Skip to main content Accessibility help
×
Hostname: page-component-84b7d79bbc-x5cpj Total loading time: 0 Render date: 2024-07-28T05:16:55.822Z Has data issue: false hasContentIssue false

7 - Long-Term Synaptic Plasticity in Mammals I: Long-Term Potentiation (LTP)

Published online by Cambridge University Press:  22 March 2018

Seán Commins
Affiliation:
Maynooth University, Ireland
Get access
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2018

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abel, T., Nguyen, P.V., Barad, M., Deuel, T.A., Kandel, E.R., and Bourtchouladze, R. (1997). Genetic demonstration of a role for PKA in the late phase of LTP and in hippocampal-based long-term memory. Cell, 88, 615626.CrossRefGoogle Scholar
Alberini, C.M., Ghirardi, M., Huang, Y.Y., Nguyen, P.V., and Kandel, E.R. (1995). A molecular switch for the consolidation of long-term memory: cAMP-inducible gene expression. Annals N Y Academy Science, 758, 261286.CrossRefGoogle ScholarPubMed
Barria, A., Muller, D., Derkach, V., Griffith, L.C., and Soderling, T.R. (1997). Regulatory phosphorylation of AMPA-type glutamate receptors by CaMKII during long-term potentiation. Science, 276, 20422045.CrossRefGoogle ScholarPubMed
Bayer, K.U., De Koninck, P., Leonard, A.S., Hell, J.W., and Schulman, H. (2001). Interaction with the NMDA receptor locks CaMKII in an active conformation. Nature, 411, 801805.CrossRefGoogle Scholar
Bekkers, J.M., and Stevens, C.F. (1990). Presynaptic mechanism for long-term potentiation in the hippocampus. Nature, 346, 724729.CrossRefGoogle ScholarPubMed
Bliss, T.V.P., and Collingridge, G.L. (1993). A synaptic model of memory: long-term potentiation in the hippocampus. Nature, 361, 3139.CrossRefGoogle ScholarPubMed
Bliss, T.V.P., and Lømo, T. (1973). Long-lasting potentiation of synaptic transmission in the dentate area of the anaesthetized rabbit following stimulation of the perforant path. Journal of Physiology, 232, 331356.CrossRefGoogle ScholarPubMed
Buchs, P.A., and Muller, D. (1996). Induction of long-term potentiation is associated with major ultrastructural changes of activated synapses. Proceedings of National Academy Science U S A, 93, 8040–5.CrossRefGoogle ScholarPubMed
Castro, C.A., Silbert, L.H., McNaughton, B.L., and Barnes, C.A. (1989). Recovery of spatial learning deficits after decay of electrically induced synaptic enhancement in the hippocampus. Nature, 342, 545548.CrossRefGoogle ScholarPubMed
Collingridge, G.L., Kehl, S.J., and McLennan, H. (1983). The antagonism of amino acid-induced excitations of rat hippocampal CA1 neurones in vitro. Journal of Physiology, 334, 1931.CrossRefGoogle ScholarPubMed
Derkach, V., Barria, A., and Soderling, T.R. (1999). Ca2+/calmodulin-kinase II enhances channel conductance of alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionate type glutamate receptors. Proceedings National Academy Science USA, 96, 3269–74.CrossRefGoogle ScholarPubMed
Frey, U., and Morris, R.G.M. (1997). Synaptic tagging and long-term potentiation. Nature, 385, 533536.CrossRefGoogle ScholarPubMed
Gardoni, F., Caputi, A., Cimino, M., Pastorino, L., Cattabeni, F., and Di Luca, M. (1998). Calcium/calmodulin-dependent protein kinase II is associated with NR2A/B subunits of NMDA receptor in postsynaptic densities. Journal of Neurochemistry, 74, 17331741.CrossRefGoogle Scholar
Giese, K., Fedorov, N.B., Filipkowski, R.K., and Silva, A.J. (1998). Autophosphorylation at Thr286 of the alpha calcium-calmodulin kinase II in LTP and learning. Science, 279, 870873.CrossRefGoogle Scholar
Green, E.J., McNaughton, B.L., and Barnes, C.A. (1990). Exploration-dependent modulation of evoked responses in fascia dentata: dissociation of motor, EEG, and sensory factors and evidence for a synaptic efficacy change. Journal of Neuroscience, 10, 14551471.CrossRefGoogle ScholarPubMed
Hawkins, R.D., Son, H., and Arancio, O. (1998). Nitric oxide as a retrograde messenger during long-term potentiation in hippocampus. Progress Brain Research, 118, 155172.CrossRefGoogle ScholarPubMed
Hebb, D. O. (1949). The organization of behavior. Wiley, New York.Google Scholar
Huang, Y.Y., Nguyen, P.V., Abel, T., and Kandel, E.R. (1996). Long-lasting forms of synaptic potentiation in the mammalian hippocampus. Learning and Memory, 3, 7485.CrossRefGoogle ScholarPubMed
Huganir, R.L., and Nicoll, R.A. (2013). AMPARs and synaptic plasticity: the last 25 years. Neuron. 80(3), 704717.CrossRefGoogle ScholarPubMed
Jeffery, K.J., and Morris, R.G.M. (1993). Cumulative long-term potentiation in the rat dentate gyrus correlates with, but does not modify, performance in the water maze. Hippocampus, 3, 133140.CrossRefGoogle Scholar
Lisman, J.E., and Zhabotinsky, A.M. (2001). A model of synaptic memory: a CaMKII/PP1 switch that potentiates transmission by organizing an AMPA receptor anchoring assembly. Neuron, 31, 191201.CrossRefGoogle Scholar
Lynch, G., Larson, J., Kelso, S., Barrionuevo, G., and Schottler, F. (1983). Intracellular injections of EGTA block induction of hippocampal long-term potentiation. Nature, 305, 719721.CrossRefGoogle ScholarPubMed
Malenka, R.C., Lancaster, B., and Zucker, R.S. (1992). Temporal limits on the rise in postsynaptic calcium required for the induction of long-term potentiation. Neuron, 9, 121128.CrossRefGoogle ScholarPubMed
Malenka, R.C., and Nicoll, R.A. (1999). Long-term potentiation – a decade of progress? Science, 285, 18701874.CrossRefGoogle ScholarPubMed
Malgaroli, A., and Tsien, R.W. (1992). Glutamate-induced long-term potentiation of the frequency of miniature synaptic currents in cultured hippocampal neurons. Nature, 357, 134139.CrossRefGoogle ScholarPubMed
Martin, S.J., Grimwood, P.D., and Morris, R.G.M. (2000). Synaptic plasticity and memory: an evaluation of the hypothesis. Annual Review of Neuroscience, 23, 649711.CrossRefGoogle ScholarPubMed
Martin, S.J., and Morris, R.G.M. (2002). New life in an old idea: The synaptic plasticity and memory hypothesis revisited. Hippocampus, 12, 609636.CrossRefGoogle Scholar
Mayford, M., Bach, M.E., Huang, Y.Y., Wang, L., Hawkins, R.D., and Kandel, E.R. (1996). Control of memory formation through regulated expression of a CaMKII transgene. Science, 274, 16781683.CrossRefGoogle ScholarPubMed
McNaughton, B.L., Barnes, C.A., Rao, G., Baldwin, J., and Rasmussen, M. (1986). Long-term enhancement of hippocampal synaptic transmission and the acquisition of spatial information. Journal of Neuroscience, 6, 563571.CrossRefGoogle ScholarPubMed
Morris, R.G.M. (1989). Synaptic plasticity and learning: selective impairment of learning in rats and blockade of long-term potentiation in vivo by N-methyl-D-aspartate receptor antagonist AP5. Journal of Neuroscience, 9, 30403057.CrossRefGoogle ScholarPubMed
Morris, R.G.M., Anderson, E., Lynch, G.S., and Baudry, M. (1986). Selective impairment of learning and blockade of long-term potentiation by an N-methyl-D-aspartate receptor antagonist, AP5. Nature, 319, 774776.CrossRefGoogle ScholarPubMed
Morris, R.G.M., Davis, S., and Butcher, S.P. (1990). Hippocampal synaptic plasticity and NMDA receptors: a role in information storage? Philosophical Transactions Royal Society of London B Biological Sciences, 329, 187204.Google ScholarPubMed
Moser, E.I. (1995). Learning-related changes in hippocampal field potentials. Behavioural Brain Research, 71, 1118.CrossRefGoogle ScholarPubMed
Moser, E.I., Krobert, K.A., Moser, M-B., and Morris, R.G.M. (1998). Impaired spatial learning after saturation of long-term potentiation. Science, 281, 20382042.CrossRefGoogle ScholarPubMed
Moser, E.I., Moser, M-B., and Anderson, P. (1994). Potentiation of dentate synapses initiated by exploratory learning in rats: dissociation from brain temperature, motor activity, and arousal. Learning and Memory, 1, 5573.CrossRefGoogle ScholarPubMed
Nicoll, R.A., and Malenka, R.C. (1995). Contrasting properties of two forms of long-term potentiation in the hippocampus. Nature, 377, 115–8.CrossRefGoogle ScholarPubMed
Nikonenko, I., Jourdain, P., Alberi, S., Toni, N., and Muller, D. (2002). Activity-induced changes of spine morphology. Hippocampus, 12, 585591.CrossRefGoogle ScholarPubMed
Rioult-Pedotti, M-S., Friedman, D., Hess, G., and Donoghue, J.P. (1998). Strengthening of horizontal cortical connections following skill learning. Nature Neuroscience, 1, 230234.CrossRefGoogle ScholarPubMed
Rogan, M.T., Staubli, U.V., and LeDoux, J.E. (1997). Fear conditioning induces associative long-term potentiation in the amygdala. Nature, 390, 604607.CrossRefGoogle ScholarPubMed
Sharp, P.E., McNaughton, B.L., and Barnes, C.A. (1985). Enhancement of hippocampal field potentials in rats exposed to a novel, complex environment. Brain Research, 339, 361–5.CrossRefGoogle ScholarPubMed
Shi, S.H., Hayashi, Y., Petralia, R.S., Zaman, S.H., Wenthold, R.J., Svoboda, K., and Malinow, R. (1999). Rapid spine delivery and redistribution of AMPA receptors after synaptic NMDA receptor activation. Science, 284, 18111816.CrossRefGoogle ScholarPubMed
Silva, A.J., Kogan, J.H., Frankland, P.W., and Kida, S. (1998). CREB and memory. Annual Review Neuroscience, 21: 127148.CrossRefGoogle ScholarPubMed
Staubli, U., and Lynch, G. (1990). Stable depression of potentiated synaptic responses in the hippocampus with 1–5 Hz stimulation. Brain Research, 513, 113118.CrossRefGoogle ScholarPubMed
Sweatt, J.D. (2016). Neural plasticity and behavior – sixty years of conceptual advances. Journal of Neurochemistry. 139, 179199.CrossRefGoogle ScholarPubMed
Tang, Y.P., Shimizu, E., Dube, G.R., Rampon, C., Kerchner, G.A., Zhuo, M., Liu, G., and Tsien, J.Z. (1999). Genetic enhancement of learning and memory in mice. Nature, 401, 6369.CrossRefGoogle ScholarPubMed
Toni, N., Buchs, P.A., Nikonenko, I., Povilaitite, P., Parisi, L., and Muller, D. (2001). Remodeling of synaptic membranes after induction of long-term potentiation. Journal of Neuroscience, 21, 62456251.CrossRefGoogle ScholarPubMed
Tsien, J.Z., Huerta, P.T., and Tonegawa, S. (1996). The essential role of hippocampal CA1 NMDA receptor-dependent synaptic plasticity in spatial memory. Cell, 87, 13271338.CrossRefGoogle ScholarPubMed
Williams, J.H., Li, Y.G., Nayak, A., Errington, M.L., Murphy, K.P., and Bliss, T.V. (1993). The suppression of long-term potentiation in rat hippocampus by inhibitors of nitric oxide synthase is temperature and age dependent. Neuron, 11, 877884.CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×