Skip to main content Accessibility help
×
Hostname: page-component-78c5997874-xbtfd Total loading time: 0 Render date: 2024-11-19T09:24:04.930Z Has data issue: false hasContentIssue false

References

Published online by Cambridge University Press:  05 October 2015

Alexei J. Drummond
Affiliation:
University of Auckland
Remco R. Bouckaert
Affiliation:
University of Auckland
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2015

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Akaike, H (1974). ‘A new look at the statistical model identification’. In: IEEE Transactions on Automatic Control 19.6, pp. 716–723 (page 18).Google Scholar
Aldous, D (2001). ‘Stochastic models and descriptive statistics for phylogenetic trees, from Yule to today’. In: Statistical Science 16, pp. 23–34 (pages 31, 39).Google Scholar
Alekseyenko, AV, CJ, Lee and MA, Suchard (2008). ‘Wagner and Dollo: a stochastic duet by composing two parsimonious solos’. In: Systematic Biology 57.5, pp. 772–784 (page 115).Google ScholarPubMed
Allen, LJ (2003). An introduction to stochastic processes with applications to biology. Upper Saddle River, NJ: Pearson Education (page 12).Google Scholar
Amenta, N and J, Klingner (2002). ‘Case study: visualizing sets of evolutionary trees’. In: INFOVIS 2002. IEEE Symposium on Information Visualization, pp. 71–74 (page 159).Google Scholar
Anderson, RM and RM, May (1991). Infectious diseases of humans: dynamics and control. Oxford: Oxford University Press (page 34).Google Scholar
Arunapuram, P, I Edvardsson, M Golden, et al. (2013). ‘StatAlign 2.0: combining statistical alignment with RNA secondary structure prediction’. In: Bioinformatics 29.5, pp. 654–655 (page 9).Google Scholar
Atarhouch, T, L Rüber, EG Gonzalez, et al. (2006). ‘Signature of an early genetic bottleneck in a population of Moroccan sardines (Sardina pilchardus)’. In: Molecular Phylogenetics and Evolution 39.2, pp. 373–383 (page 133).Google Scholar
Avise, J (2000). Phylogeography: the history and formation of species. Cambridge, MA: Harvard University Press (page 68).Google Scholar
Ayres, D, A Darling, D Zwickl, et al. (2012). ‘BEAGLE: a common application programming interface and high-performance computing library for statistical phylogenetics’. In: Systematic Biology 61, pp. 170–173 (page 114).Google ScholarPubMed
Baele, G, P Lemey, T Bedford, et al. (2012). ‘Improving the accuracy of demographic and molecular clock model comparison while accommodating phylogenetic uncertainty’. In: Molecular Biology and Evolution 29.9, pp. 2157–2167 (pages 18, 19, 136, 137).Google ScholarPubMed
Baele, G, WLS Li, AJ Drummond, MA, Suchard and P, Lemey (2013a). ‘Accurate model selection of relaxed molecular clocks in Bayesian phylogenetics’. In: Molecular Biology and Evolution 30.2, pp. 239–243 (pages 18, 137).Google ScholarPubMed
Baele, G, P, Lemey and S, Vansteelandt (2013b). ‘Make the most of your samples: Bayes factor estimators for high-dimensional models of sequence evolution’. In: BMC Bioinformatics 14.1, p. 85 (page 19).Google Scholar
Bahl, J, MC Lau, GJ Smith, et al. (2011). ‘Ancient origins determine global biogeography of hot and cold desert cyanobacteria’. In: Nature Communications 2, art. 163 (page 96).Google ScholarPubMed
Bahlo, M and RC, Griffiths (2000). ‘Inference from gene trees in a subdivided population’. In: Theoretical Population Biology 57.2, pp. 79–95 (page 31).Google Scholar
Barnes, I, P Matheus, B Shapiro, D, Jensen and A, Cooper (2002). ‘Dynamics of Pleistocene population extinctions in Beringian brown bears’. In: Science 295, p. 2267 (page 31).Google ScholarPubMed
Barrett, M, MJ, Donoghue and E, Sober (1991). ‘Against consensus’. In: Systematic Zoology 40.4, pp. 486–493 (page 159).Google Scholar
Barton, NH, F, Depaulis and AM, Etheridge (2002). ‘Neutral evolution in spatially continuous populations’. In: Theoretical Population Biology 61.1, pp. 31–48 (page 74).Google ScholarPubMed
Barton, NH, J, Kelleher and AM, Etheridge (2010a). ‘A new model for extinction and recolonization in two dimensions: quantifying phylogeography’. In: Evolution 64.9, pp. 2701–2715 (page 74).Google ScholarPubMed
Barton, NH, AM, Etheridge and A, Veber (2010b). ‘A new model for evolution in a spatial continuum’. In: Electronic Journal of Probability 15, pp. 162–216 (page 74).Google Scholar
Beaumont, MA, R, Nielsen, C, Robert, et al. (2010). ‘In defence of model-based inference in phylogeography’. In: Molecular Ecology 19.3, pp. 436–446 (page 69).Google ScholarPubMed
Bedford, T, S Cobey, P Beerli and M, Pascual (2010). ‘Global migration dynamics underlie evolution and persistence of human influenza A (H3N2)’. In: PLoS Pathogens 6.5, e1000918 (page 71).Google Scholar
Beerli, P (2004). ‘Effect of unsampled populations on the estimation of population sizes and migration rates between sampled populations’. In: Molecular Ecology 13.4, pp. 827–836 (page 72).Google ScholarPubMed
Beerli, P (2006). ‘Comparison of Bayesian and maximum-likelihood inference of population genetic parameters.In: Bioinformatics 22.3, pp. 341–345 (page 14).Google ScholarPubMed
Beerli, P and J, Felsenstein (1999). ‘Maximum-likelihood estimation of migration rates and effective population numbers in two populations using a coalescent approach’. In: Genetics 152.2, pp. 763–773 (pages 6, 31).Google ScholarPubMed
Beerli, P and J, Felsenstein (2001). ‘Maximum likelihood estimation of a migration matrix and effective population sizes in n subpopulations by using a coalescent approach.’ In: Proceedings of the National Academy of Sciences USA 98.8, pp. 4563–4568 (pages 6, 31, 69, 71, 72).Google ScholarPubMed
Belfiore, N, L, Liu and C, Moritz (2008). ‘Multilocus phylogenetics of a rapid radiation in the genus Thomomys (Rodentia: Geomyidae)’. In: Systematic Biology 57.2, pp. 294–310 (page 120).Google Scholar
Benner, P, M, Bačák and PY, Bourguignon (2014). ‘Point estimates in phylogenetic reconstructions’. In: Bioinformatics 30.17, pp. i534–i540 (page 154).Google ScholarPubMed
Berger, JO (2006). ‘The case for objective Bayesian analysis’. In: Bayesian Analysis 1.3, pp. 385–402 (page 20).Google Scholar
Berger, JO and JM, Bernardo (1992). ‘On the development of reference priors’. In: Bayesian statistics. Ed. by JM, Bernardo, JO Berger, AP Dawid and AFM, Smith. Vol. 4. Oxford: Oxford University Press, pp. 35–60 (pages 14, 127).Google Scholar
Biek, R, AJ, Drummond and M, Poss (2006). ‘A virus reveals population structure and recent demographic history of its carnivore host’. In: Science 311, pp. 538–541 (pages 73, 133).Google ScholarPubMed
Biek, R, JC Henderson, LA Waller, CE, Rupprecht and LA, Real (2007). ‘A high-resolution genetic signature of demographic and spatial expansion in epizootic rabies virus’. In: Proceedings of the National Academy of Sciences USA 104.19, pp. 7993–7998 (page 73).Google ScholarPubMed
Bielejec, F, A Rambaut, MA Suchard and P, Lemey (2011). ‘SPREAD: spatial phylogenetic reconstruction of evolutionary dynamics’. In: Bioinformatics 27.20, pp. 2910–2912 (page 135).Google ScholarPubMed
Bielejec, F, P Lemey, G Baele, A, Rambaut and MA, Suchard (2014). ‘Inferring heterogeneous evolutionary processes through time: from sequence substitution to phylogeography’. In: Systematic Biology 63.4, pp. 493–504 (page 113).Google ScholarPubMed
Billera, L, S Holmes and K, Vogtmann (2001). ‘Geometry of the space of phylogenetic trees’. In: Advances in Applied Mathematics 27, pp. 733–767 (page 154).Google Scholar
Bloomquist, EW and MA, Suchard (2010). ‘Unifying vertical and nonvertical evolution: a stochastic ARG-based framework’. In: Systematic Biology 59.1, pp. 27–41 (pages 6, 10).Google ScholarPubMed
Bofkin, L and N, Goldman (2007). ‘Variation in evolutionary processes at different codon positions’. In: Molecular Biology and Evolution 24.2, pp. 513–521 (pages 100, 104, 146).Google ScholarPubMed
Bolstad, WM (2011). Understanding computational Bayesian statistics. Vol. 644. Hoboken, NJ: Wiley (page 10).Google Scholar
Boni, MF, D, Posada and MW, Feldman (2007). ‘An exact nonparametric method for inferring mosaic structure in sequence triplets’. In: Genetics 176.2, pp. 1035–1047 (page 97).Google ScholarPubMed
Bouckaert, RR (2010). ‘DensiTree: making sense of sets of phylogenetic trees’. In: Bioinformatics 26.10, pp. 1372–1373 (pages 156, 163).Google ScholarPubMed
Bouckaert, RR and D, Bryant (2012). ‘A rough guide to SNAPP’. In: BEAST 2 wiki (pages x, 124).Google Scholar
Bouckaert, RR, P, Lemey, M, Dunn, et al. (2012). ‘Mapping the origins and expansion of the Indo-European language family’. In: Science 337, pp. 957–960 (pages 57, 135).Google ScholarPubMed
Bouckaert, RR, M, Alvarado-Mora and J Rebello, Pinho (2013). ‘Evolutionary rates and HBV: issues of rate estimation with Bayesian molecular methods’. In: Antiviral Therapy 18, pp. 497–503 (pages 57, 100, 145).Google Scholar
Bouckaert, RR, J Heled, D Kühnert, et al. (2014). ‘BEAST 2: a software platform for Bayesian evolutionary analysis’. In: PLoS Computational Biology 10.4, e1003537 (page 16).Google Scholar
Bradley, RK, A Roberts, M Smoot, et al. (2009). ‘Fast statistical alignment’. In: PLoS Computational Biology 5.5, e1000392 (page 9).Google Scholar
Brooks, S and A, Gelman (1998). ‘Assessing convergence of Markov chain Monte Carlo algorithms’. In: Journal of Computational and Graphical Statistics 7, pp. 434–455 (page 140).Google Scholar
Brooks, S, A Gelman, GL Jones and XL, Meng (2010). Handbook of Markov chain Monte Carlo. Boca Raton, FL: Chapman & Hall/CRC. (page 10).Google Scholar
Brown, JM (2014). ‘Predictive approaches to assessing the fit of evolutionary models’. In: Systematic Biology 63.3, pp. 289–292 (page 18).Google Scholar
Brown, RP and Z, Yang (2011). ‘Rate variation and estimation of divergence times using strict and relaxed clocks’. In: BMC Evolutionary Biology 11, art. 271 (pages 105, 106, 144, 146).Google Scholar
Bryant, D (2003). ‘A classification of consensus methods for phylogenetics’. In: BioConsensus (Piscataway, NJ, 2000/2001). Providence, RI: AMS, pp. 163–184 (page 159).Google Scholar
Bryant, D, RR, Bouckaert, J, Felsenstein, N, Rosenberg, and A, RoyChoudhury (2012). ‘Inferring species trees directly from biallelic genetic markers: bypassing gene trees in a full coalescent analysis’. In: Molecular Biology and Evolution 29.8, pp. 1917–1932 (pages 7, 115, 119, 123).Google Scholar
Bunce, M, TH, Worthy, T, Ford, et al. (2003). ‘Extreme reversed sexual size dimorphism in the extinct New Zealand moa Dinornis.’In: Nature 425, pp. 172–175 (page 129).Google Scholar
Burnham, K and D, Anderson (2002). Model selection and multimodel inference: a practical information-theoretic approach. New York: Springer Verlag (page 32).Google Scholar
Camargo, A, LJ, Avila M Morando and J, WSites (2012). ‘Accuracy and precision of species trees: effects of locus, individual, and base pair sampling on inference of species trees in lizards of the Liolaemus darwinii group (Squamata, Liolaemidae)’. In: Systematic Biology 61.2, pp. 272–288 (page 120).Google Scholar
Campos, PF, E Willerslev, A Sher, et al. (2010). ‘Ancient DNA analyses exclude humans as the driving force behind late Pleistocene musk ox (Ovibos moschatus) population dynamics’. In: Proceedings of the National Academy of Sciences USA 107.12, pp. 5675–5680 (page 134).Google Scholar
Cavalli-Sforza, L and A, Edwards (1967). ‘Phylogenetic analysis: models and estimation procedures’. In: American Journal of Human Genetics 19, pp. 233–257 (pages 24, 25).Google Scholar
Chaves, JA and TB, Smith (2011). ‘Evolutionary patterns of diversification in the Andean hummingbird genus Adelomyia’. In: Molecular Phylogenetics and Evolution 60.2, pp. 207–218 (page 165).Google Scholar
Chung, Y and C, Ané (2011). ‘Comparing two Bayesian methods for gene tree/species tree reconstruction: simulations with incomplete lineage sorting and horizontal gene transfer’.In: Systematic Biology 60.3, pp. 261–275 (page 120).Google Scholar
Coop, G and RC, Griffiths (2004). ‘Ancestral inference on gene trees under selection’. In: Theoretical Population Biology 66.3, pp. 219–232 (pages 69, 76).Google Scholar
Cox, J, J, Ingersoll and S, Ross (1985). ‘A theory of the term structure of interest rates’. In: Econometrica 53, pp. 385–407 (page 125).Google Scholar
Currie, TE, SJ Greenhill, R Mace, et al. (2010). ‘Is horizontal transmission really a problem for phylogenetic comparative methods? A simulation study using continuous cultural traits’. In: Philosophical Transactions of the Royal Society B: Biological Sciences 365, pp. 3903–3912 (page 97).Google Scholar
Debruyne, R, G Chu, CE King, et al. (2008). ‘Out of America: ancient DNA evidence for a new world origin of late quaternary woolly mammoths’. In: Current Biology 18.17, pp. 1320–1326 (page 133).Google Scholar
Degnan, JH and NA, Rosenberg (2006). ‘Discordance of species trees with their most likely gene trees’. In: PLoS Genetics 2.5, e68 (page 116).Google Scholar
Didelot, X, J, Gardy and C, Colijn (2014). ‘Bayesian inference of infectious disease transmission from whole genome sequence data’. In: Molecular Biology and Evolution, msu121 (page 41).Google Scholar
Dinča, V, VA, Lukhtanov, G, Talavera and R, Vila (2011). ‘Unexpected layers of cryptic diversity in wood white Leptidea butterflies’. In: Nature Communications 2, art. 324 (pages 121, 165).Google Scholar
Drummond, AJ (2002). ‘Computational statistical inference for molecular evolution and population genetics’. PhD thesis. University of Auckland (page 106).
Drummond, AJ and A, Rambaut (2007). ‘BEAST: Bayesian evolutionary analysis by sampling trees’. In: BMC Evolutionary Biology 7, art. 214 (pages 14, 74, 79).Google Scholar
Drummond, AJ and AG, Rodrigo (2000). ‘Reconstructing genealogies of serial samples under the assumption of a molecular clock using serial-sample UPGMA’. In: Molecular Biology and Evolution 17.12, pp. 1807–1815 (page 31).Google Scholar
Drummond, AJ and MA, Suchard (2008). ‘Fully Bayesian tests of neutrality using genealogical summary statistics’. In: BMC Genetics 9, art. 68 (page 18).Google Scholar
Drummond, AJ and MA, Suchard (2010). ‘Bayesian random local clocks, or one rate to rule them all’. In: BMC Biology 8.1, art. 114 (pages 63–65, 83, 146).Google ScholarPubMed
Drummond, AJ, R, Forsberg and AG, Rodrigo (2001). ‘The inference of stepwise changes in substitution rates using serial sequence samples.’In: Molecular Biology and Evolution 18.7, pp. 1365–1371 (page 31).Google Scholar
Drummond, AJ, GK Nicholls, AG Rodrigo andW, Solomon (2002). ‘Estimating mutation parameters, population history and genealogy simultaneously from temporally spaced sequence data’. In: Genetics 161.3, pp. 1307–1320 (pages 6, 14, 31, 33, 34, 66, 74, 109).Google Scholar
Drummond, AJ, OG Pybus, A Rambaut, R, Forsberg and AG, Rodrigo (2003a). ‘Measurably evolving populations’. In: Trends in Ecology & Evolution 18, pp. 481–488 (pages 8, 66, 128, 152).Google Scholar
Drummond, AJ, OG, Pybus and A, Rambaut (2003b). ‘Inference of viral evolutionary rates from molecular sequences’. In: Advances in Parasitology 54, pp. 331–358 (page 149).Google Scholar
Drummond, AJ, A, Rambaut, B, Shapiro and OG, Pybus (2005). ‘Bayesian coalescent inference of past population dynamics from molecular sequences’. In: Molecular Biology and Evolution 22.5, pp. 1185–1192 (pages 32, 108, 130, 133).Google Scholar
Drummond, AJ, SYW Ho, MJ Phillips and A, Rambaut (2006). ‘Relaxed phylogenetics and dating with confidence’. In: PLoS Biology 4.5, e88 (pages 62, 63, 73, 144).Google Scholar
Drummond, AJ, MA Suchard, D Xie and A, Rambaut (2012). ‘Bayesian phylogenetics with BEAUti and the BEAST 1.7’. In: Molecular Biology and Evolution 29.8, pp. 1969–1973 (pages 16, 74).Google Scholar
Duffy, S, LA, Shackelton and EC, Holmes (2008). ‘Rates of evolutionary change in viruses: patterns and determinants’. In: Nature Reviews Genetics 9.4, pp. 267–276 (pages 20, 152).Google Scholar
Durbin, R, SR Eddy, A Krogh and G, Mitchison (1998). Biological sequence analysis: probabilistic models of proteins and nucleic acids. Cambridge: Cambridge University Press (page 8).CrossRefGoogle Scholar
Edgar, RC (2004a). ‘MUSCLE: a multiple sequence alignment method with reduced time and space complexity’. In: BMC Bioinformatics 5, p. 113 (page 9).Google Scholar
Edgar, RC (2004b). ‘MUSCLE: multiple sequence alignment with high accuracy and high throughput’. In: Nucleic Acids Research 32.5, pp. 1792–1797 (page 9).Google Scholar
Edwards, A (1970). ‘Estimation of the branch points of a branching diffusion process (with discussion)’. In: Journal of the Royal Statistical Society, Series B 32, pp. 155–174 (page 38).Google Scholar
Edwards, A and L, Cavalli-Sforza (1965). ‘A method for cluster analysis’. In: Biometrics, pp. 362–375 (page 6).Google Scholar
Edwards, CTT, EC Holmes, DJ Wilson, et al. (2006). ‘Population genetic estimation of the loss of genetic diversity during horizontal transmission of HIV-1’. In: BMC Evolutionary Biology 6, art. 28 (page 32).Google Scholar
Etienne, R, B Haegeman, T Stadler, et al. (2012). ‘Diversity-dependence brings molecular phylogenies closer to agreement with the fossil record’. In: Proceedings of the Royal Society B:Biological Sciences, doi:10.1098/rspb.2011.1439 (page 39).CrossRefGoogle Scholar
Ewing, G and AG, Rodrigo (2006a). ‘Coalescent-based estimation of population parameters when the number of demes changes over time’. In: Molecular Biology and Evolution 23.5, pp. 988–996 (pages 6, 71).Google Scholar
Ewing, G and AG, Rodrigo (2006b). ‘Estimating population parameters using the structured serial coalescent with Bayesian MCMC inference when some demes are hidden’. In: Evolutionary Bioinformatics 2, pp. 227–235 (page 72).Google Scholar
Ewing, G, G, Nicholls and AG, Rodrigo (2004). ‘Using temporally spaced sequences to simultaneously estimate migration rates, mutation rate and population sizes in measurably evolving populations’. In: Genetics 168.4, pp. 2407–2420 (pages 6, 14, 69, 71, 72).Google Scholar
Faria, NR, MA Suchard, A Abecasis, et al. (2012). ‘Phylodynamics of the HIV-1 CRF02_AG clade in Cameroon’. In: Infection, Genetics and Evolution 12.2, pp. 453–460 (page 135).Google Scholar
Fearnhead, P and P, Donnelly (2001). ‘Estimating recombination rates from population genetic data’. In: Genetics 159.3, pp. 1299–1318 (page31).Google Scholar
Fearnhead, P and C, Sherlock (2006). ‘An exact Gibbs sampler for the Markov-modulated Poisson process’. In: Journal of the Royal Statistical Society, Series B 68.5, pp. 767–784 (page 72).Google Scholar
Felsenstein, J (1981). ‘Evolutionary trees from DNA sequences: a maximum likelihood approach’. In: Journal of Molecular Evolution 17, pp. 368–376 (pages 6, 49, 53, 55, 69, 70).Google Scholar
Felsenstein, J (1985). ‘Phylogenies and the comparative method’. In: The American Naturalist 125.1, pp. 1–15 (page 73).Google Scholar
Felsenstein, J (1988). ‘Phylogenies from molecular sequences: inference and reliability’. In: Annual Review of Genetics 22, pp. 521–565 (page 31).Google Scholar
Felsenstein, J (1992). ‘Estimating effective population size from samples of sequences: inefficiency of pairwise and segregating sites as compared to phylogenetic estimates’. In: Genetical Research 59, pp. 139–147 (pages 29, 31).Google Scholar
Felsenstein, J (2001). ‘The troubled growth of statistical phylogenetics’. In: Systematic Biology 50.4, pp. 465–467 (pages 6, 19, 68).Google Scholar
Felsenstein, J (2004). Inferring phylogenies. Sunderland, MA: Sinauer Associates (pages 14, 98).Google Scholar
Felsenstein, J (2006). ‘Accuracy of coalescent likelihood estimates: do we need more sites, more sequences, or more loci?’In: Molecular Biology and Evolution 23.3, pp. 691–700 (pages 6, 131, 151).Google ScholarPubMed
Finlay, EK, C Gaillard, S Vahidi, et al. (2007). ‘Bayesian inference of population expansions in domestic bovines’. In: Biology Letters 3.4, pp. 449–452 (page 133).Google Scholar
Firth, C, A Kitchen, B Shapiro, et al. (2010). ‘Using time-structured data to estimate evolutionary rates of double-stranded DNA viruses’. In: Molecular Biology and Evolution 27, pp. 2038–2051 (page 152).Google Scholar
Fisher, R (1930). Genetical theory of natural selection. Oxford: Clarendon Press (page 28).CrossRefGoogle Scholar
FitzJohn, R (2010). ‘Quantitative traits and diversification’. In: Systematic Biology 59.6, pp. 619–633 (page 39).Google Scholar
FitzJohn, RG, WP, Maddison and SP, Otto (2009). ‘Estimating trait-dependent speciation and extinction rates from incompletely resolved phylogenies’. In: Systematic Biology 58.6, pp. 595–611 (page 39).Google Scholar
Ford, CB, PL Lin, MR Chase, et al. (2011). ‘Use of whole genome sequencing to estimate the mutation rate of Mycobacterium tuberculosis during latent infection’. In: Nature Genetics 43.5, pp. 482–486 (page 66).Google Scholar
Fraser, C, CA Donnelly, S Cauchemenz, et al. (2009). ‘Pandemic potential of a strain of influenza A (H1N1): early findings’. In: Science 324, pp. 1557–1561 (page 133).Google Scholar
Fu, YX (1994). ‘A phylogenetic estimator of effective population size or mutation rate’. In: Genetics 136.2, pp. 685–692 (page 29).Google ScholarPubMed
Gavryushkina, A, D, Welch and AJ, Drummond (2013). ‘Recursive algorithms for phylogenetic tree counting’. In: Algorithms in Molecular Biology 8, p. 26 (pages 25, 42).Google Scholar
Gavryushkina, A, D Welch, T Stadler and AJ, Drummond (2014). ‘Bayesian inference of sampled ancestor trees for epidemiology and fossil calibration’. In: arXiv preprint arXiv:1406.4573 (pages 42, 67, 111, 112).Google Scholar
Gelman, A and DB, Rubin (1992). ‘A single series from the Gibbs sampler provides a false sense of security’. In: Bayesian statistics. Ed. by J Bernardo, JO Berger, JO, Dawid and AFM, Smith. Vol. 4. Oxford: Oxford University Press, pp. 625–631 (page 140).Google Scholar
Gelman, A, GO, Roberts and WR, Gilks (1996). ‘Efficient Metropolis jumping rules’. In: Bayesian statistics. Ed. by JM, Bernardo, JO, Berger, AP, Dawid and AFM, Smith. Vol. 5. Oxford: Oxford University Press, pp. 599–608 (page 89).Google Scholar
Gelman, A, J Carlin, H Stern and D, Rubin (2004). Bayesian data analysis. 2nd edn. New York: Chapman & Hall/CRC (pages 10, 140).Google Scholar
Geman, S and D, Geman (1984). ‘Stochastic relaxation, Gibbs distribution, and the Bayesian restoration of images’. In: IEEE Transactions on Pattern Analysis and Machine Intelligence 6, pp. 721–741 (pages 16, 139).Google Scholar
Gernhard, T (2008). ‘The conditioned reconstructed process’.In: Journal of Theoretical Biology 253.4, pp. 769–778 (page 38).Google Scholar
Geweke, J (1992). ‘Evaluating the accuracy of sampling-based approaches to the calculation of posterior moments’. In: Bayesian statistics. Ed. by JM Bernardo, JO Berger, JO, Dawid and AFM, Smith. Vol. 4. Oxford: Oxford University Press, pp. 169–193 (page 140).Google Scholar
Gill, MS, P Lemey, NR Faria, et al. (2013). ‘Improving Bayesian population dynamics inference: a coalescent-based model for multiple loci’. In: Molecular Biology and Evolution 30.3, pp. 713–724 (page 33).Google Scholar
Gillespie, JH (2001). ‘Is the population size of a species relevant to its evolution?’In: Evolution 55.11, pp. 2161–2169 (page 29).Google Scholar
Goldman, N and Z, Yang (1994). ‘A codon-based model of nucleotide substitution for proteincoding DNA sequences’. In: Molecular Biology and Evolution 11, pp. 725–736 (page 51).Google Scholar
Goldstein, M (2006). ‘Subjective Bayesian analysis: principles and practice’. In: Bayesian Analysis 1.3, pp. 403–420 (page 20).Google Scholar
Graham, M and J, Kennedy (2010). ‘A survey of multiple tree visualisation’. In: Information Visualization 9.4, pp. 235–252 (page 156).Google Scholar
Gray, RD and QD, Atkinson (2003). ‘Language-tree divergence times support the Anatolian theory of Indo-European origin’. In: Nature 426, pp. 435–439 (page 57).Google Scholar
Gray, RD, AJ, Drummond and SJ, Greenhill (2009). ‘Language phylogenies reveal expansion pulses and pauses in Pacific settlement’. In: Science 323, pp. 479–483 (page 57).Google Scholar
Gray, RR, AJ Tatem, JA Johnson, et al. (2011). ‘Testing spatiotemporal hypothesis of bacterial evolution using methicillin-resistant Staphylococcus aureus ST239 genome-wide data within a Bayesian framework’. In: Molecular Biology and Evolution 28.5, pp. 1593–1603 (page 75).Google Scholar
Green, P (1995). ‘Reversible jump Markov chain Monte Carlo computation and Bayesian model determination’.In: Biometrika 82, pp. 711–732 (pages 16, 17).Google Scholar
Green, P, N, Hjort and S, Richardson (2003). Highly structured stochastic systems. Oxford: Oxford University Press (page 16).Google Scholar
Greenhill, SJ, AJ, Drummond and RD, Gray (2010). ‘How accurate and robust are the phylogenetic estimates of Austronesian language relationships?’In: PloS One 5.3, e9573 (page 97).Google Scholar
Grenfell, BT, OG Pybus, JR Gog, et al. (2004). ‘Unifying the epidemiological and evolutionary dynamics of pathogens’. In: Science 303, pp. 327–332 (page 74).Google Scholar
Griffiths, RC (1989). ‘Genealogical-tree probabilities in the infinitely-many-site model’. In: Journal of Mathematical Biology 27.6, pp. 667–680 (page 31).Google Scholar
Griffiths, RC and P, Marjoram (1996). ‘Ancestral inference from samples of DNA sequences with recombination’. In: Journal of Computational Biology 3.4, pp. 479–502 (pages 10, 31).Google Scholar
Griffiths, RC and S, Tavaré (1994). ‘Sampling theory for neutral alleles in a varying environment’. In: Philosophical Transactions of the Royal Society B: Biological Sciences 344, pp. 403–410 (pages 29, 31).Google Scholar
Grummer, JA, RW, Bryson and TW, Reeder (2014). ‘Species delimitation using Bayes factors: simulations and application to the Sceloporus scalaris species group (Squamata: Phrynosomatidae)’. In: Systematic Biology 63.2, pp. 119–133 (page 122).Google Scholar
Gu, X,, YX Fu and WH, Li (1995). ‘Maximum likelihood estimation of the heterogeneity of substitution rate among nucleotide sites’. In: Molecular Biology and Evolution 12.4, pp. 546–557 (page 54).Google Scholar
Hailer, F, VE Kutschera, BM Hallström, et al. (2012).‘Nuclear genomic sequences reveal that polar bears are an old and distinct bear lineage’. In: Science 336, pp. 344–347. eprint: www.sciencemag.org/content/336/6079/344.full.pdf (page 121).
Harding, E (1971). ‘The probabilities of rooted tree-shapes generated by random bifurcation’. In: Advances in Applied Probability 3, pp. 44–77 (page 36).Google Scholar
Harvey, PH and MD, Pagel (1991). The comparative method in evolutionary biology. Oxford: Oxford University Press (page 73).Google Scholar
Hasegawa, M, H, Kishino and T, Yano (1985). ‘Dating the human–ape splitting by a molecular clock of mitochondrial DNA’. In: Journal of Molecular Evolution 22, pp. 160–174 (pages 50,104).Google Scholar
Hastings, W (1970). ‘Monte Carlo sampling methods using Markov chains and their applications’. In: Biometrika 57, pp. 97–109 (pages 14, 16, 20, 31).Google Scholar
He, M, F Miyajima, P, Roberts, et al. (2013). ‘Emergence and global spread of epidemic healthcare-associated Clostridium difficile’. In: Nature Genetics 45.1, pp. 109–113 (page 134).Google Scholar
Heath, TA, JP, Huelsenbeck and T, Stadler (2014). ‘The fossilized birth–death process for coherent calibration of divergence-time estimates’. In: Proceedings of the National Academy of Sciences USA 111.29, pp. 2957–2966 (pages 67, 112).Google Scholar
Heidelberger, P and PD, Welch (1983). ‘Simulation run length control in the presence of an initial transient’. In: Operations Research 31.6, pp. 1109–1144 (page 140).Google Scholar
Hein, J, M, Schierup and C, Wiuf (2004). Gene genealogies, variation and evolution: a primer in coalescent theory. Oxford: Oxford University Press (page 27).Google Scholar
Heled, J and RR, Bouckaert (2013). ‘Looking for trees in the forest: summary tree from posterior samples’. In: BMC Evolutionary Biology 13.1, art. 221 (pages 159, 160, 163).Google Scholar
Heled, J and AJ, Drummond (2008). ‘Bayesian inference of population size history from multiple loci’. In: BMC Evolutionary Biology 8.1, art. 289 (pages 6, 17, 32, 110, 130, 131, 151).Google Scholar
Heled, J and AJ, Drummond (2010). ‘Bayesian inference of species trees from multilocus data’. In: Molecular Biology and Evolution 27.3, pp. 570–580 (pages 7, 8, 100, 113, 116, 119, 122).Google Scholar
Heled, J and AJ, Drummond (2012). ‘Calibrated tree priors for relaxed phylogenetics and divergence time estimation’. In: Systematic Biology 61.1, pp. 138–149 (pages 66, 84, 110, 111, 127).Google Scholar
Heled, JandAJ, Drummond(2013). ‘Calibrated birth–death phylogenetic time-tree priors for Bayesian inference’. In: arXiv preprint arXiv:1311.4921 (pages 66, 110, 111, 127).Google Scholar
Hey, J (2010). ‘Isolation with migration models for more than two populations’. In: Molecular Biology and Evolution 27.4, pp. 905–920 (page 8).Google Scholar
Hillis, D, T Heath and K St, John (2005). ‘Analysis and visualization of tree space’. In: Systematic Biology 54.3, pp. 471–482 (page 159).Google Scholar
Ho, SY and B, Shapiro (2011). ‘Skyline-plot methods for estimating demographic history from nucleotide sequences’. In: Molecular Ecology Resources 11.3, pp. 423–434 (page 97).Google Scholar
Ho, SYW, MJ, Phillips, AJ, Drummond and A, Cooper (2005). ‘Accuracy of rate estimation using relaxed-clock models with a critical focus on the early Metazoan radiation’. In: Molecular Biology and Evolution 22, pp. 1355–1363 (page 144).Google Scholar
Hoffman, J, S Grant, J, Forcada and C, Phillips (2011). ‘Bayesian inference of a historical bottleneck in a heavily exploited marine mammal’.In: Molecular Ecology 20.19, pp. 3989– 4008 (page 133).Google Scholar
Hoffman, MD and A, Gelman (2014). ‘The no-U-turn sampler: adaptively setting path lengths in Hamiltonian Monte Carlo’.In: Journal of Machine Learning Research 15, pp. 1593–1623 (page 156).Google Scholar
Höhna, S and AJ, Drummond (2012). ‘Guided tree topology proposals for Bayesian phylogenetic inference’. In: Systematic Biology 61.1, pp. 1–11 (pages 113, 150, 156, 159, 161).Google Scholar
Höhna, S, T Stadler, F, Ronquist and T, Britton (2011). ‘Inferring speciation and extinction rates under different sampling schemes’. In: Molecular Biology and Evolution 28.9, pp. 2577–2589 (page 98).Google Scholar
Holder, MT, PO, Lewis, DL, Swofford and B, Larget (2005). ‘Hastings ratio of the LOCAL proposal used in Bayesian phylogenetics’. In: Systematic Biology 54, pp. 961–965 (page 16).Google Scholar
Holder, MT, J, Sukumaran and PO, Lewis (2008). ‘A justification for reporting the majorityrule consensus tree in Bayesian phylogenetics’. In: Systematic Biology 57.5, pp. 814–821 (page 160).Google Scholar
Holmes, EC and BT, Grenfell (2009). ‘Discovering the phylodynamics of RNA viruses’. In: PLoS Computational Biology 5.10, e1000505 (page 74).Google Scholar
Holmes, EC, LQ, Zhang, P, Simmonds, AS, Rogers and AJ Leigh, Brown (1993). ‘Molecular investigation of human immunodeficiency virus (HIV) infection in a patient of an HIV-infected surgeon’. In: Journal of Infectious Diseases 167.6, pp. 1411–1414 (page 31).Google Scholar
Hudson, RR (1987). ‘Estimating the recombination parameter of a finite population model without selection’. In: Genetics Research 50.3, pp. 245–250 (page 29).Google Scholar
Hudson, RR (1990). ‘Gene genealogies and the coalescent process’. In: Oxford surveys in evolutionary biology. Ed. by D, Futuyma and J, Antonovics. Vol. 7. Oxford: Oxford University Press, pp. 1–44 (pages 29, 71, 72).Google Scholar
Hudson, RR and NL, Kaplan (1985). ‘Statistical properties of the number of recombination events in the history of a sample of DNA sequences’. In: Genetics 111.1, pp. 147–164 (page 29).Google Scholar
Huelsenbeck, JP and F, Ronquist (2001). ‘MrBayes: Bayesian inference of phylogenetic trees’. In: Bioinformatics 17, pp. 754–755 (page 14).Google Scholar
Huelsenbeck, JP, B, Larget and DL, Swofford (2000). ‘A compound Poisson process for relaxing the molecular clock’. In: Genetics 154, pp. 1879–1892 (page 62).Google Scholar
Huelsenbeck, JP, F Ronquist, R Nielsen and JP, Bollback (2001). ‘Bayesian inference of phylogeny and its impact on evolutionary biology’. In: Science 294, pp. 2310–2314 (pages 6, 111).Google Scholar
Huelsenbeck, JP, B, Larget and ME, Alfaro (2004). ‘Bayesian phylogenetic model selection using reversible jump Markov chain Monte Carlo’. In: Molecular Biology and Evolution 21.6, pp. 1123–1133 (page 57).Google Scholar
Hurvich, CM and CL, Tsai (1989). ‘Regression and time series model selection in small samples’. In: Biometrika 76.2, pp. 297–307 (page 32).Google Scholar
Huson, DH and D, Bryant (2006). ‘Application of phylogenetic networks in evolutionary studies’. In: Molecular Biology and Evolution 23.2, pp. 254–267 (page 97).Google Scholar
Jackman, T, A Larson, KD Queiroz and J, Losos (1999). ‘Phylogenetic relationships and tempo of early diversification in Anolis lizards’. In: Systematic Biology 48.2, pp. 254–285 (page 157).Google Scholar
Jaynes, ET (2003). Probability theory: the logic of science. Cambridge: Cambridge University Press (pages 10, 19).CrossRefGoogle Scholar
Jeffreys, H (1946). ‘An invariant form for the prior probability in estimation problems’. In: Proceedings of the Royal Society A: Mathematical and Physical Sciences 186.1007, pp. 453–461 (page 14).Google Scholar
Jeffreys, H (1961). Theory of probability. 1st edn. London: Oxford University Press (page 14).Google Scholar
Jenkins, GM, A Rambaut, OG Pybus and EC, Holmes (2002). ‘Rates of molecular evolution in RNA viruses: a quantitative phylogenetic analysis’. In: Journal of Molecular Evolution 54.2, pp. 156–165 (pages 66, 152).Google Scholar
Jones, G (2011). ‘Calculations for multi-type age-dependent binary branching processes’. In: Journal of Mathematical Biology 63.1, pp. 33–56 (page 39).Google Scholar
Jukes, T and C, Cantor (1969). ‘Evolution of protein molecules’. In: Mammaliam protein metabolism. Ed. by H, Munro. New York: Academic Press, pp. 21–132 (pages 44, 46, 103).Google Scholar
Kass, R and A, Raftery (1995). ‘Bayes factors’. In: Journal of the American Statistical Association 90, pp. 773–795 (page 18).Google Scholar
Kass, RE, BP, Carlin, A, Gelman and RM, Neal (1998). ‘Markov chain Monte Carlo in practice: a roundtable discussion’. In: The American Statistician 52.2, pp. 93–100 (pages 140, 141).Google Scholar
Katoh, K and DM, Standley (2013). ‘MAFFT multiple sequence alignment software version 7: improvements in performance and usability’. In: Molecular Biology and Evolution 30.4, pp. 772–780 (page 9).Google Scholar
Katoh, K and DM, Standley (2014). ‘MAFFT: iterative refinement and additional methods’. In: Methods in Molecular Biology 1079, pp. 131–146 (page 9).Google Scholar
Katoh, K, K Misawa, K Kuma and T, Miyata (2002). ‘MAFFT: a novel method for rapid multiple sequence alignment based on fast Fourier transform’. In: Nucleic Acids Research 30.14, pp. 3059–3066 (page 9).Google Scholar
Keeling, MJ and P, Rohani (2008). Modeling infectious diseases in humans and animals. Princeton, NJ: Princeton, University Press (page 34).Google Scholar
Kendall, DG (1948). ‘On the generalized “birth-and-death” process’. In: Annals of Mathematical Statistics 19.1, pp. 1–15 (page 36).Google Scholar
Kendall, DG (1949). ‘Stochastic processes and population growth’.In: Journal of the Royal Statistical Society, Series B 11.2, pp. 230–282 (page 73).Google Scholar
Kimura, M (1980). ‘A simple model for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences’. In: Journal of Molecular Evolution 16, pp. 111–120 (page 48).Google Scholar
Kingman, J (1982). ‘The coalescent’. In: Stochastic Processes and Their Applications 13.3, pp. 235–248 (pages 6, 28).Google Scholar
Kishino, H, JL, Thorne and WJ, Bruno (2001). ‘Performance of a divergence time estimation method under a probabilistic model of rate evolution’. In: Molecular Biology and Evolution 18.3, pp. 352–361 (page 62).Google Scholar
Knuth, D (1997). The art of computer programming. Vol. 2. Seminumerical algorithms. Reading, MA: Addison-Wesley (page 114).Google Scholar
Kouyos, RD, CL, Althaus and S, Bonhoeffer (2006). ‘Stochastic or deterministic: what is the effective population size of HIV-1?’In: Trends in Microbiology 14.12, pp. 507–511 (page 29).Google Scholar
Kubatko, LS and JH, Degnan (2007). ‘Inconsistency of phylogenetic estimates from concatenated data under coalescence’. In: Systematic Biology 56.1, pp. 17–24 (page 116).Google Scholar
Kuhner, MK (2006). ‘LAMARC 2.0: maximum likelihood and Bayesian estimation of population parameters’. In: Bioinformatics 22.6, pp. 768–770 (pages 10, 14).Google Scholar
Kuhner, MK, J, Yamato and J, Felsenstein (1995). ‘Estimating effective population size and mutation rate from sequence data using Metropolis–Hastings sampling’. In: Genetics 140, pp. 1421–1430 (pages 6, 31).Google Scholar
Kuhner, MK, J, Yamato and J, Felsenstein (1998). ‘Maximum likelihood estimation of population growth rates based on the coalescent’. In: Genetics 149, pp. 429–434 (pages 6, 31, 109).Google Scholar
Kuhner, MK, J, Yamato and J, Felsenstein (2000). ‘Maximum likelihood estimation of recombination rates from population data’. In: Genetics 156.3, pp. 1393–1401 (pages 6, 10, 31).Google Scholar
Kühnert, D, CH, Wu and AJ, Drummond (2011). ‘Phylogenetic and epidemic modeling of rapidly evolving infectious diseases’. In: Infection, Genetics and Evolution 11.8, pp. 1825–1841 (pages 8, 66, 75).Google Scholar
Kühnert, D, T, Stadler, TG, Vaughan and AJ, Drummond (2014). ‘Simultaneous reconstruction of evolutionary history and epidemiological dynamics from viral sequences with the birth–death SIR model’. In: Journal of the Royal Society Interface 11.94 (pages 40, 75, 130).Google Scholar
Kuo, L and B, Mallick (1998). ‘Variable selection for regression models’. In: Sankhya B 60, pp. 65–81 (page 17).Google Scholar
Lakner, C, P van der, Mark, JP, Huelsenbeck, B, Larget and F, Ronquist (2008). ‘Efficiency of Markov chain Monte Carlo tree proposals in Bayesian phylogenetics’. In: Systematic Biology 57.1, pp. 86–103 (page 156).Google Scholar
Lambert, DM, PA Ritchie, CD Millar, et al. (2002). ‘Rates of evolution in ancient DNA from Adelie penguins’.In: Science 295, pp. 2270–2273 (pages 31, 66, 129).Google Scholar
Laplace, P (1812). Théorie analytique des probabilités. Paris: Courcier (page 13).Google Scholar
Larget, B (2013). ‘The estimation of tree posterior probabilities using conditional clade probability distributions’. In: Systematic Biology 62.4, pp. 501–511 (pages 159, 161).Google Scholar
Larget, B and D, Simon (1999). ‘Markov chain Monte Carlo algorithms for the Bayesian analysis of phylogenetic trees’. In: Molecular Biology and Evolution 16, pp. 750–759 (page 14).Google Scholar
Larkin, M, G, Blackshields, NP, Brown, et al. (2007). ‘Clustal W and Clustal X version 2.0’. In: Bioinformatics 23, pp. 2947–2948 (page 9).Google Scholar
Lartillot, N and H, Philippe (2006). ‘Computing Bayes factors using thermodynamic integration’.In: Systematic Biology 55, pp. 195–207 (page 136).Google Scholar
Lartillot, N, T, Lepage and S, Blanquart (2009). ‘PhyloBayes 3: a Bayesian software package for phylogenetic reconstruction and molecular dating’. In: Bioinformatics 25.17, pp. 2286–2288 (page 14).Google Scholar
Leaché, AD and MK, Fujita (2010). ‘Bayesian species delimitation in West African forest geckos (Hemidactylus fasciatus)’. In: Proceedings of the Royal Society B: Biological Sciences 277, pp. 3071–3077 (page 121).Google Scholar
Leaché, AD and B, Rannala (2011). ‘The accuracy of species tree estimation under simulation: a comparison of methods’. In: Systematic Biology 60.2, pp. 126–137 (page 119).Google Scholar
Leaché, AD, MK, Fujita, VN, Minin and RR, Bouckaert (2014). ‘Species delimitation using genome-wide SNP data’. In: Systematic Biology, syu018 (page 126).Google Scholar
Leitner, T and W, Fitch (1999). ‘The phylogenetics of known transmission histories’. In: The evolution of HIV. Ed. by KA, Crandall. Baltimore, MD: Johns Hopkins University Press, pp. 315–345 (page 41).Google Scholar
Lemey, P, OG Pybus, B Wang, et al. (2003). ‘Tracing the origin and history of the HIV-2 epidemic’. In: Proceedings of the National Academy of Sciences USA 100.11, pp. 6588–6592 (page 32).Google Scholar
Lemey, P, OG, Pybus, Rambaut, A, et al. (2004). ‘The molecular population genetics of HIV-1 group O’. In: Genetics 167.3, pp. 1059–1068 (pages 32, 152).Google Scholar
Lemey, P, A, Rambaut, AJ, Drummond andMA, Suchard (2009a). ‘Bayesian phylogeography finds its roots’. In: PLoS Computational Biology 5.9, e1000520 (pages 17, 69, 71, 72, 76, 134).Google Scholar
Lemey, P, MA, Suchard and A, Rambaut (2009b). ‘Reconstructing the initial global spread of a human influenza pandemic: a Bayesian spatial–temporal model for the global spread of H1N1pdm’. In: PLoS Currents RRN1031 (pages 71, 129, 134).Google Scholar
Lemey, P, A Rambaut, JJ Welch and MA, Suchard (2010). ‘Phylogeography takes a relaxed random walk in continuous space and time’. In: Molecular Biology and Evolution 27.8, pp. 1877–1885 (pages 73, 134).Google Scholar
Lemey, P, A, Rambaut, T, Bedford, et al. (2014). ‘Unifying viral genetics and human transportation data to predict the global transmission dynamics of human influenza H3N2’.In: PLoS Pathogens 10.2, e1003932 (page 135).Google Scholar
Leonard, J, R, Wayne, J, Wheeler, et al. (2002). ‘Ancient DNA evidence for Old World origin of New World dogs’. In: Science 298, p. 1613 (page 31).Google Scholar
Lepage, T, D, Bryant, H, Philippe and N, Lartillot (2007). ‘A general comparison of relaxed molecular clock models’. In: Molecular Biology and Evolution 24.12, pp. 2669–2680 (page 63).Google Scholar
Leventhal, GE, H, Guenthard, S, Bonhoeffer and T, Stadler (2014). ‘Using an epidemiological model for phylogenetic inference reveals density-dependence in HIV transmission’. In: Molecular Biology and Evolution 31.1, pp. 6–17 (pages 34, 40, 75).Google Scholar
Levinson, G and GA, Gutman (1987). ‘High frequencies of short frameshifts in poly-CA/TG tandem repeats borne by bacteriophage M13 in Escherichia coli K-12’. In: Nucleic Acids Research 15.13, pp. 5323–5338 (page 52).Google Scholar
Lewis, PO (2001). ‘A likelihood approach to estimating phylogeny from discrete morphological character data’. In: Systematic Biology 50.6, pp. 913–925 (page 57).Google Scholar
Lewis, PO, MT, Holder and KE, Holsinger (2005). ‘Polytomies and Bayesian phylogenetic inference.’In: Systematic Biology 54.2, pp. 241–253 (page 14).Google Scholar
Li, S, D, Pearl and H, Doss (2000). ‘Phylogenetic tree construction using Markov chain Monte Carlo’. In: Journal of the American Statistical Association 95, pp. 493–508 (page 14).Google Scholar
Li, WLS and AJ, Drummond (2012). ‘Model averaging and Bayes factor calculation of relaxed molecular clocks in Bayesian phylogenetics’. In: Molecular Biology and Evolution 29.2, pp. 751–761 (pages 63, 145).Google Scholar
Liu, L (2008). ‘BEST: Bayesian estimation of species trees under the coalescent model’. In: Bioinformatics 24.21, pp. 2542–2543 (page 119).Google Scholar
Liu, L, DK Pearl, RT Brumfield and SV, Edwards (2008). ‘Estimating species trees using multipleallele DNA sequence data’. In: Evolution 62.8, pp. 2080–2091 (page 7).Google Scholar
Liu, L, L Yu, L Kubatko, DK, Pearl and SV, Edwards (2009a). ‘Coalescent methods for estimating phylogenetic trees’. In: Molecular Phylogenetics and Evolution 53.1, pp. 320–328 (page 7).Google Scholar
Liu, L, L, Yu, DK, Pearl and SV, Edwards (2009b). ‘Estimating species phylogenies using coalescence times among sequences’. In: Systematic Biology 58.5, pp. 468–477 (page 7).Google Scholar
Loreille, O, L Orlando, M Patou-Mathis, et al. (2001). ‘Ancient DNA analysis reveals divergence of the cave bear, Ursus spelaeus, and brown bear, Ursus arctos, lineages’. In: Current Biology 11.3, pp. 200–203 (page 31).Google Scholar
Lunn, DJ, A Thomas, N Best and D, Spiegelhalter (2000). ‘WinBUGS – a Bayesian modelling framework: concepts, structure, and extensibility’. In: Statistics and Computing 10.4, pp. 325–337 (page 156).Google Scholar
Lunn, D, D, Spiegelhalter, A, Thomas and N, Best (2009). ‘The BUGS project: evolution, critique and future directions’. In: Statistics in Medicine 28.25, pp. 3049–3067 (page 156).Google ScholarPubMed
Lunter, G, I Miklos, AJ Drummond, JL, Jensen and J, Hein (2005). ‘Bayesian coestimation of phylogeny and sequence alignment’. In: BMC Bioinformatics 6, art. 83 (pages 4, 9, 99).Google Scholar
MacKay, DJ (2003). Information theory, inference and learning algorithms. Cambridge: Cambridge University Press (page 10).Google Scholar
Maddison, DR and WP, Maddison (2005). MacClade 4.08. Sunderland, MA: Sinauer Associates (page 68).Google Scholar
Maddison, WP (2007). ‘Estimating a binary character's effect on speciation and extinction’. In: Systematic Biology 56.5, pp. 701–710 (pages 39, 69).Google Scholar
Matschiner, M and RR, Bouckaert (2013). ‘A rough guide to CladeAge’. In: BEAST 2 wiki (pages 66, 111).Google Scholar
Matsumoto, M and T, Nishimura (1998). ‘Mersenne twister: a 623-dimensionally equidistributed uniform pseudo-random number generator’. In: ACMTransactions on Modeling and Computer Simulation 8.1, pp. 3–30 (page 114).Google Scholar
Mau, B and M, Newton (1997). ‘Phylogenetic inference for binary data on dendrograms using Markov chainMonte Carlo’. In: Journal of Computational and Graphical Statistics 6, pp. 122–131 (page 14).Google Scholar
Mau, B, MA, Newton and B, Larget (1999). ‘Bayesian phylogenetic inference via Markov chain Monte Carlo methods’. In: Biometrics 55.1, pp. 1–12 (pages 14, 157).Google Scholar
McCormack, JE, J Heled, KS Delaney, AT, Peterson and LL, Knowles (2011). <‘Calibrating divergence times on species trees versus gene trees: implications for speciation history of Aphelocoma jays’. In: Evolution 65.1, pp.184–202 (page 165).Google Scholar
Meredith, R, J, Janecka, J, Gatesy, et al. (2011). ‘Impacts of the Cretaceous terrestrial revolution and KPg extinction on mammal diversification’. In: Science 334, pp. 521–524 (page 39).Google Scholar
Metropolis, N, A, Rosenbluth, M, Rosenbluth, A, Teller and E, Teller (1953). ‘Equations of state calculations by fast computing machines’. In: Journal of Chemistry and Physics 21, pp. 1087–1092 (pages 14, 20, 31).Google Scholar
Minin, VN, EW, Bloomquist and MA, Suchard (2008). ‘Smooth skyride through a rough skyline: Bayesian coalescent-based inference of population dynamics’. In: Molecular Biology and Evolution 25.7, pp. 1459–1471 (pages 33, 108).Google Scholar
Molina, J, M, Sikora, N, Garud, et al. (2011). ‘Molecular evidence for a single evolutionary origin of domesticated rice’. In: Proceedings of the National Academy of Sciences USA 108.20, pp. 8351–8356 (page 121).Google Scholar
Mollentze, N, LH, Nel, S, Townsend, et al. (2014). ‘A Bayesian approach for inferring the dynamics of partially observed endemic infectious diseases from space-time-genetic data’. In: Proceedings of the Royal Society B: Biological Sciences 281.1782, p. 20133251 (page 75).CrossRefGoogle Scholar
Monjane, AL, GW Harkins, DP Martin, et al. (2011). ‘Reconstructing the history of Maize streak virus strain A dispersal to reveal diversification hot spots and its origin in southern Africa’. In: Journal of Virology 85.18, pp. 9623–9636 (page 135).Google Scholar
Mooers, A and S, Heard (1997). ‘Inferring evolutionary process from phylogenetic tree shape’. In: Quarterly Review of Biology 72, pp. 31–54 (page 107).Google Scholar
Moran, PAP (1962). The statistical processes of evolutionary theory. Oxford: Clarendon Press (page 28).Google Scholar
Moran, PAP (1958). ‘Random processes in genetics’. In: Mathematical Proceedings of the Cambridge Philosophical Society 54, pp. 60–71 (page 28).Google Scholar
Morlon, H, T, Parsons and J, Plotkin (2011). ‘Reconciling molecular phylogenies with the fossil record’. In: Proceedings of the National Academy of Sciences USA 108.39, pp. 16 327–16 332 (page 39).Google Scholar
Mourier, T, SY Ho, MTP Gilbert, E, Willerslev and L, Orlando (2012). ‘Statistical guidelines for detecting past population shifts using ancient DNA’. In: Molecular Biology and Evolution 29.9, pp. 2241–2251 (page 97).Google Scholar
Muse, S and B, Gaut (1994). ‘A likelihood approach for comparing synonymous and nonsynonymous nucleotide substitution rates, with applications to the chloroplast genome’. In: Molecular Biology and Evolution 11, pp. 715–725 (page 51).Google Scholar
Mutreja, A, DW, Kim, NR, Thomson, et al. (2011). ‘Evidence for several waves of global transmission in the seventh cholera pandemic’.In: Nature 477.7365, pp. 462–465 (page 129).Google Scholar
Nagalingum, N, C Marshall, T Quental, et al. (2011). ‘Recent synchronous radiation of a living fossil’. In: Science 334, pp. 796–799 (page 96).Google Scholar
Nee, SC (2001). ‘Inferring speciation rates from phylogenies’. In: Evolution 55.4, pp. 661–668 (page 107).Google Scholar
Nee, SC, EC, Holmes, RM, May and PH, Harvey (1994a). ‘Extinction rates can be estimated from molecular phylogenies’. In: Philosophical Transactions of the Royal Society B: Biological Sciences 344.1307, pp. 77–82 (page 107).Google Scholar
Nee, SC, RM, May and PH, Harvey (1994b). ‘The reconstructed evolutionary process’. In: Philosophical Transactions of the Royal Society B: Biological Sciences 344, pp. 305–311 (page 39).Google Scholar
Nee, SC, EC, Holmes, A, Rambaut and PH, Harvey (1995). ‘Inferring population history from molecular phylogenies’. In: Philosophical Transactions of the Royal Society B: Biological Sciences 349.1327, pp. 25–31 (page 29).Google Scholar
Newton, Mand A, Raftery (1994). ‘Approximate Bayesian inference with the weighted likelihood bootstrap’. In: Journal of the Royal Statistical Society, Series B 56, pp. 3–48 (page 18).Google Scholar
Nicholls, GK and RD, Gray (2006). ‘Quantifying uncertainty in a stochastic model of vocabulary evolution’. In: Phylogenetic methods and the prehistory of languages. Ed. by P, Forster and C, Renfrew. Cambridge:McDonald Institute for Archaeological Research, pp. 161–171 (page 57).Google Scholar
Nicholls, GK and RD, Gray (2008). ‘Dated ancestral trees from binary trait data and their application to the diversification of languages’. In: Journal of the Royal Statistical Society, Series B 70.3, pp. 545–566 (page 115).Google Scholar
Nielsen, R and Z, Yang (1998). ‘Likelihood models for detecting positively selected amino acid sites and applications to the HIV-1 envelope gene’. In: Genetics 148, pp. 929–936 (page 111).Google Scholar
Notredame, C, DG, Higgins and J, Heringa (2000). ‘T-coffee: a novel method for fast and accurate multiple sequence alignment’. In: Journal of Molecular Biology 302.1, pp. 205 –217 (page 9).Google Scholar
Novák, A, I Miklós, R Lyngsø and J, Hein (2008). ‘StatAlign: an extendable software package for joint Bayesian estimation of alignments and evolutionary trees’. In: Bioinformatics 24.20, pp. 2403–2404 (pages 9, 99).Google Scholar
Nylander, JAA, JC, Wilgenbusch, DL, Warren and DL, Swofford (2008). ‘AWTY (are we there yet?): a system for graphical exploration of MCMC convergence in Bayesian phylogenetics’. In: Bioinformatics 24.4, pp. 581–583 (pages 141, 156).Google Scholar
Ohta, T and M, Kimura (1973). ‘A model of mutation appropriate to estimate the number of electrophoretically detectable alleles in a finite population’. In: Genetics 22.2, pp. 201–204 (page 52).Google Scholar
Opgen-Rhein, R, L, Fahrmeir and K, Strimmer (2005). ‘Inference of demographic history from genealogical trees using reversible jump Markov chain Monte Carlo’. In: BMC Evolutionary Biology 5.1, art. 6 (page 32).Google Scholar
Owen, Mand JS, Provan (2011). ‘A fast algorithm for computing geodesic distances in tree space’. In: IEEE/ACM Transactions on Computational Biology and Bioinformatics 8.1, pp. 2–13 (page 154).Google Scholar
Pagel, MD and A, Meade (2004). ‘A phylogenetic mixture model for detecting patternheterogeneity in gene sequence or character-state data’. In: Systematic Biology 53.4, pp. 571–581 (page 14).Google ScholarPubMed
Palacios, JA and VN, Minin (2012). ‘Integrated nested Laplace approximation for Bayesian nonparametric phylodynamics.’In: Proceedings of the 28th Conference on Uncertainty in Artificial Intelligence. Ed. by N de, Freitas and K Murphy., Sterling, VA: AUAI Press, pp. 726–735 (page 33).Google Scholar
Palacios, JA and VN, Minin (2013). ‘Gaussian process-based Bayesian nonparametric inference of population trajectories from gene genealogies’. In: Biometrics 69.1, pp. 8–18 (page 33).Google Scholar
Palmer, D, J, Frater, R, Phillips, AR, McLean and G, McVean (2013). ‘Integrating genealogical and dynamical modelling to infer escape and reversion rates in HIV epitopes’. In: Proceedings of the Royal Society B: Biological Sciences 280.1762, art. 2013.0696 (pages 69, 75).CrossRefGoogle Scholar
Pamilo, P and M, Nei (1988). ‘Relationships between gene trees and species trees’. In: Molecular Biology and Evolution 5.5, pp. 568–83 (pages 41, 116).Google Scholar
Penny, D, BJ, McComish, MA, Charleston and MD, Hendy (2001). ‘Mathematical elegance with biochemical realism: the covarion model of molecular evolution’. In: Journal of Molecular Evolution 53.6, pp. 711–723 (page 57).Google Scholar
Pereira, L, F, Freitas, V, Fernandes, et al. (2009). ‘The diversity present in 5140 human mitochondrial genomes’. In: American Journal of Human Genetics 84.5, pp. 628–640 (page 102).Google Scholar
Popinga, A, TG, Vaughan, T, Stadler and AJ, Drummond (2015). ‘Inferring epidemiological dynamics with Bayesion coalescent inference: the merits of deterministic and Stochastic models’. In: Genetics 199.2, pp. 595–607 (page 36).Google Scholar
Posada, D (2008). ‘jModelTest: phylogenetic model averaging’. In: Molecular Biology and Evolution 25.7, pp. 1253–1256 (page 145).Google Scholar
Posada, D and KA, Crandall (1998). ‘Modeltest: testing the model of DNA substitution.’In: Bioinformatics 14.9, pp. 817–818 (page 145).Google Scholar
Procter, JB, J, Thompson, I, Letunic, et al. (2010). ‘Visualization of multiple alignments, phylogenies and gene family evolution’. In: Nature Methods 7, S16–S25 (page 156).Google Scholar
Pybus, OG and A, Rambaut (2002). ‘GENIE: estimating demographic history from molecular phylogenies’. In: Bioinformatics 18.10, pp. 1404–1405 (page 29).Google Scholar
Pybus, OG and A, Rambaut (2009). ‘Evolutionary analysis of the dynamics of viral infectious disease’. In: Nature Reviews Genetics 10.8, pp. 540–550 (pages 8, 75).Google Scholar
Pybus, OG, A, Rambaut and PH, Harvey (2000). ‘An integrated framework for the inference of viral population history from reconstructed genealogies’. In: Genetics 155, pp. 1429–1437 (pages 29, 32).Google Scholar
Pybus, OG, MA, Charleston, S, Gupta, et al. (2001). ‘The epidemic behavior of the hepatitis C virus’.In: Science 292, pp. 2323–2325 (page 29).Google Scholar
Pybus, OG, AJ, Drummond, T, Nakano, BH, Robertson and A, Rambaut (2003). ‘The epidemiology and iatrogenic transmission of hepatitis C virus in Egypt: a Bayesian coalescent approach’. In: Molecular Biology and Evolution 20.3, pp. 381–387 (pages 29, 32, 106).Google Scholar
Pybus, OG, E, Barnes, R, Taggest, et al. (2009). ‘Genetic history of hepatitis C virus in East Asia’. In: Journal of Virology 83.2, pp. 1071–1082 (page 33).Google Scholar
Pybus, OG, MA, Suchard, P, Lemey, et al. (2012). ‘Unifying the spatial epidemiology and molecular evolution of emerging epidemics’. In: Proceedings of the National Academy of Sciences USA 109.37, pp. 15 066–15 071 (page 135).Google Scholar
Pyron, RA (2011). ‘Divergence time estimation using fossils as terminal taxa and the origins of Lissamphibia’.In: Systematic Biology, syr047 (page 57).Google Scholar
Rabosky, D (2007). ‘Likelihood methods for detecting temporal shifts in diversification rates’. In: Evolution 60.6, pp. 1152–1164 (page 39).Google Scholar
Raftery, AE and SM, Lewis (1992). ‘[Practical Markov chain Monte Carlo]: comment: one long run with diagnostics: implementation strategies for Markov chain Monte Carlo’. In: Statistical Science 7.4, pp. 493–497 (page 140).Google Scholar
Raftery, A, M, Newton, J, Satagopan and P, Krivitsky (2007). ‘Estimating the integrated likelihood via posterior simulation using the harmonic mean identity’. In: Bayesian statistics. Ed. by JM, Bernardo, MJ, Bayarri, JO, Berger et al. Vol. 8. Oxford: Oxford University Press, pp. 1–45 (page 18).Google Scholar
Rambaut, A (2000). ‘Estimating the rate of molecular evolution: incorporating noncontemporaneous sequences into maximum likelihood phylogenies’. In: Bioinformatics 16, pp. 395–399 (pages 31, 66).Google Scholar
Rambaut, A (2010). Path-O-Gen: temporal signal investigation tool. Version 1.3 (page 149).
Rambaut, A and AJ, Drummond (2014). Tracer v1.6http://tree.bio.ed.ac.uk/software/tracer/ (pages 130, 137).
Rannala, B and Z, Yang (1996). ‘Probability distribution of molecular evolutionary trees: a new method of phylogenetic inference’. In: Journal of Molecular Evolution 43, pp. 304–311 (page 160).Google Scholar
Rannala, B and Z, Yang (2007). ‘Inferring speciation times under an episodic molecular clock’. In: Systematic Biology 56.3, pp. 453–466 (pages 62, 63).Google Scholar
Rasmussen, DA, O, Ratmann and K, Koelle (2011). ‘Inference for nonlinear epidemiological models using genealogies and time series’. In: PLoS Computational Biology 7.8, e1002136 (page 75).CrossRefGoogle Scholar
Redelings, BD and MA, Suchard (2005). ‘Joint Bayesian estimation of alignment and phylogeny’. In: Systematic Biology 54.3, pp. 401–418 (pages 4, 9, 99, 137).Google Scholar
Redelings, BD and MA, Suchard (2007). ‘Incorporating indel information into phylogeny estimation for rapidly emerging pathogens’. In: BMC Evolutionary Biology 7, art. 40 (page 99).CrossRefGoogle Scholar
Reid, NM, SM, Hird, JM, Brown, et al. (2013). ‘Poor fit to the multispecies coalescent is widely detectable in empirical data’. In: Systematic Biology, syt057 (page 116).Google Scholar
Richard, GF and F, Pâques (2000). ‘Mini- and microsatellite expansions: the recombination connection’. In: EMBO Report 1.2, pp. 122–126 (page 52).Google Scholar
Robinson, D and LR, Foulds (1981). ‘Comparison of phylogenetic trees’. In: Mathematical Biosciences 53.1, pp. 131–147 (page 161).Google Scholar
Rodrigo, AG and J, Felsenstein (1999). ‘Coalescent approaches to HIV population genetics’. In: The evolution of HIV. Ed. by KA, Crandall. Baltimore, MD: Johns Hopkins University Press, pp. 233–272 (pages 31, 33).Google ScholarPubMed
Rodrigo, AG, EG, Shpaer, EL, Delwart, et al. (1999). ‘Coalescent estimates of HIV-1 generation time in vivo’. In: Proceedings of the National Academy Sciences USA 96.5, pp. 2187–2191 (page 31).Google Scholar
Rodrigue, N, H, Philippe and N, Lartillot (2008). ‘Uniformization for sampling realizations of Markov processes: applications to Bayesian implementations of codon substitution models’. In: Bioinformatics 24.1, pp. 56–62 (page 72).Google Scholar
Romero-Severson, E, H, Skar, I, Bulla, J, Albert and T, Leitner (2014). ‘Timing and order of transmission events is not directly reflected in a pathogen phylogeny’. In: Molecular Biology and Evolution 31.9, pp. 2472–2482 (page 41).Google ScholarPubMed
Ronquist, F and JP, Huelsenbeck (2003). ‘MrBayes 3: Bayesian phylogenetic inference under mixed models’. In: Bioinformatics 19.12, pp. 1572–1574 (page 23).Google Scholar
Ronquist, F, M, Teslenko, P van der, Mask, et al. (2012a). ‘MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space’. In: Systematic Biology 61.3, pp. 539–542 (page 74).Google Scholar
Ronquist, F, S, Klopfstein, L, Vilhelmsen, et al. (2012b). ‘A total-evidence approach to dating with fossils, applied to the early radiation of the Hymenoptera’. In: Systematic Biology 61.6, pp. 973–999 (pages 65, 66).Google Scholar
Rosenberg, MS (2009). Sequence alignment: methods, models, concepts, and strategies. Berkeley, CA: University of California Press (page 8).Google Scholar
Rosenberg, M, S, Subramanian and S, Kumar (2003). ‘Patterns of transitional mutation biases within and among mammalian genomes’. In: Molecular Biology and Evolution 20.6, pp. 988– 993 (pages 84, 102).Google Scholar
Roure, B, D, Baurain and H, Philippe (2013). ‘Impact of missing data on phylogenies inferred from empirical phylogenomic data sets’. In: Molecular Biology and Evolution 30.1, pp. 197–214 (page 99).Google Scholar
Sanmartín, I, P van der, Mark and F, Ronquist (2008). ‘Inferring dispersal: a Bayesian approach to phylogeny-based island biogeography, with special reference to the Canary Islands’. In: Journal of Biogeography 35.3, pp. 428–449 (page 68).Google Scholar
Sarich, VM and AC, Wilson (1967). ‘Immunological time scale for hominid evolution’. In: Science 158, pp. 1200–1203 (pages 58, 60).Google Scholar
Sato, A, C, O'hUigin, F, Figueroa, et al. (1999). ‘Phylogeny of Darwin's finches as revealed by mtDNA sequences’. In: Proceedings of the National Academy of Sciences USA 96, pp. 5101– 5106 (page 116).Google Scholar
Seo, TK, JL, Thorne, M, Hasegawa and H, Kishino (2002). ‘A viral sampling design for testing the molecular clock and for estimating evolutionary rates and divergence times’. In: Bioinformatics 18.1, pp. 115–123 (page 7).Google Scholar
Shankarappa, R, JB, Margolick, SJ, Gange, et al. (1999). ‘Consistent viral evolutionary changes associated with the disease progression of human immunodeficiency virus type 1 infection’. In: Journal of Virology 73, pp. 10489–10502 (page 31).Google Scholar
Shapiro, B, AJ, Drummond, A, Rambaut, et al. (2004). ‘Rise and fall of the Beringian steppe bison.’ In: Science 306, pp. 1561–1565 (pages 66, 129).Google Scholar
Shapiro, B, A, Rambaut and AJ, Drummond (2006). ‘Choosing appropriate substitution models for the phylogenetic analysis of protein-coding sequences’. In: Molecular Biology and Evolution 23.1, pp. 7–9 (pages 100, 104, 146).Google Scholar
Silva, E de, N, Ferguson and C, Fraser (2012). ‘Inferring pandemic growth rates from sequence data’. In: Journal of the Royal Society Interface 9.73, pp. 1797–1808 (pages 97, 132).Google Scholar
Sjödin, P, I, Kaj, S, Krone, M, Lascoux and M, Nordborg (2005). ‘On the meaning and existence of an effective population size’. In: Genetics 169.2, pp. 1061–1070 (page 29).Google Scholar
Slatkin, M (1991). ‘Inbreeding coefficients and coalescence times’. In: Genetic Research 58.2, pp. 167–175 (page 29).Google Scholar
Slatkin, M and WP, Maddison (1989). ‘A cladistic measure of gene flow inferred from the phylogenies of alleles’. In: Genetics 123.3, pp. 603–613 (page 68).Google Scholar
Smith, BJ (2007). ‘boa: an R package for MCMC output convergence assessment and posterior inference’. In: Journal of Statistical Software 21.11, pp. 1–37 (page 140).Google Scholar
Smith, GP (1976). ‘Evolution of repeated DNA sequences by unequal crossover’. In: Science 191, pp. 528–535 (page 52).Google Scholar
Smith, SA and MJ, Donoghue (2008). ‘Rates of molecular evolution are linked to life history in flowering plants’. In: Science 322, pp. 86–89 (page 96).Google Scholar
Stadler, T (2009). ‘On incomplete sampling under birth–death models and connections to the sampling-based coalescent’. In: Journal of Theoretical Biology 261.1, pp. 58–66 (pages 38, 108).Google Scholar
Stadler, T (2010). ‘Sampling-through-time in birth–death trees’. In: Journal of Theoretical Biology 267.3, pp. 396–404 (pages 36, 40, 75).Google Scholar
Stadler, T (2011). ‘Mammalian phylogeny reveals recent diversification rate shifts’. In: Proceedings of the National Academy of Sciences USA 108.15, pp. 6187–6192 (page 39).Google Scholar
Stadler, T (2013a). ‘Recovering speciation and extinction dynamics based on phylogenies’. In: Journal of Evolutionary Biology 26.6, pp. 1203–1219 (page 39).Google Scholar
Stadler, T (2013b). ‘How can we improve accuracy of macroevolutionary rate estimates?’ In: Systematic Biology 62.2, pp. 321–329 (pages 37, 38).Google Scholar
Stadler, T and S, Bonhoeffer (2013). ‘Uncovering epidemiological dynamics in heterogeneous host populations using phylogenetic methods’. In: Philosophical Transactions of the Royal Society B: Biological Sciences 368. 1614 (pages 40, 70, 73, 75).Google Scholar
Stadler, T, R, Kouyos, V von, Wyl, et al. (2012). ‘Estimating the basic reproductive number from viral sequence data’. In: Molecular Biology and Evolution 29, pp. 347–357 (page 40).Google Scholar
Stadler, T, D, Kühnert, S, Bonhoeffer and AJ, Drummond (2013). ‘Birth–death skyline plot reveals temporal changes of epidemic spread in HIV and HCV’. In: Proceedings of the National Academy of Sciences USA 110.1, pp. 228–233 (pages 39, 40, 75, 108, 130, 132).Google Scholar
Stadler, T, TG, Vaughan, A, Gavruskin, et al. (2015). ‘How well can the exponential-growth coalescent approximate constant rate birth–death population dynamics?’ In: Proceedings of the Royal Society B: Biological Sciences, in press (pages 36, 38).
Stan Development Team (2014). Stan: A C++ Library for probability and sampling. Version 2.4 (page 156).
Steel, M (2005). ‘Should phylogenetic models be trying to “fit an elephant”?’ In: Trends in Genetics 21.6, pp. 307–309 (page 149).Google Scholar
Steel, M and A, Mooers (2010). ‘The expected length of pendant and interior edges of a Yule tree’. In: Applied Mathematics Letters 23.11, pp. 1315–1319 (page 110).Google Scholar
Stephens, M and P, Donnelly (2000). ‘Inference in molecular population genetics’. In: Journal of the Royal Statistical Society. Series B, 62.4, pp. 605–655 (page 31).Google Scholar
Stewart, WJ (1994). Introduction to the numerical solution of Markov chains. Vol. 41. Princeton, NJ: Princeton University Press (pages 12, 45).Google Scholar
Stockham, C, LS, Wang and T, Warnow (2002). ‘Statistically based postprocessing of phylogenetic analysis by clustering’. In: Bioinformatics 18.suppl 1, S285–S293 (page 161).Google Scholar
Strimmer, K and OG, Pybus (2001). ‘Exploring the demographic history of DNA sequences using the generalized skyline plot’. In: Molecular Biology and Evolution 18.12, pp. 2298–2305 (page 32).Google Scholar
Suchard, MA and A, Rambaut (2009). ‘Many-core algorithms for statistical phylogenetics’. In: Bioinformatics 25.11, pp. 1370–1376 (pages 71, 114).Google Scholar
Suchard, MA and BD, Redelings (2006). ‘BAli-Phy: simultaneous Bayesian inference of alignment and phylogeny’. In: Bioinformatics 22.16, pp. 2047–2048 (pages 9, 99).Google Scholar
Suchard, MA, RE, Weiss and JS, Sinsheimer (2001). ‘Bayesian selection of continuous-time Markov chain evolutionary models’. In: Molecular Biology and Evolution 18, pp. 1001–1013 (page 147).Google Scholar
Suchard, MA, RE, Weiss and JS, Sinsheimer (2003). ‘Testing a molecular clock without an outgroup: derivations of induced priors on branch length restrictions in a Bayesian framework’. In: Systematic Biology 52, pp. 48–54 (page 99).Google Scholar
Sullivan, J and DL, Swofford (2001). ‘Should we use model-based methods for phylogenetic inference when we known that assumptions about among-site rate variation and nucleotide substitution pattern are violated?’ In: Systematic Biology 50, pp. 723–729 (page 54).Google Scholar
Sullivan, J, DL, Swofford and GJ, Naylor (1999). ‘The effect of taxon sampling on estimating rate heterogeneity parameters of maximum-likelihood models’. In: Molecular Biology and Evolution 16, pp. 1347–1356 (page 54).Google Scholar
Swofford, DL (2003). PAUP*: phylogenetic analysis using parsimony (* and other methods). Version 4. Sunderland, MA: Sinauer Associates (page 68).Google Scholar
Tajima, F (1983). ‘Evolutionary relationship of DNA sequences in finite populations’. In: Genetics 105.2, pp. 437–460 (pages 29, 43).Google Scholar
Tajima, F (1989). ‘DNA polymorphism in a subdivided population: the expected number of segregating sites in the two-subpopulation model’. In: Genetics 123.1, pp. 229–240 (page 29).Google Scholar
Takahata, N (1989). ‘Gene genealogy in three related populations: consistency probability between gene and population trees’. In: Genetics 122.4, pp. 957–966 (page 29).Google Scholar
Tamura, K and M, Nei (1993). ‘Estimation of the number of nucleotide substitutions in the control region of mitochondrial DNA in humans and chimpanzees’. In: Molecular Biology and Evolution 10, pp. 512–526 (page 103).Google Scholar
Teixeira, S, EA, Serrão and S, Arnaud-Haond (2012). ‘Panmixia in a fragmented and unstable environment: the hydrothermal shrimp Rimicaris exoculata disperses extensively along the mid-Atlantic Ridge’. In: PloS One 7.6, e38521 (page 133).CrossRefGoogle Scholar
Thorne, JL and H, Kishino (2002). ‘Divergence time and evolutionary rate estimation with multilocus data.’ In: Systematic Biology 51.5, pp. 689–702 (page 62).Google Scholar
Thorne, JL, H, Kishino and IS, Painter (1998). ‘Estimating the rate of evolution of the rate of molecular evolution’. In: Molecular Biology and Evolution 15.12, pp. 1647–1657 (page 62).Google Scholar
Vaughan, TG and AJ, Drummond (2013). ‘A stochastic simulator of birth–death master equations with application to phylodynamics’. In: Molecular Biology and Evolution 30.6, pp. 1480–1493 (pages 43, 138).Google Scholar
Vaughan, TG, D, Kühnert, A, Popinga, D, Welch and AJ, Drummond (2014). ‘Efficient Bayesian inference under the structured coalescent’. In: Bioinformatics, btu201 (pages 14, 71, 72).CrossRefGoogle Scholar
Vijaykrishna, D, GJ, Smith, OG, Pybus, et al. (2011). ‘Long-term evolution and transmission dynamics of swine influenza A virus’. In: Nature 473.7348, pp. 519–522 (page 129).Google Scholar
Volz, EM (2012). ‘Complex population dynamics and the coalescent under neutrality’. In: Genetics 190.1, pp. 187–201 (pages 35, 69, 75).Google Scholar
Volz, EM, SL, Kosakovsky Pond, MJ, Ward, AJ, Leigh Brown and SDW, Frost (2009). ‘Phylodynamics of infectious disease epidemics’. In: Genetics 183.4, pp. 1421–1430 (page 75).Google Scholar
Volz, EM, K, Koelle and T, Bedford (2013). ‘Viral phylodynamics’. In: PLoS Computational Biology 9.3, e1002947 (pages 8, 75).CrossRefGoogle Scholar
Waddell, P and D, Penny (1996). ‘Evolutionary trees of apes and humans from DNA sequences’. In: Handbook of symbolic evolution. Ed. by AJ, Lock and CR, Peters. Oxford: Clarendon Press, pp. 53–73 (page 54).Google Scholar
Wakeley, J and O, Sargsyan (2009). ‘Extensions of the coalescent effective population size’. In: Genetics 181.1, pp. 341–345 (page 29).Google Scholar
Wallace, R, H, HoDac, R, Lathrop and W, Fitch (2007). ‘A statistical phylogeography of influenza A H5N1’. In: Proceedings of the National Academy of Sciences USA 104.11, pp. 4473–4478 (page 68).Google Scholar
Welch, D (2011). ‘Is network clustering detectable in transmission trees?’ In: Viruses 3.6, pp. 659–676 (page 75).Google Scholar
Whidden, C, I, Matsen and A, Frederick (2014). ‘Quantifying MCMC exploration of phylogenetic tree space’. In: arXiv preprint arXiv:1405.2120 (pages 150, 156).
Wiens, JJ and DS, Moen (2008). ‘Missing data and the accuracy of Bayesian phylogenetics’. In: Journal of Systematics and Evolution 46.3, pp. 307–314 (page 99).Google Scholar
Wilson, AC and VM, Sarich (1969). ‘A molecular time scale for human evolution’. In: Proceedings of the National Academy of Sciences USA 63.4, pp. 1088–1093 (page 60).Google Scholar
Wilson, IJ and DJ, Balding (1998). ‘Genealogical inference from microsatellite data’. In: Genetics 150.1, pp. 499–510 (page 14).Google Scholar
Wolinsky, S, B, Korber, A, Neumann, et al. (1996). ‘Adaptive evolution of human immunodeficiency virus type-1 during the natural course of infection’. In: Science 272, pp. 537–542 (page 31).Google Scholar
Wong, KM, MA, Suchard and JP, Huelsenbeck (2008). ‘Alignment uncertainty and genomic analysis’. In: Science 319, pp. 473–476 (page 9).Google Scholar
Worobey, M, M, Gemmel, DE, Teuwen, et al. (2008). ‘Direct evidence of extensive diversity of HIV-1 in Kinshasa by 1960’. In: Nature 455.7213, pp. 661–664 (page 32).Google Scholar
Worobey, M, P, Telfer, S, Souquière, et al. (2010). ‘Island biogeography reveals the deep history of SIV’. In: Science 329, p. 1487 (page 129).Google Scholar
Wright, S (1931). ‘Evolution inMendelian populations’. In: Genetics 16.2, pp. 97–159 (page 28).Google Scholar
Wu, CH and AJ, Drummond (2011). ‘Joint inference of microsatellite mutation models, population history and genealogies using transdimensional Markov chain Monte Carlo’. In: Genetics 188.1, pp. 151–164 (pages 17, 52).Google Scholar
Wu, CH, MA, Suchard and AJ, Drummond (2013). ‘Bayesian selection of nucleotide substitution models and their site assignments’. In: Molecular Biology and Evolution 30.3, pp. 669–688 (pages 17, 57, 100, 145).Google Scholar
Xie, W, P, Lewis, Y, Fan, L, Kuo and M, Chen (2011). ‘Improving marginal likelihood estimation for Bayesian phylogenetic model selection’. In: Systematic Biology 60, pp. 150–160 (pages 19, 136, 137).Google Scholar
Yang, Z (1994). ‘Maximum likelihood phylogenetic estimation from DNA sequences with variable rates over sites: approximate methods’. In: Journal of Molecular Evolution 39.3, pp. 306–314 (pages 54, 103).Google Scholar
Yang, Z and B, Rannala (1997). ‘Bayesian phylogenetic inference using DNA sequences: a Markov chain Monte Carlo method’. In: Molecular Biology and Evolution 14.7, pp. 717–724 (pages 14, 37, 108).Google Scholar
Yang, Z and B, Rannala (2006). ‘Bayesian estimation of species divergence times under a molecular clock using multiple fossil calibrations with soft bounds’. In: Molecular Biology and Evolution 23.1, pp. 212–226 (page 66).Google Scholar
Yang, Z and A, Yoder (1999). ‘Estimation of the transition/transversion rate bias and species sampling’. In: Journal of Molecular Evolution 48.3, pp. 274–283 (page 102).Google Scholar
Yang, Z, N, Goldman and A, Friday (1995). ‘Maximum likelihood trees from DNA sequences: a peculiar statistical estimation problem’. In: Systematic Biology 44.3, pp. 384–399 (page 146).Google Scholar
Yang, Z, R, Nielsen, N, Goldman and A, Pedersen (2000). ‘Codon-substitution models for heterogeneous selection pressure at amino acid sites’. In: Genetics 155.1, pp. 431–449 (page 111).Google Scholar
Yoder, A and Z, Yang (2000). ‘Estimation of primate speciation dates using local molecular clocks’. In: Molecular Biology and Evolution 17.7, pp. 1081–1090 (page 63).Google Scholar
Ypma, RJF, WM van, Ballegooijen and J, Wallinga (2013). ‘Relating phylogenetic trees to transmission trees of infectious disease outbreaks’. In: Genetics 195.3, pp. 1055–1062 (page 43).Google Scholar
Yu, Y, C, Than, JH, Degnan and L, Nakhleh (2011). ‘Coalescent histories on phylogenetic networks and detection of hybridization despite incomplete lineage sorting’. In: Systematic Biology 60.2, pp. 138–149 (page 120).Google Scholar
Yule, G (1924). ‘A mathematical theory of evolution based on the conclusions of Dr. J.C.Willis’. In: Philosophical Transactions of the Royal Society B: Biological Sciences 213, pp. 21–87 (pages 36, 38).Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • References
  • Alexei J. Drummond, University of Auckland, Remco R. Bouckaert, University of Auckland
  • Book: Bayesian Evolutionary Analysis with BEAST
  • Online publication: 05 October 2015
  • Chapter DOI: https://doi.org/10.1017/CBO9781139095112.017
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • References
  • Alexei J. Drummond, University of Auckland, Remco R. Bouckaert, University of Auckland
  • Book: Bayesian Evolutionary Analysis with BEAST
  • Online publication: 05 October 2015
  • Chapter DOI: https://doi.org/10.1017/CBO9781139095112.017
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • References
  • Alexei J. Drummond, University of Auckland, Remco R. Bouckaert, University of Auckland
  • Book: Bayesian Evolutionary Analysis with BEAST
  • Online publication: 05 October 2015
  • Chapter DOI: https://doi.org/10.1017/CBO9781139095112.017
Available formats
×