic Ocean and the Surface Heat Budget of the Arctic Ocean Field Region in the Beaufort Sea. Special Report – 4, National Snow and Ice Data Center, Boulder, ColoradoGoogle Scholar
Serreze, M. C., Key, J. R., Box, J. E., Maslanik, J. A. and Steffen, K. (1998). A new monthly climatology of global radiation for the Arctic and comparisons with National Centers for Environmental Prediction-National Center for Atmospheric Research reanalysis and International Satellite Cloud Climatology Project-C2 fields. J. Climate 11, 121–1362.0.CO;2>CrossRefGoogle Scholar
Serreze, M. C., Walsh, J. E., Chapin,, F. S. III et al. (2000). Observational evidence of recent change in the northern high latitude environment. Clim. Change 46, 159–207CrossRefGoogle Scholar
Serreze, M. C., Lynch, A. H. and Clark, M. P. (2001). The Arctic frontal zone as seen in the National Centers for Environmental Prediction-National Center for Atmospheric Research reanalysis. J. Climate 14, 1550–15672.0.CO;2>CrossRefGoogle Scholar
Serreze, M. C., Bromwich, D. H., Clark, M. P. et al. (2003a). The large-scale hydro-climatology of the Arctic drainage. J. Geophys. Res108(D2), DOI: 10.1029/2001JD000919CrossRef
Serreze, M. C., Clark, M. P. and Bromwich, D. H. (2003b). Monitoring precipitation over the Arctic terrestrial drainage system: Data requirements, shortcomings and applications of atmospheric reanalysis. J. Hydrometeorol. 4, 387–4072.0.CO;2>CrossRefGoogle Scholar
Serreze, M. C., Maslanik, J. A., Scambos, T. A. et al. (2003c). A record minimum Arctic sea ice extent and area in 2002. Geophys. Res. Lett. 30, DOI: 10.1029/2002GL016406CrossRef
Severinghaus, J. P., Sowers, T., Brook, E. J., Alley, R. B. and Bender, M. L. (1998). Timing of abrupt climate change at the end of the Younger Dryas interval from thermally fractionated gases in polar ice. Nature 391, 141–146CrossRefGoogle Scholar
Shackleton, N. J., Fernanda Sanchez-Goni, M., Pailler, D. and Lancelot, Y. (2003). Marine isotope substage 5e and the Eemian Interglacial. Global Planet. Change 36, 151–155CrossRefGoogle Scholar
Shahgedanova, M. (ed.) (2002). The Physical Geography of Northern Eurasia. Oxford: Oxford University PressGoogle Scholar
Shahgedanova, M., Perov, V. and Mudrow, Y. (2002). The mountains of northern Russia. In Shahgedanova, M. (ed.), The Physical Geography of Northern Eurasia. Oxford: Oxford University Press, pp. 284–313Google Scholar
Shapiro, M. A. (1985). Dropwinsonde observations of an Icelandic low and a Greenland mountain-lee wave. Mon. Wea. Rev. 113, 680–6832.0.CO;2>CrossRefGoogle Scholar
Shapiro, M. A., Schnell, R. C., Parungo, F. P., Oltmans, S. J. and Bodhaine, B. A. (1984). El Chichon volcanic debris in an Arctic tropopause fold. Geophys. Res. Lett. 11, 421–424CrossRefGoogle Scholar
Shapiro, M. A., Fedor, L. S and Hampel, T. (1987a). Research aircraft measurements of a polar low over the Norwegian Sea. Tellus 39A, 272–306CrossRefGoogle Scholar
Shapiro, M. A., Hampel, T. and Krueger, A. J. (1987b). The Arctic tropopause fold. Mon. Wea. Rev. 115, 444–4542.0.CO;2>CrossRefGoogle Scholar
Shiklomanov, I. A., Shiklomanov, A. I., Lammers, R. B., Peterson, B. J. and Vörösmarty, C. J. (2000). The dynamics of river water inflow to the Arctic Ocean. In Lewis, E. L., et al. (eds.), The Freshwater Budget of the Arctic Ocean. NATO Science Series 2. Environmental Security, Vol. 70. Dordrecht, the Netherlands: Kluwer Academic Publishers, pp. 281–296Google Scholar
Shine, K. P. (1984). Parameterization of shortwave flux over high albedo surfaces as a function of cloud thickness and surface albedo. Q. J. R. Meteorol. Soc. 110, 747–764CrossRefGoogle Scholar
Siegert, M. J. (2001). Ice Sheets and Late Quaternary Environmental Change. Chichester, UK: John Wiley and SonsGoogle Scholar
Siegert, M. J., Dowdeswell, J. A. and Melles, M. (1999). Late Weichselian glaciation of the Eurasian High Arctic. Quatern. Res. 52, 273–285CrossRefGoogle Scholar
Slater, A. G., Schlosser, C. A., Desborough, C. E.et al. (2001). The representation of snow in land surface schemes; results from Project for Intercomparison of Land Surface Parameterization Schemes 2(d). J. Hydrometeorol. 2, 7–252.0.CO;2>CrossRefGoogle Scholar
Smith, E. H., Soule, F. M. and Mosby, O. (1937). The ‘Marion’ and ‘General Green’ Expeditions to Davis Strait and Labrador Sea, Under Direction of the United States Coast Guard, 1928–1931–1933–1934–1935: Part 2: Scientific Results. Washington, DC: Bulletin U.S. Coast GuardGoogle Scholar
Smith, S. D., Anderson, R. O., Hartog, G., Topham, D. R. and Perkin, R. G. (1983). An investigation of a polynya in the Canadian Archipelago, 2, Structure of turbulence and sensible heat flux. J. Geophys. Res. 88 (C5), 2900–2910CrossRefGoogle Scholar
Sokratov, S. A. and Barry, R. G. (2002). Intraseasonal variations in the thermoinsulation effect of snow cover on soil temperature and energy balance. J. Geophys. Res. 107(D10) DOI: 10.1029/2001JD000489CrossRef
Solomon, S. (1999). Stratospheric ozone depletion: a review of concept and history. Rev. Geophys. 37, 275–316CrossRefGoogle Scholar
Souchez, R. (1997). The buildup of the ice sheet in central Greenland. J. Geophys. Res. 102 (C12), 26317–26323CrossRefGoogle Scholar
Stamnes, K. H., Tsay, S.-C., Wiscombe, W. and Jayaweera, K. (1988). Numerical stable algorithm for discreet-ordinate radiative transfer in multiple scattering and emitting layered media. Appl. Opt. 27, 2502–2509CrossRefGoogle ScholarPubMed
Steele, M. and Boyd, T. (1998). Retreat of the cold halocline layer in the Arctic Ocean. J. Geophys. Res. 103, 10419–10435CrossRefGoogle Scholar
Steele, M., Thomas, D. and Rothrock, D. (1996). A simple model study of the Arctic Ocean freshwater balance, 1979–1985. J. Geophys. Res. 101 (C9), 20833–20848CrossRefGoogle Scholar
Steele, M., Ermold, W., Häkkinen, S.et al. (2001). Adrift in the Beaufort Gyre: A model comparison. Geophys. Res. Lett. 28, 2935–2938CrossRefGoogle Scholar
Steffen, K. (1985). Warm water cells in the North Water, northern Baffin Bay during winter. J. Geophys. Res. 90 (5), 9129–9136CrossRefGoogle Scholar
Steffen, K. and Box, J. E. (2001). Surface climatology of the Greenland ice sheet: Greenland Climate Network 1995–1999. J. Geophys. Res. 106 (D24), 33951–33964CrossRefGoogle Scholar
Steffen, K., Box, J. E. and Abdalati, W. (1996). Greenland Climate Network: GC-Net. In Colbeck, S. C. (ed.), CRREL 96-27 Special Report on Glaciers, Ice Sheets and Volcanoes (tribute to M. Meier). Hanover, New Hampshire: U.S. Army, pp. 98–103Google Scholar
Steiner, N., Holloway, G., Gerdes, R.et al. (2004). Comparing modeled streamfunction, heat and freshwater content in the Arctic Ocean. Ocean Modeling 6, 265–284CrossRefGoogle Scholar
Stern, H. L. and Moritz, R. E. (2002). Sea ice kinematics and surface properties from RADARSAT synthetic aperature radar during the Surface Heat Budget of the Arctic Ocean drift. J. Geophys. Res. 107(C10), 8028, DOI: 10.1029/2000JC000472CrossRef
Stigebrandt, A. (2000). Oceanic freshwater fluxes in the climate system. In , E. L. Lewis,et al. (eds.), The Freshwater Budget of the Arctic Ocean. NATO Science Series 2. Environmental Security, Vol. 70. Dordrecht, the Netherlands: Kluwer Academic Publishers, pp. 1–20Google Scholar
Sturm, M. M., Holmgren, J. and Liston, G. E. (1995). A seasonal snow cover classification system for local to global application. J. Climate 8, 1261–12832.0.CO;2>CrossRefGoogle Scholar
Sturm, M., Racine, C. and Tape, K. (2001). Climatic change: Increasing shrub abundance in the Arctic. Nature 411, 546–547CrossRefGoogle Scholar
Subetto, D. A., Wohlfarth, B., Davydona, N. N.et al. (2002). Climate and environment on the Karelian Isthmus, northwestern Russia, 13000-9000 cal. yrs BP. Boreas 31, 1–19CrossRefGoogle Scholar
Svendsen, J. I., Astakhov, V. I., Bolshiyanov, D. Y.et al. (1999). Maximum extent of the Eurasian ice sheets in the Barents and Kara Sea region during the Late Weichselian. Boreas 28, 234–242CrossRefGoogle Scholar
Sverdrup, H. U. (1933). The Norwegian North Polar Expedition with the “Maud”, 1918–1925, Volume II: Meteorology. Bergen: John Griegs, BoktrykkeriGoogle Scholar
Thomas, D. R. and Rothrock, D. A. (1989). Blending sequential Scanning Multichannel Microwave Radiometer and buoy data into a sea ice model. J. Geophys. Res. 94 (C8), 10907–10920CrossRefGoogle Scholar
Thomas, D. R., and Rothrock, D. A. (1993). The Arctic Ocean ice balance: A Kalman smoother estimate. J. Geophys. Res. 98 (C6), 10053–10067CrossRefGoogle Scholar
Thomas, D. R., Martin, S., Rothrock, D. A. and Steele, M. (1996). Assimilating satellite concentrations into an Arctic mass balance model: 1979–1985. J. Geophys. Res. 101 (C9), 20849–20868CrossRefGoogle Scholar
Thomas, R. N. (2001). Program for Arctic Regional Climate Assessment (Program for Arctic Regional Climate Assessment): Goals, key findings, and future directions. J. Geophys. Res. 106 (D24), 33691–33705CrossRefGoogle Scholar
Thompson, D. W. J and Wallace, J. M. (1998). The Arctic Oscillation signature in the wintertime geopotential height and temperature fields. Geophys. Res. Lett. 25, 1297–1300CrossRefGoogle Scholar
Thompson, D. W. J. and Wallace, J. M. (2000). Annular modes in the extratropical circulation. Part I: Month-to-month variability. J. Climate 13, 1000–10162.0.CO;2>CrossRefGoogle Scholar
Thompson, D. W. J., Wallace, J. M. and Hegerl, G. (2000). Annular modes in the extratropical circulation. Part II: Trends. J. Climate 13, 1018–10362.0.CO;2>CrossRefGoogle Scholar
Thorndike, A. S. (1986). Kinematics of sea ice. In Untersteiner, N. (ed.), The Geophysics of Sea Ice, NATO ASI Ser., Ser. B Phys., Vol. 146. New York: Plenum Press, pp. 489–549CrossRefGoogle Scholar
Thorndike, A. S. and Colony, R. (1982). Sea ice motion in response to geostrophic winds. J. Geophys. Res. 87 (C8), 5845–5852CrossRefGoogle Scholar
Trenberth, K. E. (1998). Atmospheric moisture residence times and cycling: implications for rainfall rates and climatic change. Clim. Change 39, 667–694CrossRefGoogle Scholar
Trenberth, K. E. and Caron, J. M. (2001). Estimates of meridional atmosphere and ocean heat transports. J. Climate 15, 3433–34432.0.CO;2>CrossRefGoogle Scholar
Trenberth, K. E. and Paolino, D. A. (1980). The Northern Hemisphere sea-level pressure data set: Trends, errors and discontinuities. Mon. Wea. Rev. 108, 855–8722.0.CO;2>CrossRefGoogle Scholar
Trenberth, K. E. and Stepaniak, D. P. (2003). Co-variability of components of poleward atmospheric energy transports on seasonal and interannual timescales. J. Climate 16, 3706–37222.0.CO;2>CrossRefGoogle Scholar
Trenberth, K. E., Caron, J. M. and Stepaniak, D. P. (2001). The atmospheric energy budget and implications for surface fluxes and ocean heat transports. Clim. Dynam. 17, 259–276CrossRefGoogle Scholar
Tsukernik, M., Chase, T. N., Serreze, M. C. et al. (2004). On the regulation of minimum mid-tropospheric temperatures in the Arctic. Geophys. Res. Lett. 31, L06112, DOI: 10.1029/2003GLO18831CrossRef
Tumel, N. (2002). Permafrost. In Shahgenanova, M. (ed.), The Physical Geography of Northern Eurasia. Oxford: Oxford University Press, pp. 149–168Google Scholar
Tyndall, J. (1872). The Forms of Water in Clouds and Rivers, Ice and Glacier.Akron, Ohio: The Werner CoGoogle Scholar
UK Meteorological Office (1964). Weather in Home Fleet Waters, Vol. 1. London: Her Majesty's Stationery Office
Uttal, T.,Curry, J. A., McPhee, M. G., Perovich, D. K., et al. (2002). Surface heat budget of the Arctic Ocean. Bull. Amer. Meteorol. Soc. 83, 255–2752.3.CO;2>CrossRefGoogle Scholar
Hurk, B. J. J. M. and Viterbo, P. (2002). The Torne-Kalix Project for Intercomparison of Land Surface Parameterization Schemes 2(e) experiment as a test bed for modifications to the European Centre for Medium-range Weather Forecasts land surface scheme. Global Planet. Change 38, 165–173CrossRefGoogle Scholar
Veen, C. J., Bromwich, D. H. and Castho, C. K. (2001). Trend surface analysis of Greenland accumulation. J. Geophys. Res. 106 (D24), 33909–33918CrossRefGoogle Scholar
Loon, H. (1967). The half-yearly oscillation in middle and high southern latitudes and the coreless winter. J. Atmos. Sci. 24, 472–4862.0.CO;2>CrossRefGoogle Scholar
Loon, H. and Rogers, J. C. (1978). Seesaw in winter temperatures between Greenland and Northern Europe. Part I: General description. Mon. Wea. Rev. 106, 296–3102.0.CO;2>CrossRefGoogle Scholar
Vasil'chuk, Yu. K. and Kotlyakov, V. M. (2000). Osnovy Izotopnoi Geokriologii I Glatsiologii (Principles of Isotope Geocryology and Glaciology). Moscow: Moscow University PressGoogle Scholar
Vaughan, R. (1999). The Arctic: A History. Stroud, UK: Sutton PublishingGoogle Scholar
Velichko, A. A. and Spasskaya, I. (2002). Climate change and the development of landscapes. In Shahgedanova, M. (ed.), The Physical Geography of Northern Eurasia. Oxford: Oxford University Press, pp. 36–69Google Scholar
Velichko, A. A., Isayewa, L. L., Makeyev, V. M., Matishov, G. G. and Faustova, M. A. (1984). Late Pleistocene glaciation of the Arctic Shelf and the reconstruction of Eurasian ice sheets. In Velichko, A. A. (ed.), Late Quaternary Environments of the Soviet Union. Minneapolis: University of Minnesota Press, pp. 35–44Google Scholar
Velichko, A. A., Isayeva, L. L., Oreshkin, D. B. and Faustova, M. A. (1989). The last glaciation in Eurasia. In Herman, Y. (ed.), The Arctic Seas. Climatology, Oceanography, Geology and Biology. New York: Van Nostrand, Reinhold, pp. 729–758Google Scholar
VEMAP Members (1995). Vegetation/Ecosystem Modeling and Analysis Project (VEMAP): Comparing biogeography and biogeochemistry models in continental-scale study of terrestrial ecosystem responses to climate change and CO2 doubling. Global Biogeochemical Cycles 3, 241–265
Verseghy, D. L. (1991). Canadian Land Surface Scheme: A Canadian Land Surface Scheme for Global Climate Model (or General Circulation Model)s. I. Soil model. Int. J. Climatol. 11, 111–133CrossRefGoogle Scholar
Verseghy, D. L., McFarlane, K. A. and Lazar, M. (1993). Canadian Land Surface Scheme: A Canadian Land Surface Scheme for Global Climate Model (or General Circulation Model)s. II. Vegetation model and coupled runs. Int. J. Climatol. 13, 347–370CrossRefGoogle Scholar
Vigdorchik, M. E. (1980). Arctic Pleistocene History and the Development of Submarine Permafrost. Boulder, Colorado: Westview PressGoogle Scholar
Vinje, T. (2001). Fram Strait ice fluxes and atmospheric circulation: 1950–2000. J. Climate 14, 3508–35172.0.CO;2>CrossRefGoogle Scholar
Vinje, T. E. and Finnekasa, O. (1986). The Ice Transport through Fram Strait. Report NR 186. Oslo: Norsk PolarinsttuttGoogle Scholar
Viterbo, P. and Beljaars, A. C. M. (1995). An improved land surface parameterization scheme in the European Centre for Medium-range Weather Forecasts model and its validation. J. Climate 8, 2716–27482.0.CO;2>CrossRefGoogle Scholar
Vogt, P. R. (1986). Seafloor topography, sediments and paleoenvironments. In Hurdle, B. G. (ed.), The Nordic Seas. New York: Springer Verlag, pp. 237–410CrossRefGoogle Scholar
Helmhotz, H. (1888). Uber Atmospharische Bewegungen. Meteor. Zeit. 5, 329–340Google Scholar
Neumayer, G. and Boergen, C. N. J. (eds.) (1886). Die Internationale Polarforschung 1882–1883. Die Beobachtungs Ergebnisse der Deutschen Stationen, Vol. 1, Kingua-Fjord und die meteorologischen Stationen. Vol. 2, Ordnung in Labrador, Hebron, Okak, Nain, Zoar, Hoffenthal, Rama, sowie die magnetischen Observatorien in Breslau und Goettingen. BerlinGoogle Scholar
Vörösmarty, C. J., Fekete, B., Meybeck, M. and Lammers, R. B. (2000). The global system of rivers: its role on organizing continental landmass and defining land-to-ocean linkages. Global Biogeochemical Cycles 14, 599–621CrossRefGoogle Scholar
Vowinkel, E. and Orvig, S. (1967). The Inversion Layer over the Polar Ocean. World Meteorological Organization Technical Note No. 87. Geneva: Polar Meteorology: Proc. WMO/SCAR/ICPM Symp. Polar MeteorologyGoogle Scholar
Vowinkel, E. and Orvig, S. (1970). The climate of the North Polar Basin. In Orvig, S. (ed.), World Survey of Climatology, Vol. 14: Climates of the Polar Regions. Amsterdam: Elsevier, pp. 129–226Google Scholar
Wadhams, P. (1980). Ice characteristics in the seasonal ice zone. Cold Reg. Sci. Technol. 2, 37–87CrossRefGoogle Scholar
Wadhams, P. (1983). Sea ice thickness distribution in Fram Strait. Nature 305, 108–111CrossRefGoogle Scholar
Wadhams, P. (1990). Evidence for thinning of the Arctic ice cover north of Greenland. Nature 345, 795–797CrossRefGoogle Scholar
Wadhams, P. (1992). Sea ice thickness distribution in the Greenland Sea and Eurasian Basin. J. Geophys. Res. 97 (C4), 5331–5348CrossRefGoogle Scholar
Wadhams, P. (2000). Ice in the Ocean, London: Taylor and FrancisGoogle Scholar
Walker, D. A., Gould, W. A., Maier, H. A. and Raynolds, M. K. (2002). The Circumpolar Arctic Vegetation Map. Advanced Very High Resolution Radiometer-derived base maps, environmental conditions, and integrated mapping procedures. Int. J. Remote Sensing 23, 4551–4570CrossRefGoogle Scholar
Walker, G. T. and Bliss, E. W. (1932). World weather. V. Mem. R. Meteorol. Soc. 103, 29–64CrossRefGoogle Scholar
Walker, J. M. (1967). Subterranean isobars. Weather 22, 296–297CrossRefGoogle Scholar
Wallace, J. M. (1983). The climatological mean stationary waves: Observational evidence. In Hoskins, B. and Pearce, R. (eds.), Large Scale Dynamical Processes in the Atmosphere. San Diego, California: Academic Press, pp. 27–53Google Scholar
Wallace, J. M. (2000). North Atlantic Oscillation/annual mode: Twoparadigms–onephenomenon. Q. J. R. Meteorol. Soc. 126, 791–805CrossRefGoogle Scholar
Wallace, J. M. and Gutzler, D. S. (1981). Teleconnections in the geopotential height field during the Northern Hemisphere winter. Mon. Wea. Rev. 109, 784–8122.0.CO;2>CrossRefGoogle Scholar
Walland, D. J. and Simmonds, I. (1997). Modeled atmospheric response to change in Northern Hemisphere snow-cover. Clim. Dynam. 13, 25–34CrossRefGoogle Scholar
Wallis, H. (1984). England's search for the Northern Passages in the sixteenth and early seventeenth centuries. Arctic 37, 453–472CrossRefGoogle Scholar
Walsh, J. E. (1978). Temporal and spatial scales of the Arctic circulation. Mon. Wea. Rev. 106, 1532–15442.0.CO;2>CrossRefGoogle Scholar
Walsh, J. E. and Chapman, W. L. (1990). Arctic contribution to upper-ocean variability in the North Atlantic. J. Climate 3, 1462–14732.0.CO;2>CrossRefGoogle Scholar
Walsh, J. E., Hibler, W. D. III and Ross, B. (1985). Numerical simulation of northern hemisphere sea ice variability, 1951–1980. J. Geophys. Res. 90 (C3), 4847–4865CrossRefGoogle Scholar
Walsh, J. E., Zhou, X, Portis, D. and Serreze, M. C. (1994). Atmospheric contributions to hydrologic variations in the Arctic. Atmosphere-Ocean 32, 733–755CrossRefGoogle Scholar
Walsh, J. E., Chapman, W. L. and Shy, T. L. (1996). Recent decrease of sea level pressure in the central Arctic. J. Climate 9, 480–4862.0.CO;2>CrossRefGoogle Scholar
Walsh, J. E., Vinnikov, K. and Chapman, W. L. (1999). On the use of historical sea ice charts in assessments of century-scale climatic variations. In World Climate Research Arctic Climate System Study (Arctic Climate System Study), Proceedings of the Workshop in Sea Ice Charts in the Arctic, Seattle, WA, 5–7 August 1998, WMO/TD No. 949, IAPO Publication No. 3, pp. 1–3
Walsh, J. E., Kattsov, V. M., Chapman, W. L., Govorkova, V. and Pavlova, T. (2002). Comparison of Arctic climate simulations by uncoupled and coupled global climate models. J. Climate 15, 1429–14462.0.CO;2>CrossRefGoogle Scholar
Wang, B. and Allard, M. (1995). Recent climatic trend and thermal response of permafrost at Salluit, Northern Quebec, Canada. Permafrost and Periglacial Processes 6, 221–234CrossRefGoogle Scholar
Wang, X. and Key, J. R. (2003) Recent trends in Arctic surface, cloud and radiation properties from space. Science 299, 1725–1728CrossRefGoogle ScholarPubMed
Warren, B. A. (1983). Why is no deep water formed in the North Pacific?J. Mar. Res. 41, 327–347CrossRefGoogle Scholar
Warren, S. G. (1982). Optical properties of snow. Rev. Geophys. Space Phys. 2, 67–89CrossRefGoogle Scholar
Warren, S. G., Hahn, C. J., London, J., Chervin, R. M. and Jenne, R. (1988). Global Distribution of Total Cloud Cover and Cloud Type Amounts Over the Ocean. National Center for Atmospheric Research Technical Note, TN – 317 + STR. Boulder, Colorado: National Center for Atmospheric ResearchCrossRefGoogle Scholar
Watkins, H. G. (1932). The British Arctic Air Route Expedition. Geogr. J. 79, 353–367; 466–501CrossRefGoogle Scholar
Waugh, D. W. (1997). Elliptical diagnostics of stratospheric polar vortices. Q. J. R. Meteorol. Soc. 123, 1725–1748CrossRefGoogle Scholar
Waugh, D. W. and Randel, W. J. (1999). Climatology of Arctic and Antarctic polar vortices using elliptical diagnostics. J. Atmos. Sci. 56, 1594–16132.0.CO;2>CrossRefGoogle Scholar
Weaver, A. J., Bitz, C. M., Fanning, A. F. and Holland, M. M. (1999). Thermohaline circulation: High-latitude phenomena and the difference between the Pacific and Atlantic. Ann. Rev. Earth Planet. Sci. 27, 231–285CrossRefGoogle Scholar
Webber, P. J. (1974). Tundra primary productivity. In Ives, J. D. and Barry, R. G. (eds.), Arctic and Alpine Environments. London: Methuen, pp. 445–473Google Scholar
Weeks, W. F. and Ackley, S. F. (1986). The growth, structure and properties of sea ice. In Untersteiner, N. (ed.), The Geophysics of Sea Ice, NATO ASI Ser., Ser. B Phys., Vol. 146. New York: Plenum Press, pp. 9–164CrossRefGoogle Scholar
Weller, G. and Holmgren, B. (1974). The microclimates of the Arctic Tundra. J. Appl. Meteor. 11, 854–8622.0.CO;2>CrossRefGoogle Scholar
Weller, G., Cubley, S., Parker, S., Trabant, D. and Benson, C. (1972). The tundra microclimate during snow melt at Barrow, Alaska. Arctic 24, 291–300Google Scholar
Welsh, J. P., Ketchum, R. D. Jr., Lohanick, A. W.et al. (1986). A Compendium of Arctic Environmental Information. Naval Ocean Res. Dev. Activity Report 138. Michigan: NSTLGoogle Scholar
Wendler, G. W., Easton, F. D. and Ohtake, T. (1981). Multiple reflection effects on irradiance in the presence of Arctic stratus clouds. J. Geophys. Res. 86 (C3), 2049–2057CrossRefGoogle Scholar
Wexler, H. (1936). Cooling in the lower atmosphere and the structure of polar continental air. Mon. Wea. Rev. 64, 122–1362.0.CO;2>CrossRefGoogle Scholar
Weyl, P. K. (1968). The role of the oceans in climatic change: A theory of the ice ages. Meteorol. Monographs 8, 38–62Google Scholar
Whittaker, L. M. and Horn, L. H. (1984). Northern Hemisphere extratropical cyclone activity for four mid-season months. J. Climatol. 4, 297–310CrossRefGoogle Scholar
Williams, R. S. and Ferrigno, J. G. (eds.) (2002). Satellite Image Atlas of Glaciers of the WorldNorth America. Washington DC: U.S. Geological Survey, Professional paper, 1386-JGoogle Scholar
Wilson, C. (1969). Climatology of the Cold Regions. Northern Hemisphere II. Cold Regions Science and Engineering Monograph I-A3b. Hanover, New Hampshire: U.S. Army CRRELGoogle Scholar
Wilson, C. V. (1958). Synoptic Regimes of the Lower Arctic Troposphere During 1955. Arctic Meteorology Research Group, Publication in Meteorology No. 8. Montreal, Canada: McGill UniversityGoogle Scholar
Wilson, C. V. and Godson, W. L. (1962). The Stratospheric Temperature Field at High Latitudes. Arctic Meteorology Research Group Publication in Meteorology No. 46. Montreal, Canada: McGill UniversityGoogle Scholar
Wilson, C. V. and Godson, W. L. (1963). The structure of the Arctic winter stratosphere over a 10-year period. Q. J. R. Meteorol. Soc. 89, 205–224CrossRefGoogle Scholar
Wilson, L. D., Curry, J. A. and Ackerman, T. P. (1993). Satellite retrieval of lower-tropospheric ice crystal clouds in the polar regions. J. Climate 6, 1467–14722.0.CO;2>CrossRefGoogle Scholar
Wiscombe, W. J. and Warren, S. G. (1980). A model for the spectral albedo of snow. I. Pure snow. J. Atmos. Sci. 37, 2712–27332.0.CO;2>CrossRefGoogle Scholar
Wohlleben, T. M. H. and Weaver, A. J. (1995). Interdecadal climate variability in the subpolar North Atlantic. Clim. Dynam. 11, 459–467CrossRefGoogle Scholar
Wolfe, A. P. and King, R. H. (1999). A paleolimnological constraint to the extent of the last glaciation on northern Devon Island, Canadian high Arctic. Quatern. Sci. Rev. 18, 1563–1568CrossRefGoogle Scholar
Woo, M.-K., Heron, R., Marsh, P. and Steer, P. (1983). Comparison of weather station snowfall with winter snow accumulation in high Arctic basins. Atmosphere-Ocean 21, 312–325CrossRefGoogle Scholar
Woodgate, R. A. and Aagaard, K. (2005). Revising the Bering Strait freshwater flux into the Arctic Ocean. Geophys. Res. Lett., 32, L02602, DOI: 10.1029/2004GL021747CrossRef
World Meteorological Organization (1989). WMO Sea-Ice Nomenclature, Terminology, Codes and Illustrated Glossary. Geneva: WMO/OMM/BMO 259, TP 145, Secretariat WMO, Vol. 1
Wright, J. K. (1953). The open polar sea. Geogr. Rev. 63, 338–365CrossRefGoogle Scholar
Wu. P., Wood, R. and Stott, P. (2005). Human influence on increasing Arctic river discharges. Geophys. Res. Lett. 32, L02707, DOI: 10.1029/2004GL021570CrossRef
Xie, P. and Arkin, P. A. (1997) Global precipitation: A 17-year monthly analysis based on gauge observations, satellite estimates and numerical model outputs. Bull. Amer. Meteorol. Soc. 78, 2539–25582.0.CO;2>CrossRefGoogle Scholar
Yang, D. (1999). An improved precipitation climatology for the Arctic Ocean. Geophys. Res. Lett. 26, 1525–1528CrossRefGoogle Scholar
Yang, D., Goodison, B., Metcalfe, J.et al. (2001). Compatibility evaluation of national precipitation gauge measurements. J. Geophys. Res. 106 (D2), 1481–1491CrossRefGoogle Scholar
Yang, D., Kane, D. L., Hinzman, L. D. et al. (2002). Siberian Lena river hydrologic regime and recent change. J. Geophys. Res. 107(D23), DOI: 10.1029/2002JD002542CrossRef
Ye, B., Yang, D. and Kane, D. (2003). Changes in Lena River streamflow hydrology: Human impacts versus natural variations. Water Resour. Res. 39(7), DOI: 10.1029/2003WR001991CrossRef
Yukimoto, S. and Kodera, K. (2005). Interdecadal Arctic Oscillation in twentieth century climate simulations viewed as internal variability and response to external forcing. Geophys. Res. Lett. 32, L03707, DOI: 10.1029/2004GJ021870CrossRef
Zangl, G. and Hoinka, K. P. (2001). The tropopause in the polar regions. J. Climate 14, 3117–31392.0.CO;2>CrossRefGoogle Scholar
Zazula, G. D., Froese, D. G., Telka, A. M., Mathewes, R. W. and Westgate, J. A. (2002). Plants, bugs and giant mammoth tusk: Paleoecology of Last Chance Creek, Yukon Territory. In Yukon Exploration and Geology, 2002, pp. 251–258
Zhang, J., Rothrock, D. and Steele, M. (2000). Recent changes in Arctic sea ice: The interplay between ice dynamics and thermodynamics. J. Climate 13, 3099–31142.0.CO;2>CrossRefGoogle Scholar
Zhang, J., Thomas, D. R., Rothrock, D. A., Lindsay, R. W. and Yu, Y. (2003). Assimilation of ice motion observations and comparisons with submarine ice thickness data. J. Geophys. Res. 108(C6), 3170, DOI: 10.1029/2001JC001041CrossRef
Zhang, T., Stamnes, K. and Bowling, S. A. (2001). Impact of atmospheric thickness on the atmospheric downwelling longwave radiation and snowmelt under clear-sky conditions in the Arctic and subarctic. J. Climate 14, 920–9392.0.CO;2>CrossRefGoogle Scholar
Zhang, T.-J., Barry, R. G., Knowles, K., Heginbottom, J. A. and Brown, J. (1999). Statistics and characteristics of permafrost and frozen ground ice distribution in the Northern Hemisphere. Polar Geog. 23, 147–169Google Scholar
Zhang, T.-J., Heginbottom, J. A., Barry, R. G. and Brown, J. (2001). Further statistics on the distribution of permafrost and frozen ground in the Northern Hemisphere. Polar Geog. 24, 14–19Google Scholar
Zhang, X., Walsh, J. E., Zhang, J., Bhatt, U. S. and Ikeda, M. (2004). Climatology and interannual variability of Arctic cyclone activity, 1948–2002. J Climate 15, 2300–23172.0.CO;2>CrossRefGoogle Scholar
Zhou, L., Tucker, C. J., Kaufmann, R. K.et al. (2001). Variations in northern vegetation activity inferred from satellite data of vegetation index during 1981 to 1999. J. Geophys. Res. 106 (D17) 20069–20083CrossRefGoogle Scholar
Zhu, Y. and Newell, R. E. (1998). A proposed algorithm for moisture fluxes from atmospheric rivers. Mon. Wea. Rev. 126, 725–7352.0.CO;2>CrossRefGoogle Scholar
Zubenok, Z. T. (1976). Isparenie s sushi vodosbornogo basseina Severnogo Ledovitogo Okeana (Evaporation from the basins draining into the Arctic). Trudy Arkt. Antarkt. Nauchno.-issled. Inst. 323, 87–100Google Scholar
Zubov, N. N. (1945). L'dy Arktiki. Moscow: Glavsevmorputi, 491 pp. (English translation, Arctic Sea Ice, Transl. 217, 360 pp., U.S. Naval Hydrographic Office, Suitland, Maryland, 1963. Available as AD426972 from National Technical Information Service, Springfield, Virginia)Google Scholar
Zwally, H. J. and Giovinetto, M. B. (2001). Balance mass flux and ice velocity across the equilibrium line in drainage systems of Greenland. J. Geophys. Res. 106 (D24), 33717–33728CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×