Skip to main content Accessibility help
×
Hostname: page-component-78c5997874-s2hrs Total loading time: 0 Render date: 2024-11-16T20:49:26.494Z Has data issue: false hasContentIssue false

Chapter 24 - Down under Down Under: Austral groundwater life

Published online by Cambridge University Press:  05 November 2014

Grant C. Hose
Affiliation:
Macquarie University
Maria G. Asmyhr
Affiliation:
Macquarie University
Steven J. B. Cooper
Affiliation:
University of Adelaide
William F. Humphreys
Affiliation:
Western Australian Museum
Adam Stow
Affiliation:
Macquarie University, Sydney
Norman Maclean
Affiliation:
University of Southampton
Gregory I. Holwell
Affiliation:
University of Auckland
Get access

Summary

Summary

Aquifers of the Austral region are globally significant in terms of their biodiversity. They support a rich and unique fauna, specifically adapted to the harsh subterranean environment. In this chapter we review the nature and diversity of groundwater ecosystems across the Austral region. We consider first the global origins of the Australian groundwater fauna, and their distributions across Gondwana. As the Australian continent evolved, the western shield emerged from the sea during the Proterozoic, which has led to a distinct fauna in those ancient landscapes. In the ‘newer’ eastern Austral regions there has also emerged a rich groundwater fauna, and here we review the current knowledge of fauna in eastern Australia and New Zealand. Mining and agricultural development threaten groundwater ecosystems across the region, but perhaps the greatest threat is our current lack of knowledge of these unique and important ecosystems and their biota. New approaches for conservation planning provide hope for improved recognition and protection of groundwater ecosystems, but with relatively little surveying of groundwater fauna having been done across the region, much remains undiscovered.

Introduction

Being the driest inhabited continent on Earth, the availability of water has always been a critical factor shaping the evolution and distribution of species across Australia. So too, the availability of water is critical to the survival and prosperity of human populations across the broader region, from small outback towns to major capital cities. As human pressures increase demand for water, groundwater is increasingly being used to meet water needs of households, industries and farms. Groundwater use accounts for around 20% of the total water used across Australia, it is more than 50% in New Zealand (Fenwick et al. 2004), and in many areas it is the only reliable water supply.

Type
Chapter
Information
Austral Ark
The State of Wildlife in Australia and New Zealand
, pp. 512 - 536
Publisher: Cambridge University Press
Print publication year: 2014

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abrams, K. M., King, R. A., Guzik, M. T., Cooper, S. J. B., Austin, A. D. (2013) Molecular phylogenetic, morphological and biogeographic evidence for a new genus of parabathynellid crustaceans (Syncarida: Bathynellacea) from groundwater in an ancient southern Australian landscape. Invertebrate Systematics, 27, 146–172.CrossRefGoogle Scholar
Acworth, R. I. 2001. Physical and chemical properties of a DNAPL contaminated zone in a sand aquifer. Quarterly Journal of Engineering, Geology and Hydrogeology, 34, 85–98.CrossRefGoogle Scholar
Anneser, B., Pilloni, G., Bayer, A., et al. (2010) High resolution analysis of contaminated aquifer sediments and groundwater – what can be learned in terms of natural attenuation?Geomicrobiology Journal, 27, 130–142.CrossRefGoogle Scholar
Asmyhr, M. G., Cooper, S. J. B. (2012). Difficulties barcoding in the dark: the case of crustacean stygofauna from eastern Australia. Invertebrate Systematics, 26(6), 583–591. CrossRefGoogle Scholar
Balke, M., Watts, C. H. S., Cooper, S. J. B., Humphreys, W. F., Vogler, A. P. (2004) A highly modified stygobitic diving beetle of the genus Copelatus (Coleoptera, Dytiscidae): taxonomy and cladistic analysis based on mtDNA sequences. Systematic Entomology, 29, 59–67.CrossRefGoogle Scholar
Barranco, P.Harvey, M. S. (2008) The first indigenous palpigrade from Australia: a new species of Eukoenenia (Palpigradi: Eukoeneniidae). Invertebrate Systematics, 22, 227–234.CrossRefGoogle Scholar
Bauzà-Ribot, M. M., Juan, C., Nardi, F., et al. (2012) Mitogenomic phylogenetic analysis supports continental-scale vicariance in subterranean thalassoid crustaceans. Current Biology, 22, 2069–2074CrossRefGoogle ScholarPubMed
Boulton, A. J. (2009) Recent progress in the conservation of groundwaters and their dependent ecosystems. Aquatic Conservation: Marine and Freshwater Ecosystems, 19, 731–735.CrossRefGoogle Scholar
Boulton, A. J., Fenwick, G., Hancock, P., Harvey, M. (2008) Biodiversity, functional roles and ecosystem services of groundwater invertebrates. Invertebrate Systematics, 22, 103–116.CrossRefGoogle Scholar
Boulton, A. J., Humphreys, W. F., Eberhard, S. M. (2003). Imperilled subsurface waters in Australia: biodiversity, threatening processes and conservation. Aquatic Ecosystem Health and Management, 6, 37–41. CrossRefGoogle Scholar
Bradbury, J. H. (1999). The systematics and distribution of Australian freshwater amphipods: a review. In: Proceedings of the Fourth International Crustacean Congress, Amsterdam, The Netherlands, Schram, F. R., von Vaupel Klein, J. C. (eds.). Leiden, The Netherlands, Brill, pp. 533–540.Google Scholar
Bradford, T., Adams, M., Humphreys, W. F., Austin, A. D., Cooper, S. J. B. (2010) DNA barcoding of stygofauna uncovers cryptic amphipod diversity in a calcrete aquifer in Western Australia’s arid zone. Molecular Ecology Resources, 10, 41–50. CrossRefGoogle Scholar
BMR Palaeogeographic Group (1990) Australia, Evolution of a Continent. Canberra, Australia: Australian Government Publishing Service.Google Scholar
Byrne, M., Yeates, D. K., Joseph, L., et al. (2008) Birth of a biome: synthesizing environmental and molecular studies of the assembly and maintenance of the Australian arid zone biota. Molecular Ecology, 17, 4398–4417.CrossRefGoogle Scholar
Chapelle, F. H. (2001) Groundwater Microbiology and Geochemistry. New York, John Wiley & Sons.Google Scholar
Chilton, C. (1882) On some subterranean Crustacea. Transactions and Proceedings of the New Zealand Institute, 14, 174–180.Google Scholar
Cho, J.-L., Humphreys, W. F. (2010) Ten new species of the genus Brevisomabathynella Cho, Park and Ranga Reddy, 2006 (Malacostraca, Bathynellacea, Parabathynellidae) from Western Australia. Journal of Natural History, 44, 993–1079.CrossRefGoogle Scholar
Cook, B. D., Abrams, K. M., Marshall, J. et al. (2012) Species diversity and genetic differentiation of stygofauna (Syncarida : Bathynellacea) across an alluvial aquifer in north-eastern Australia. Australian Journal of Zoology, 60, 152–158.CrossRefGoogle Scholar
Cooper, S. J. B., Hinze, S., Leys, R., Watts, C. H. S., Humphreys, W. F. (2002) Islands under the desert: molecular systematics and evolutionary origins of stygobitic water beetles (Coleoptera: Dytiscidae) from central Western Australia. Invertebrate Systematics, 16, 589–598.CrossRefGoogle Scholar
Cooper, S. J. B., Bradbury, J. H., Saint, K. M., et al. (2007) Subterranean archipelago in the Australian arid zone: mitochondrial DNA phylogeography of amphipods from central Western Australia. Molecular Ecology, 16, 1533–1544.CrossRefGoogle ScholarPubMed
Cooper, S. J. B., Saint, K. M., Taiti, S., Austin, A. D., Humphreys, W. F. (2008) Subterranean archipelago: mitochondrial DNA phylogeography of stygobitic isopods (Oniscidea:Haloniscus) from the Yilgarn region of Western Australia. Invertebrate Systematics, 22, 195.CrossRefGoogle Scholar
Culver, D. C., Pipan, T. (2009) The Biology of Caves and Other Subterranean Habitats, 1st edn. New York, Oxford University Press.Google Scholar
Culver, D. C., Master, L. L., Christman, M. C., HobbsIII, H. H., (2000). Obligate cave fauna of the 48 Contiguous United States. Conservation Biology, 14, 386–401.CrossRefGoogle Scholar
Danielopol, D. L., Pospisil, P., Rouch, R. (2000) Biodiversity in groundwater: a large-scale view. Trends in Ecology & Evolution, 15, 223–224.CrossRefGoogle ScholarPubMed
Des Châtelliers, M. C., Juget, J., Lafont, M, Martin, P. (2009) Subterranean aquatic Oligochaeta. Freshwater Biology, 54, 678–690. CrossRefGoogle Scholar
Dodson, J. R., Roberts, F. K., DeSalis, T. (1994) Palaeoenvironments and human impact at Burraga Swamp in montane rainforest, Barrington Tops National Park, New South Wales, Australia. Australian Geographer, 25, 161–169.CrossRefGoogle Scholar
Dubey, S., Shine, R. (2010) Restricted dispersal and genetic diversity in populations of an endangered montane lizard (Eulamprus leuraensis, Scincidae). Molecular Ecology, 19, 886–897.CrossRefGoogle Scholar
Duffy, J. E., Cardinale, B. J., France, K. E. et al. (2007) The functional role of biodiversity in food webs: Incorporating trophic complexity. Ecology Letters, 10, 522–538.CrossRefGoogle ScholarPubMed
Eamus, D., Froend, R., Murray, B. R., Hose, G. C. (2006) A functional methodology for determining the groundwater regime needed to maintain health of groundwater dependent ecosystems. Australian Journal of Botany, 54, 97–114.CrossRefGoogle Scholar
Eberhard, S. M., Davies, S. (2011) Impacts of drying climate on aquatic cave fauna in Jewel Cave and other caves in southwest Western Australia. Journal of the Australasian Cave & Karst Management Association, 83, 6–13.Google Scholar
Eberhard, S. M., Halse, S. A., Humphreys, W. F. (2005) Stygofauna in the Pilbara region, north-west Western Australia: a review. Journal of the Royal Society of Western Australia, 88, 167–176.Google Scholar
Eberhard, S. M., Halse, S. A., Williams, M. et al. (2009) Exploring the relationship between sampling efficiency and short-range endemism for groundwater fauna in the Pilbara region, Western Australia. Freshwater Biology, 54, 885–901.CrossRefGoogle Scholar
Fenwick, G. D. & Scarsbrook, M. (2004) Lightless, not lifeless: New Zealand’s subrerranean biodiversity. Water & Atmosphere, 12(3). Accessed 12/04/13, Google Scholar
Fenwick, G. D., Thorpe, H. R., White, P. A. (2004) Groundwater systems. In Freshwaters of New Zealand, Harding, J., Mosley, P., Pearson, C., Sorrell, B. (eds.). Christchurch: New Zealand Hydrological Society and New Zealand Limnological Society, pp. 291–298.Google Scholar
Ferreira, D., Malard, F., Dole-Olivier, M.-J., Gibert, J. (2007). Obligate groundwater fauna of France: diversity patterns and conservation implications. Biodiversity and Conservation, 16, 567–596. CrossRefGoogle Scholar
Gibert, J. (2001) Protocols for the Assessment and Conservation of Aquatic Life in the Subsurface (PASCALIS): a European Project (EVK2-CT-2001–00121). Available at . Accessed 1/5/13./
Gibert, J., Deharveng, L. (2002) Subterranean ecosystems: a truncated functional biodiversity. BioScience, 52, 473–481.CrossRefGoogle Scholar
Gibert, J., Stanford, J. A., Dole-Oliver, M. J., Ward, J. (1994). Basic attributes of groundwater ecosystems and prospects for research. In Groundwater Ecology, Gibert, J., Danielopol, D., Stanford, J., (eds.). California, Academic Press, pp. 7–40.CrossRefGoogle Scholar
Gibert, J., Brancelj, A., Camacho, A. et al. (2005) Groundwater biodiversity, Protocols for the ASsessment and Conservation of Aquatic Life In the Subsurface (PASCALIS): overview and main results. In: Proceedings of an International Symposium on World Subterranean Biodiversity, Gibert, J. (ed.). University of Lyon, Lyon, Villeurbanne, 8–10 December 2004, pp. 39–52.Google Scholar
Goldscheider, N., Hunkeler, D., Rossi, P. (2006) Review: microbial biocenoses in pristine aquifers and an assessment of investigative methods. Hydrogeology Journal, 14, 926–941.CrossRefGoogle Scholar
Gounot, A. M. (1994) Microbial ecology of ground waters. In Groundwater Ecology, Gibert, J., Danielopol, D., Stanford, J., (eds.). San Diego, California, Academic Press, pp. 189–215.CrossRefGoogle Scholar
Griebler, C. (2001) Microbial ecology of subsurface ecosystems. In: Groundwater Ecology: A Tool for Management of Water Resources, Griebler, C., Danielopol, D., Gibert, J., Nachtnebel, H. P., Notenboom, J. (eds.). Official Publication of the European Communities, Luxembourg, pp. 81–108.Google Scholar
Griebler, C., Lueders, T. (2009) Microbial biodiversity in groundwater ecosystems. Freshwater Biology, 54, 649–677.CrossRefGoogle Scholar
Griebler, C., Mindl, B., Slezak, D., Geiger-Kaiser, M. (2002) Distribution patterns of attached and suspended bacteria in pristine and contaminated shallow aquifers studied with an in situ sediment exposure microcosm. Aquatic Microbial Ecology, 28, 117–129.CrossRefGoogle Scholar
Guzik, M. T., Cooper, S. J. B., Humphreys, W. F., Cho, J.-L., Austin, A. (2008). Phylogeography of the ancient Parabathynellidae (Crustacea: Bathynellacea) from the Yilgarn region of Western Australia. Invertebrate Systematics, 22, 205–216. CrossRefGoogle Scholar
Guzik, M. T., Austin, A. D., Cooper, S. J. B., et al. (2010) Is the Australian subterranean fauna uniquely diverse?Invertebrate Systematics, 24, 407–418. CrossRefGoogle Scholar
Haack, S. K., Bekins, B. A. (2000) Microbial populations in contaminant plumes. Hydrogeology Journal, 8, 63–76.CrossRefGoogle Scholar
Halse, S. E., Ruprecht, J. K., Pinder, A. M. (2003) Salinisation and prospects for biodiversity in rivers and wetlands of south-west Western Australia. Australian Journal of Botany, 51, 673–688.CrossRefGoogle Scholar
Hancock, P. J. (2009) Alluvial Aquifer Fauna During and Following Drought. Groundwater in the Sydney Basin Symposium, Sydney, August 4–5.Google Scholar
Hancock, P. J., Boulton, A. J. (2008) Stygofauna biodiversity and endemism in four alluvial aquifers in eastern Australia. Invertebrate Systematics, 22, 117–126.CrossRefGoogle Scholar
Hancock, P. J., Boulton, A. J. (2009) Sampling groundwater fauna: efficiency of rapid assessment methods tested in bores in eastern Australia. Freshwater Biology, 54, 902–917.CrossRefGoogle Scholar
Hartland, A., Fenwick, G. D., Bury, S. J. (2011) Tracing sewage derived organic matter into a shallow groundwater food web using stable isotope and fluorescence signatures. Marine and Freshwater Research, 62, 119–129.Google Scholar
Harvey, M. S. (2002) Short-range endemism in the Australian fauna: some examples from non-marine environments. Invertebrate Systematics, 16, 555–570.CrossRefGoogle Scholar
Herman, J. S., Culver, D. C., Salzman, J. (2001) Groundwater ecosystems and the service of water purification. Stanford Environmental Law Journal, 20, 479–495.Google Scholar
HobbsIII, H. H. (2000) Crustacea. In: Ecosystems of the World 30. Subterranean Ecosystems, Wilkens, H., Culver, D. C., Humphreys, W. F. (eds.). Amsterdam, Elsevier.Google Scholar
Holmes, A. J., Tujula, N. A., Holley, M. et al. (2001) Phylogenetic structure of unusual aquatic microbial formations in Nullarbor caves, Australia, Environmental Microbiology, 3, 256–264.CrossRefGoogle ScholarPubMed
Hose, G. C. (2005) Assessing the need for groundwater quality guidelines using the species sensitivity distribution approach. Human and Ecological Risk Assessment, 11, 951–966.CrossRefGoogle Scholar
Hose, G. C. (2007) A response to comments on assessing the need for groundwater quality guidelines using the species sensitivity distribution approach. Human and Ecological Risk Assessment, 13, 241–246.CrossRefGoogle Scholar
Hose, G. C. (2008) Stygofauna Baseline Assessment for Kangaloon Borefield Investigations – Southern Highlands, NSW. Report to Sydney Catchment Authority, Access Macquarie Ltd, North Ryde.
Hose, G. C. (2009) Stygofauna Baseline Assessment for Kangaloon Borefield Investigations – Southern Highlands, NSW. Supplementary Report – Stygofauna molecular studies. Report to Sydney Catchment Authority, Access Macquarie Ltd, North Ryde.
Hose, G. C., Lategan, M. J. (2012) Sampling Strategies for Biological Assessment of Groundwater Ecosystems. CRC CARE Technical Report no. 21, CRC for Contamination Assessment and Remediation of the Environment, Adelaide, Australia.
Humphreys, W. F. (2001). Groundwater calcrete aquifers in the Australian arid zone: The context to an unfolding plethora of stygal biodiversity. Records of the Western Australian Museum, (Supplement 64), 63–83.CrossRefGoogle Scholar
Humphreys, W. (2006) Aquifers: the ultimate groundwater dependent ecosystem. Australian Journal Botany, 54, 115–132.CrossRefGoogle Scholar
Humphreys, W. F. (2007) Comment on: Assessing the need for groundwater quality guidelines for pesticides using the species sensitivity distribution approach by Hose. Human and Ecological Risk Assessment, 13, 236–240. CrossRefGoogle Scholar
Humphreys, W. F. (2008) Rising from Down Under; Developments in subterranean biodiversity in Australia from groundwater fauna perspective. Invertebrate Systematics, 22, 85–101.CrossRefGoogle Scholar
Humphreys, W. F. (2012) Diversity patterns in Australia. In Encyclopedia of Caves, 2nd edn, Culver, D., White, W. (eds.). San Diego, Academic Press, pp 203–219.CrossRefGoogle Scholar
Humphreys, W. F., Watts, C. H. S., Cooper, S. J. B., Leijs, R. (2009) Groundwater estuaries of salt lakes: buried pools of endemic biodiversity on the western plateau, Australia. Hydrobiologia, 626, 79–95.CrossRefGoogle Scholar
Humphreys, W., Tetu, S., Elbourne, L., et al. (2012) Geochemical and microbial diversity of bundera sinkhole, an anchialine system in the eastern Indian ocean. Natura Croatica, 21, 59–63.Google Scholar
Jasinska, E. J., Knott, B., Poulter, N. (1993) Spread of the introduced yabby, Cherax sp (Crustacea: Decapoda: Parastacidae), beyond the natural range of freshwater crayfishes in Western Australia. Journal of the Royal Society of Western Australia, 76, 67–69.Google Scholar
Jaume, D. 2008 Global diversity of spelaeogriphaceans & thermosbaenaceans (Crustacea; Spelaeogriphacea & Thermosbaenacea) in freshwater. Hydrobiologia, 595, 219–224CrossRefGoogle Scholar
Jaume, D., Boxshall, G. A. (2013) Life in extreme environments: anchialine caves. Marine Ecology. Encylopedia of Life Support Systems (EOLSS).
Juberthie, C. (2000) The diversity of the karstic and pseudokarstic hypogean habitats in the world. In Ecosystems of the World 30. Subterranean Ecosystems, Wilkens, H., Culver, D. C., Humphreys, W. F. (eds.). Amsterdam, Elsevier, pp. 17–39.Google Scholar
Karanovic, I. (2012) Recent Freshwater Ostracods of the World: Crustacea, Ostracoda, Podocopida. Berlin, Springer-Verlag.CrossRefGoogle Scholar
Kefford, B. J., Papas, P. J., Nugegoda, D. (2003) Relative salinity tolerance of macroinvertebrates from the Barwon River, Victoria, Australia. Marine and Freshwater Research, 54, 755–765.CrossRefGoogle Scholar
Korbel, K. (2013) Robust and sensitive indicators of groundwater health and biodiversity. Unpublished PhD Thesis. University of Technology, Sydney, Australia.
Korbel, K. L., Hose, G. C. (2011) A tiered framework for assessing groundwater ecosystem health. Hydrobiologia, 661, 329–349.CrossRefGoogle Scholar
Korbel, K. L., Hancock, P. J., Serov, P., Lim, R. P., Hose, G. C. (2013) Groundwater ecosystems change with landuse across a mixed agricultural landscape. Journal of Environmental Quality, 42, 380–390.CrossRefGoogle Scholar
Larned, S. T. (2012) Phreatic groundwater ecosystems: research frontiers for freshwater ecology. Freshwater Biology, 57, 885–906.CrossRefGoogle Scholar
Larson, H. L., Foster, R., Humphreys, W. F., Stevens, M. I. (2013). A new species of the blind cave gudgeon Milyeringa (Gobioidei, Eleotridae, Butinae) from Barrow Island, Western Australia, with a redescription of M. veritas Whitley. Zootaxa, 3616(2), 135–150.CrossRefGoogle Scholar
Lategan, M. J., Torpy, F., Newby, S., Stephenson, S., Hose, G. C. (2012) Fungal communities vary among aquifers, providing potential indicators of groundwater contamination. Geomicrobiology Journal, 29, 352–361.CrossRefGoogle Scholar
Leys, R., Watts, C. H. S. (2008) Systematics and evolution of the Australian subterranean hydroporine diving beetles (Dytiscidae), with notes on Carabhydrus. Invertebrate Systematics, 22, 217–225.CrossRefGoogle Scholar
Leys, R., Watts, C. H., Cooper, S. J., Humphreys, W. F. (2003) Evolution of subterranean diving beetles (Coleoptera: Dytiscidae: Hydroporini, Bidessini) in the arid zone of Australia. Evolution, 57, 2819–2834.Google Scholar
Leys, R., Roudney, B., Watts, C. H. S. (2010) Paroster extraordinarius sp. nov., a new groundwater diving beetle from the Flinders Ranges, with notes on other diving beetles from gravels in South Australia (Coleoptera: Dystiscidae). Australian Journal of Entomology, 49, 66–72.CrossRefGoogle Scholar
Malard, F. (2001) Groundwater contamination and ecological monitoring in a Mediterranean karst ecosystem in southern France. In Groundwater Ecology: A Tool for Management of Water Resources, Griebler, C., Danielopol, D., Gibert, J., Nachtnebel, H. P., Notenboom, J. (eds.). Official Publication of the European Communities, Luxembourg, pp. 183–194.Google Scholar
Michel, G., Malard, F., Deharveng, L. et al. (2009) Reserve selection for conserving groundwater biodiversity. Freshwater Biology, 54, 861–876. CrossRefGoogle Scholar
Millennium Ecosystem Assessment, (2005) Ecosystems and Human Well-being: Biodiversity Synthesis. Washington, DC, World Resources Institute.Google Scholar
Murphy, N. P., Adams, M., Austin, A. D. 2009. Independent colonization and extensive cryptic speciation of freshwater amphipods in the isolated groundwater springs of Australia’s Great Artesian Basin. Molecular Ecology, 18, 109–122.Google ScholarPubMed
Murray, B. R., Hose, G. C., Lacari, D., Eamus, D. (2006) Valuation of groundwater dependent ecosystems: a functional methodology incorporating ecosystem services. Australian Journal of Botany, 54, 221–229.CrossRefGoogle Scholar
Novarino, G., Warren, A., Butler, H. et al. (1997) Protozoan communities in aquifers: a review. FEMS Microbiology Review, 20, 261–275.CrossRefGoogle Scholar
Osborne, R. A. L., Zwingmann, H., Pogson, R. E., Colchester, D. M. (2006) Carboniferous clay deposits from Jenolan Caves, New South Wales: implications for timing of speleogenesis and regional geology. Australian Journal of Earth Sciences, 53, 377–405. CrossRefGoogle Scholar
Page, T. J., Humphreys, W. F., Hughes, J. M. (2008) Shrimps Down Under: Evolutionary relationships of subterranean crustaceans from Western Australia (Decapoda: Atyidae: Stygiocaris). PLoS ONE, 3, e1618, 1–12.CrossRefGoogle Scholar
Phillips, M. J., Page, T. J., de Bruyn, M. et al. (2013) The linking of plate tectonics and evolutionary divergences (Reply to Bauzà-Ribot et al.). Current Biology, 23, 603–605.CrossRefGoogle Scholar
Proudlove, G. S. (2001) The conservation status of hypogean fishes. Environmental Biology of Fish, 62, 239–249.Google Scholar
Schmidt, S., Hahn, H. J., Hatton, T., Humphreys, W. F. (2007) Do faunal assemblages reflect the exchange intensity in groundwater zones?Hydrobiologia, 583, 1–19.CrossRefGoogle Scholar
Schminke, H. K. (2011) Arthropoda: Crustacea: Malacostraca: Bathynellacea Parabathynellidae In: Invertebrate Fauna of the World, Vol. 21. Incheon, Republic of Korea: National Institute of Biological Resources.Google Scholar
Serov, P. A. (2002) A Preliminary Identification of Australian Syncarida (Crustacea). CRC Freshwater Ecology, Albury.Google Scholar
Seymour, J., Humphreys, W. F., Mitchell, J. G. (2007). Stratification of the microbial community inhabiting an anchialine sinkhole. Aquatic Microbial Ecology, 50, 11–24.CrossRefGoogle Scholar
Sinton, L. W. (1984) The macroinvertebrates of a sewage polluted aquifer. Hydrobiologia, 119, 161–169.CrossRefGoogle Scholar
Smith, R. J., Jeffries, T. C., Roudnew, B. et al. (2012) Metagenomic comparison of microbial communities inhabiting confined and unconfined aquifer ecosystems. Environmental Microbiology, 14, 240–253.CrossRefGoogle ScholarPubMed
Stanford, J. A., Ward, J. V. (1988) The hyporheic habitat of river ecosystems. Nature, 335, 64–66.CrossRefGoogle Scholar
Stein, H., Kellermann, C., Schmidt, S. I. et al. (2010) The potential use of fauna and bacteria as ecological indicators for the assessment of groundwater quality. Journal of Environmental Monitoring, 12, 242–254.CrossRefGoogle ScholarPubMed
Stephenson, S., Chariton, A., O’Sullivan, M. et al. (2013) Changes in microbial assemblages along a gradient of hydrocarbon contamination in a shallow coastal sand aquifer. Geomicrobiology Journal, in press.
Stoch, F., Artheau, M., Brancelj, A., Galassi, D. M. P., Malard, F. (2009). Biodiversity indicators in European ground waters: towards a predictive model of stygobiotic species richness. Freshwater Biology, 54, 745–755. CrossRefGoogle Scholar
Stumpp, C., Hose, G. C. (2013) Impact of water table drawdown and drying on subterranean aquatic fauna in in-vitro experiments. PLoS ONE, 8(11), e78502. CrossRefGoogle ScholarPubMed
Tetu, S. G., Breakwell, K., Elbourne, L. D. H. et al. (2013) Life in the dark: metagenomic evidence that a microbial slime community is driven by inorganic nitrogen metabolism. ISME Journal, in press.
Thurgate, M. E., Gough, J. S., Clarke, A. K., Serov, P., Spate, A. (2001) Stygofauna diversity and distribution in eastern Australian caves and karst areas. Records of the Western Australian Museum Supplement, 64, 49–62.CrossRefGoogle Scholar
Tomlinson, M. (2008) A framework for determining environmental water requirements for alluvial aquifer ecosystems. PhD thesis. Armidale, Australia: University of New England.
Tomlinson, M., Boulton, A. (2008) Subsurface groundwater dependent ecosystems: a review of their biodiversity, ecological processes and ecosystem services. Waterlines Occasional Paper No. 8, National Water Commission, Canberra, Australia.
Tomlinson, M., Boulton, A. J. (2010) Ecology and management of subsurface groundwater dependent ecosystems in Australia: a review. Marine and Freshwater Research, 61, 936–949.CrossRefGoogle Scholar
Tomlinson, M., Boulton, A. J., Hancock, P. J., Cook, P. G. (2007) Deliberate omission or unfortunate oversight: should stygofaunal surveys be included in routine groundwater monitoring programs?Hydrogeology Journal, 15, 1317–1320. CrossRefGoogle Scholar
von Rintelen, K., Page, T. J., Cai, Y. et al. (2012) Drawn to the dark side: a molecular phylogeny of freshwater shrimps (Crustacea: Decapoda: Caridea: Atyidae) reveals frequent cave invasions and challenges current taxonomic hypotheses. Molecular Phylogenetics and Evolution, 63, 82–96.CrossRefGoogle ScholarPubMed
Watts, C. H. S., Humphreys, W. F. (2009) Fourteen new Dytiscidae (Coleoptera) of the genera Limbodessus Guignot, Paroster Sharp and Exocelina Broun, from underground waters in Australia. Transactions of the Royal Society of South Australia, 133, 62–107.CrossRefGoogle Scholar
Watts, C. H. S., Hancock, P. J., Leys, R. (2007) A stygopitic Carabhydrus Watts (Dytiscidae, Coleoptera) from the Hunter Valley in New South Wales, Australia. Australian Journal of Entomology, 46, 56–59.CrossRefGoogle Scholar
Watts, C. H. S., Hancock, P. J., Leys, R. (2008) Paroster peelensis sp. nov.: a new stygobitic water beetle from alluvial gravels in northern New South Wales (Coleoptera: Dytiscidae). Australian Journal of Entomology, 47, 227–231.CrossRefGoogle Scholar
Wilson, G. D. F. (2008) Gondwanan groundwater: subterranean connections of Australian phreatoicidean isopods to India and New Zealand. Invertebrate Systematics, 22, 301–310.CrossRefGoogle Scholar
Wilson, G. D. F., Johnson, R. T. (1999) Ancient endemism among freshwater isopods (Crustacea, Phreatoicidea). In The Other 99%. The Conservation and Biodiversity of Invertebrates, Ponder, W., Lunney, D. (eds.). Transactions of the Royal Zoological Society of New South Wales. Mosman, Australia, Royal Zoological Society of New South Wales, pp. 264–268.CrossRefGoogle Scholar
Wilson, G. D. F., Keable, S. J. (1999). A new genus of phreatoicidean isopod (Crustacea) from the North Kimberley Region, Western Australia. Zoological Journal of the Linnean Society, London, 126, 51–79.CrossRefGoogle Scholar
Young, A. R. (1986) The geomorphic development of dells (Upland Swamps) on the Woronora Plateau, N. S. W., Australia. Zeitschrift for Geomorphologie, 30, 317–327.Google Scholar
Zektser, I. S. and Everett, L. G. (eds.) 2004. Groundwater Resources of the World and Their Use, UNESCO IHP-VI Series on Groundwater No. 6. Paris, France, UNESCO.

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×