Skip to main content Accessibility help
×
Hostname: page-component-7bb8b95d7b-lvwk9 Total loading time: 0 Render date: 2024-09-13T13:16:58.227Z Has data issue: false hasContentIssue false

References

Published online by Cambridge University Press:  16 July 2020

Vasily Vasyunin
Affiliation:
Russian Academy of Sciences
Alexander Volberg
Affiliation:
Michigan State University
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2020

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] ASSANI, I., BUCZOLICH, Z., MAULDIN, R. D., An L1 counting problem in ergodic theory, J. Anal. Math., 95 (2005), 221241.Google Scholar
[2] ASTALA, K., Area distortion of quasiconformal mappings, Acta Math., 173 (1994), 3760.CrossRefGoogle Scholar
[3] BAERNSTEIN, A., MONTGOMERY-SMITH, S., Some conjectures about integral means of ∂f and ∂f, Complex analysis and differential equations, Proc. of the Marcus Wallenberg symposium in honor of Matts Essén, Uppsala, Sweden, 1997, 92109.Google Scholar
[4] BAÑUELOS, R., The foundational inequalities of D. L. Burkholder and some of their ramifications, Illinois J. Math., 54 (2010), no. 3, 789–868.Google Scholar
[5] BAÑUELOS, R., JANAKIRAMAN, P., Lp-bounds for the Beurling–Ahlfors transform, Trans. Amer. Math. Soc., 360 (2008), 36033612.CrossRefGoogle Scholar
[6] BAÑUELOS, R., MÉNDEZ-HERNÁNDEZ, P. J., Space-time Brownian motion and the Beurling– Ahlfors transform, Indiana Univ. Math. J., 52 (2003), 981990.Google Scholar
[7] BAÑUELOS, R., OSȨKOWSKI, A., Burkholder inequalities for submartingales, Bessel processes and conformal martingales, Amer. J. Math., 135 (2013), no. 6, 16751698.CrossRefGoogle Scholar
[8] BAÑUELOS, R., OSȨKOWSKI, A., On the Bellman function of Nazarov, Treil and Volberg, Math. Z., 278 (2014), no. 1–2, 385399.Google Scholar
[9] BAÑUELOS, R., WANG, G., Sharp inequalities for martingales with applications to the Beurling–Ahlfors and Riesz transforms, Duke Math. J., 80 (1995), 575600.Google Scholar
[10] BARTHE, F., HUET, N., On Gaussian Brunn–Minkowski inequalities, Stud. Math., 191 (2009), 283304.CrossRefGoogle Scholar
[11] BARTHE, F., MAUREY, B., Some remarks on isoperimetry of Gaussian type, Ann. de l’Institut Henri Poincaré (B) Prob. Stat., 36 (2000), no. 4, 419434.CrossRefGoogle Scholar
[12] BENNETT, C., SHARPLEY, R., Interpolation of operators, Pure and Applied Mathematics, 129, Academic Press, Boston, MA, 1988.Google Scholar
[13] BENTKUS, V., DZINDZALIETA, D., A tight Gaussian bound for weighted sums of Rademacher random variables, Bernoulli, 21 (2015), no. 2, 12311237.Google Scholar
[14] BOBKOV, S. G., GÖTZE, F., Discrete isoperimetric and Poincaré-type inequalities, Prob. Theory Relat. Fields, 114 (1999), 245277.Google Scholar
[15] BOLLOBÁS, B., Martingale inequalities, Math. Proc. Cambridge Philos. Soc., 87 (1980), no. 3, 377382.CrossRefGoogle Scholar
[16] BORICHEV, A., JANAKIRAMAN, P., VOLBERG, A., On Burkholder function for orthogonal martingales and zeros of Legendre polynomials, Amer. J. Math., 135 (2013), no. 1, 207236.Google Scholar
[17] BORICHEV, A., JANAKIRAMAN, P., VOLBERG, A., Subordination by conformal martingales in L p and zeros of Laguerre polynomials, Duke Math. J., 162 (2013), no. 5, 889924.Google Scholar
[18] BOROS, N., SZÉKELYHIDI, L., VOLBERG, A., Laminates meet Burkholder functions, J. Math. Pures Appl., 100 (2013), no. 5, 687700.Google Scholar
[19] BUCKLEY, ST., Summation condition on weights, Mich. Math. J., 40 (1993), no. 1, 153–170.Google Scholar
[20] BUCKLEY, ST., Estimates for operator norms on weighted spaces and reverse Jensen inequalities, Trans. Amer. Math. Soc., 340 (1993), no. 1, 253–272.Google Scholar
[21] BURKHOLDER, D., Martingale transforms, Ann. Math. Stat., 37 (1966), 14941504.CrossRefGoogle Scholar
[22] BURKHOLDER, D., A geometrical characterization of Banach spaces in which martingale difference sequences are unconditional, Ann. Prob., 9 (1981), no. 6, 9971011.Google Scholar
[23] BURKHOLDER, D., Boundary value problems and sharp estimates for the martingale transforms, Ann. Prob., 12 (1984), no. 3, 647702.Google Scholar
[24] BURKHOLDER, D., Martingales and Fourier analysis in Banach spaces, Probability and Analysis (Varenna, 1985), Lecture Notes in Math., 1206 (1986), 61108.Google Scholar
[25] BURKHOLDER, D., An extension of classical martingale inequality, Probability Theory and Harmonic Analysis (Cleveland, OH, 1983), Monogr. Textbook Pure Appl. Math., 98, 21– 30. Marcel Dekker, New York, 1986.Google Scholar
[26] BURKHOLDER, D., Sharp inequalities for martingales and stochastic integrals, Colloque Paul Lévy sur les Processus Stochastiques (Palaiseau, 1987), Astérisque, 157–158 (1988), 7594.Google Scholar
[27] BURKHOLDER, D., A proof of the Peczyński’s conjecture for the Haar system, Stud. Math., 91 (1988), no. 1, 7983.CrossRefGoogle Scholar
[28] BURKHOLDER, D., Differential subordination of harmonic functions and martingales, Harmonic Analysis and Partial Differential Equations (El Escorial, 1987), Lecture Notes in Math., 1384 (1989), 123.CrossRefGoogle Scholar
[29] BURKHOLDER, D., Explorations of martingale theory and its applications, École d’Été de Probabilités de Daint-Flour XIX–1989, Lecture Notes in Math., 1464 (1991), 166.Google Scholar
[30] BURKHOLDER, D., Strong differential subordination and stochastic integration, Ann. Prob., 22 (1994), no. 2, 9951025.Google Scholar
[31] BURKHOLDER, D., Martingales and singular integrals in Banach spaces, Handbook of the Geometry of Banach Spaces, I, Ch. 6, 233–269. North-Holland, Amsterdam, 2001.Google Scholar
[32] BURKHOLDER, D. L., GUNDY, R. F., Extrapolation and interpolation of quasi-linear operators on martingales, Acta Math., 124 (1970), 249304.Google Scholar
[33] CARBONARO, A., DRAGIČEVIĆ, O., Bellman function and linear dimension-free estimates in a theorem of Bakry, J. Funct. Anal., 265 (2013), no. 7, 10851104.Google Scholar
[34] CARBONARO, A., DRAGIČEVIĆ, O., Functional calculus for generators of symmetric contraction semigroups, Duke Math. J., 166 (2017), no. 5, 937974.Google Scholar
[35] CARRO, M., From restricted weak type to strong type estimates, J. London Math. Soc., 70 (2004), no. 3, 750762.CrossRefGoogle Scholar
[36] CARRO, M., DOMINGO-SALAZAR, C., Weighted weak-type (1, 1) estimates for radial Fourier multipliers via extrapolation theory. J. Anal. Math., 138 (2019), no. 1, 83105.Google Scholar
[37] CARRO, M., GRAFAKOS, L., Weighted weak type (1, 1) estimates via Rubio de Francia extrapolation, J. Funct. Anal., 269 (2015), no. 5, 12031233.CrossRefGoogle Scholar
[38] CHANG, S.-Y. A., WILSON, J. M., WOLFF, T. H., Some weighted norm inequalities for the Schrödinger operator, Comment. Math. Helv., 60 (1985), no. 1, 217246.Google Scholar
[39] CHRIST, M., A T (b) theorem with remarks on analytic capacity and the Cauchy integral, Colloq. Math., 60 /61 (1990), no. 2, 601–628.Google Scholar
[40] CLARKSON, J. A., Uniformly convex spaces, Trans. Amer. Math. Soc., 40 (1936), no. 3, 396414.Google Scholar
[41] CODDINGTON, E. A., An introduction to ordinary differential operators, Dover, New York, 1989.Google Scholar
[42] CODDINGTON, E. A., LEVINSON, N., The theory of ordinary differential operators, McGraw-Hill, New York, 1955.Google Scholar
[43] CONDE-ALONSO, J., CULIUC, A., DI PLINIO, F., OU, YUMENG, A sparse domination principle for rough singular integrals, Anal. PDE, 10 (2017), no. 5, 12551284.Google Scholar
[44] CONDE-ALONSO, J., REY, G., A pointwise estimate for positive dyadic shifts and some applications, Math. Ann., 365 (2016), no. 3–4, 11111135.CrossRefGoogle Scholar
[45] CRUZ-URIBE, D., MARTELL, J. M., PÉREZ, C., Weights, extrapolation and the theory of Rubio de Francia, Operator Theory: Advances and Applications, 215, Birkhäuser/Springer, Basel, 2011.Google Scholar
[46] CRUZ-URIBE, D., PÉREZ, C., Sharp two-weight, weak-type norm inequalities for singular integral operators, Math. Res. Lett., 6 (1999), no. 3–4, 417427.Google Scholar
[47] DALENC, L., OU, Y., Upper bound for multi-parameter iterated commutators, Publ. Mat., 60 (2016), no. 1, 191220.Google Scholar
[48] DAVID, G., JOURNÉ, J.-L., A boundedness criterion for generalized Calderón–Zygmund operators, Ann. Math., 120 (1984), no. 2, 371397.Google Scholar
[49] DAVID, G., JOURNÉ, J.-L., Opérateurs de Calderón-Zygmund, fonctions para-accrétives et interpolation, Rev. Mat. Iberoam., 1 (1985), no. 4, 156 (in French).Google Scholar
[50] DAVIS, B., On the Lp norms of stochastic integrals and other martingales, Duke Math. J., 43 (1976), 697704.Google Scholar
[51] DOMINGO-SALAZAR, C., LACEY, M., REY, G., Borderline weak-type estimates for singular integrals and square functions, Bull. Lond. Math. Soc., 48 (2016), no. 1, 6373.Google Scholar
[52] DRAGICEVIC, O., TREIL, S., VOLBERG, A., A theorem about three quadratic forms. Int. Math. Res. Notices, IMRN, 2008, Art. ID rnn 072, 9 pp.Google Scholar
[53] DRAGIČEVIĆ, O., VOLBERG, A., Sharp estimates of the Ahlfors–Beurling operator via averaging of martingale transform, Michi. Math. J., 51 (2003), 415435.Google Scholar
[54] DRAGIČEVIĆ, O., VOLBERG, A., Bellman function, Littlewood–Paley estimates, and asymptotics of the Ahlfors–Beurling operator in Lp (C), p → ∞, Indiana Univ. Math. J., 54 (2005), 971995.Google Scholar
[55] DRAGIČEVIĆ, O., VOLBERG, A., Bellman function and dimensionless estimates of classical and Ornstein–Uhlenbeck Riesz transforms, J. Oper. Theory, 56 (2006), 167198.Google Scholar
[56] DUOANDIKOETXEA, J., Fourier analysis, Graduate Studies in Mathematics, 29, American Mathematical Society, Providence, RI, 2001.Google Scholar
[57] DUOANDIKOETXEA, J., RUBIO DE FRANCIA, J. L., Maximal and singular integral operators via Fourier transform estimates, Invent. Math., 84 (1986), no. 3, 541561.Google Scholar
[58] EKELAN, I., TEMAM, R., Convex analysis and variational problems, North-Holland, Amsterdam, 1976.Google Scholar
[59] ENFLO, P., Banach spaces which can be given an equivalent uniformly convex norm, Israel J. Math., 13 (1972), 281288.Google Scholar
[60] EVANS, L. C., GARIEPY, R. F., Measure theory and Fine properties of functions, Studies in Advanced Mathematics, CRC Press, Boca Raton, FL, 1992. ISBN: 0-8493-7157-0Google Scholar
[61] GARNETT, J., Bounded analytic functions, Springer, New York, 2007 (first edition Academic Press, 1981).Google Scholar
[62] GEISS, S. S. MONTGOMERY-SMITH, , SAKSMAN, E., On singular integral and martingale transforms, Trans. Amer. Math. Soc., 362 (2010), 553575.Google Scholar
[63] GIKHMAN, I. I., SKOROKHOD, A. V., The theory of stochastic processes I, II, III, Springer-Verlag, 2004–2007.Google Scholar
[64] GRAFAKOS, L., MARTELL, J. M., SORIA, F., Weighted norm inequalities for maximally modulated singular integral operators, Math. Ann., 331 (2005), no. 2, 359394.Google Scholar
[65] HALL, R. R., On a conjecture of Littlewood, Math. Proc. Cambridge Philos. Soc., 78 (1975), 443445.Google Scholar
[66] HANNER, O., On the uniform convexity of L p and l p , Ark. Mat., 3 (1956), no. 3, 239244.Google Scholar
[67] HARPER, L. H., Optimal numberings and isoperimetric problems on graphs, J. Combin. Theory, 1 (1996), 385393.Google Scholar
[68] HOFMANN, S., Banach spaces of analytic functions, Dover, Mineola, NY, 2007.Google Scholar
[69] HOLLENBECK, B., VERBITSKY, I., Best constants for the Riesz projections, J. Funct. Anal., 175 (2000), 370392.Google Scholar
[70] HOLMES, I., IVANISVILI, P., VOLBERG, A., The sharp constant in the weak (1,1) inequality for the square function: A new proof, arXiv:1710.01346, 1–17, Rev. Mat. Iberoam., 2019, (online first), European Mathematical Society, doi: 10.4171/rmi/1147.Google Scholar
[71] HUKOVIC, S. S. TREIL, , VOLBERG, A., The Bellman functions and sharp weighted inequalities for square functions, Complex Analysis, Operators, and Related Topics, Oper. Theory Adv. Appl., 113 (2000), 97–113, Birkhäuser, Basel.Google Scholar
[72] HYTÖNEN, T., The sharp weighted bound for general Calderón–Zygmund operators, Ann. Math. (2), 175 (2012), no. 3, 1473–1506.Google Scholar
[73] HYTÖNEN, T., Representation of singular integrals by dyadic operators, and the A 2 theorem, Expo. Math., 35 (2017), no. 2, 166205.Google Scholar
[74] HYTÖNEN, T., MARTIKAINEN, H., Non-homogeneous Tb theorem and random dyadic cubes on metric measure spaces, J. Geom. Anal., 22 (2012), no. 4, 10711107.Google Scholar
[75] HYTÖNEN, T., PÉREZ, C., Sharp weighted bounds involving A , Anal. PDE, 6 (2013), no. 4, 777818.Google Scholar
[76] HYTÖNEN, T., PÉREZ, C., TREIL, S., VOLBERG, A., Sharp weighted estimates for dyadic shifts and the A 2 conjecture, J. Reine Angew. Math., 687 (2014), arXiv:1010.0755, 43–86.Google Scholar
[77] IVANISVILI, P., MOZOLYAKO, P., VOLBERG, A., Strong weighted and restricted weak weighted estimates of the square function, arXiv:1804.06869, 1–18.Google Scholar
[78] IVANISVILI, P., NAZAROV, F., VOLBERG, A., Hamming cube and martingales, Comptes Rendus de L’Acad. Sci. Paris, 355 (2017), no. 10, 10721076.Google Scholar
[79] IVANISVILI, P., NAZAROV, F., VOLBERG, A., Square functions and the Hamming cube: Duality, Discrete Anal., (2018), no. 1, arXiv:1608.4021, 1–18.Google Scholar
[80] IVANISHVILI, P., OSIPOV, N., STOLYAROV, D., VASYUNIN, V., ZATITSKIY, P., Bellman function for extremal problems in BMO, Trans. Amer. Math. Soc., 368 (2016), no. 5, arXiv:1205.7018, 3415–3468.Google Scholar
[81] IVANISHVILI, P., OSIPOV, N., STOLYAROV, D., VASYUNIN, V., ZATITSKIY, P., Bellman function for extremal problems in BMO II: Evolution, Mem. Amer. Math. Soc., 255 (2018), no. 1220, arXiv:1510.01010, 1–148.Google Scholar
[82] IVANISVILI, P., STOLYAROV, D. M., ZATITSKIY, P. B., Bellman vs Beurling: Sharp estimates of uniform convexity for L p spaces, Algebra i Analiz, 27 (2015), no. 2, 218–231 (Russian); English translation in: St. Petersburg Math. J., 27 (2016), no. 2, 333–343.Google Scholar
[83] IVANISVILI, P., VOLBERG, A., Bellman partial differential equation and the hill property for classical isoperimetric problems, arXiv:1506.03409, 1–30.Google Scholar
[84] IVANISVILI, P., VOLBERG, A., Isoperimetric functional inequalities via the maximum principle: The exterior differential systems approach, in V. P. Havin memorial volume, 50 years with Hardy Spaces, 281–305, Oper. Theory Adv. Appl., 261, Birkhuser/Springer, Cham, 2018 (preprint, arXiv: 1511.06895, 1–16).Google Scholar
[85] IWANIEC, T., Extremal inequalities in Sobolev spaces and quasiconformal mappings, Z. Anal. Anwendungen, 1 (1982), 116.Google Scholar
[86] JAMES, R. C., Some self-dual properties of normed linear spaces, Symposium on Infinite-Dimensional Topology (Louisiana State University, Baton Rouge, LA., 1967), 159–175, Ann. Math. Stud., 69, Princeton University Press, Princeton, NJ, 1972.Google Scholar
[87] JANAKIRAMAN, P., Orthogonality in complex martingale spaces and connections with the Beurling-Ahlfors transform, Illinois J. Math., 54 (2010), no. 4, 15091563.Google Scholar
[88] JOHN, F., NIRENBERG, L., On functions of bounded mean oscillation, Comm. Pure Appl. Math., 14 (1961), 415426.Google Scholar
[89] KARATZAS, I., SHREVE, S., Brownian motion and stochastic calculus, Graduate Texts in Mathematics, Springer, New York, 1991.Google Scholar
[90] KONYAGIN, S., VOLBERG, A., On measures with the doubling condition, Izv. Akad. Nauk SSSR Ser. Mat., 51 (1987), no. 3, 666–675 (Russian); English translation in: Math. USSR-Izv., 30 (1988), no. 3, 629–638.Google Scholar
[91] KOVAČ, V., Applications of the Bellman function technique in multilinear and nonlinear harmonic analysis, Thesis, UCLA, 2011, 1111.Google Scholar
[92] KOVAČ, V., Bellman function technique for multilinear estimates and an application to generalized paraproducts, Indiana Univ. Math. J., 60 (2011), no. 3, 813846.Google Scholar
[93] KOVAČ, V., Boundedness of the twisted paraproduct, Rev. Mat. Iberoam., 28 (2012), no. 4, 11431164.Google Scholar
[94] KOVAČ, V., Uniform constants in Hausdorff-Young inequalities for the Cantor group model of the scattering transform, Proc. Amer. Math. Soc., 140 (2012), no. 3, 915926.Google Scholar
[95] KRYLOV, N., Optimal control of diffusion processes, Springer, Berlin 1980.Google Scholar
[96] LACEY, M., An elementary proof of an A 2 bound, Israel J. Math., 217 (2017), no. 1, 181195.Google Scholar
[97] LACEY, M., Two-weight inequality for the Hilbert transform: A real variable characterization, II, Duke Math. J., 163 (2014), no. 15, 28212840.Google Scholar
[98] LACEY, M., LI, K., On Ap − A type estimates for square functions, Math. Z., 284 (2016), 12111222.Google Scholar
[99] LACEY, M., PETERMICHL, S., REGUERA, M., Sharp A 2 inequality for Haar shift operators, Math. Ann., 348 (2010), no. 1, 121141.Google Scholar
[100] LACEY, M., SAWYER, E., SHEN, C.-Y., URIARTE-TUERO, I., Two-weight inequality for the Hilbert transform: A real variable characterization, I, Duke Math. J., 163 (2014), no. 15, 27952820.Google Scholar
[101] LACEY, M., SCURRY, J., Weighted weak type estimates for square function, arXiv:1211. 4219.Google Scholar
[102] LEDOUX, M., Concentration of measure and logarithmic Sobolev inequalities, Séminare de Probabilités XXXIII, Lecture Notes in Math., 1709, Springer, Berlin, 1999.Google Scholar
[103] LEDOUX, M., Isoperimetry and Gaussian analysis, Lectures on Probability Theory and Statistics, Lecture Notes in Math., 1648 (1996), 165294.Google Scholar
[104] LEHTO, O., Remarks on the integrability of the derivatives of quasiconformal mappings, Ann. Acad. Sci. Fenn., Series A, 371 (1965), 1–8.Google Scholar
[105] LERNER, A., Sharp weighted norm inequalities for Littlewood–Paley operators and singular integrals, Adv. Math., 226 (2011), 39123926.Google Scholar
[106] LERNER, A., Mixed A p − Ar inequalities for classical singular integrals and Littlewood– Paley operators, J. Geom. Anal., 23 (2013), no. 3, 13431354.Google Scholar
[107] LERNER, A., A simple proof of the A 2 conjecture, Int. Math. Res. Notices, 2013 (2013), no. 14, 31593170.Google Scholar
[108] LERNER, A., On an estimate of Calderón–Zygmund operators by dyadic positive operators, J. Anal. Math., 121 (2013), no. 1, 141161.CrossRefGoogle Scholar
[109] LERNER, A., On sharp aperture-weighted estimates for square functions, J. Fourier Anal. Appl., 20 (2014), no. 4, 784800.Google Scholar
[110] LERNER, A., NAZAROV, F., OMBROSI, S., On the sharp upper bound related to the weak Muckenhoupt–Wheeden conjecture, arXiv:1710.07700, 1–17.Google Scholar
[111] LERNER, A., OMBROSI, S., PÉREZ, C., A1 bounds for Calderón–Zygmund operators related to a problem of Muckenhoupt and Wheeden, Math. Res. Lett., 16 (2009), no. 1, 149156.Google Scholar
[112] LERNER, A., DI PLINIO, F., On weighted norm inequalities for the Carleson and Walsh– Carleson operators, J. London Math. Soc., 90 (2014), no. 3, 654674.Google Scholar
[113] LÓPEZ-SÁNCHEZ, L. D., MARTELL, J. M., PARCET, J., Dyadic harmonic analysis beyond doubling measures, Adv. Math., 267 (2014), 4493.Google Scholar
[114] MARCINKIEWICZ, J., Quelque théorèmes sur les séries orthogonales, Ann. Soc. Polon. Math., 16 (1937), 84–96 (pages 307–318 of the Collected Papers).Google Scholar
[115] MARTIKAINEN, H., Representation of bi-parameter singular integrals by dyadic operators, Adv. Math., 229 (2012), no. 3, 17341761.Google Scholar
[116] MELAS, A., The Bellman functions of dyadic-like maximal operators and related inequalities, Adv. Math., 192 (2005), no. 2, 310340.Google Scholar
[117] MEYER, P. A., Démonstration probabiliste de certain inégalités de Littlewood–Paley, Seminaire de Probabilitées X (University of Strasbourg, 1974/75), Lecture Notes in Math., 511, Springer-Verlag, Berlin, 1982.Google Scholar
[118] MILLAR, P. W., Martingale integrals, Trans. AMS, 133 (1968), 145166.Google Scholar
[119] MUSCALU, C., TAO, T., THIELE, C., A Carleson theorem for a Cantor group model of the scattering transform, Nonlinearity, 16 (2003), no. 1, 219246.CrossRefGoogle Scholar
[120] NADIRASHVILI, N., TKACHEV, V., VLADUT, S., Nonlinear elliptic equations and nonassociative algebras, Mathematical Surveys and Monographs, 200 American Mathematical Society, Providence, RI, 2014.Google Scholar
[121] NAOR, A., SCHECHTMAN, G., Remarks on non linear type and Pisier’s inequality, J. Reine Angew. Math., 552 (2002), 213236.Google Scholar
[122] NAZAROV, F., REZNIKOV, A., TREIL, S., VOLBERG, A., A Bellman function proof of the L 2 bump conjecture, J. Anal. Math., 121 (2013), 255277.Google Scholar
[123] NAZAROV, F., REZNIKOV, A., VASYUNIN, V., VOLBERG, A., A Bellman function counterexample to the A 1 conjecture: The blow-up of the weak norm estimates of weighted singular operators, arXiv:1506.04710v1, 1–23.Google Scholar
[124] NAZAROV, F., RESZNIKOV, A., VASYUNIN, V., VOLBERG, A., On weak weighted estimates of the martingale transform and a dyadic shift, Anal. PDE 11 (2018), no. 8, arXiv:1612.03958, 2089–2109.Google Scholar
[125] NAZAROV, F., REZNIKOV, A., VOLBERG, A., The proof of A2 conjecture in a geometrically doubling metric space, Indiana Univ. Math. J., 62 (2013), no. 5, 1503–1533, arXiv:1106.1342, 1–23.Google Scholar
[126] NAZAROV, F., TOLSA, X., VOLBERG, A., On the uniform rectifiability of AD-regular measures with bounded Riesz transform operator: The case of codimension 1, Acta Math., 213 (2014), no. 2, 237321.Google Scholar
[127] NAZAROV, F., TREIL, S., The hunt for Bellman function: Applications to estimates of singular integral operators and to other classical problems in harmonic analysis, Algebra i Analiz, 8 (1996), no. 5, 32–162 (Russian); English translation in: St. Petersburg Math. J., 8 (1997), no. 5, 721–824.Google Scholar
[128] NAZAROV, F., TREIL, S., VOLBERG, A., Cauchy integral and Calderón–Zygmund operators on nonhomogeneous spaces, Int. Math. Res. Notices, 1997 (1997), no. 15, 703726.Google Scholar
[129] NAZAROV, F., TREIL, S., VOLBERG, A., Weak type estimates and Cotlar inequalities for Calderón–Zygmund operators on nonhomogeneous spaces, Int. Math. Res. Notices, 1998 (1998), no. 9, 463487.Google Scholar
[130] NAZAROV, F., TREIL, S., VOLBERG, A., The Bellman functions and two-weight inequalities for Haar multipliers, J. Amer. Math. Soc., 12 (1999) 909928.Google Scholar
[131] NAZAROV, F., TREIL, S., VOLBERG, A., Bellman function in stochastic control and harmonic analysis, Systems, Approximation, Singular Integral Operators, and Related Topics (Bordeaux, 2000), Oper. Theory Adv. Appl., 129 (2001), 393423, Birkhäuser, Basel.Google Scholar
[132] NAZAROV, F., TREIL, S., VOLBERG, A., The Tb-theorem on non-homogeneous spaces, Acta Math., 190 (2003), 151239.Google Scholar
[133] NAZAROV, F., TREIL, S., VOLBERG, A., Two weight inequalities for individual Haar multipliers and other well localized operators, Math. Res. Lett., 15 (2008), no. 4, 583597.Google Scholar
[134] NAZAROV, F., TREIL, S., VOLBERG, A., Two weight estimate for the Hilbert transform and corona decomposition for non-doubling measures, arXiv:1003.1596v1.Google Scholar
[135] NAZAROV, F., VASYUNIN, V., VOLBERG, A., On Bellman function associated with Chang– Wilson–Wolff theorem, Algebra and Analysis.Google Scholar
[136] NAZAROV, F., VOLBERG, A., Bellman function, two weighted Hilbert transforms and embeddings of the model spaces Kθ, Dedicated to the memory of Thomas H. Wolff, J. Anal. Math., 87 (2002), 385–414.Google Scholar
[137] NAZAROV, F., VOLBERG, A., Heating of the Beurling operator and estimates of its norm, Algebra and Analysis, 15 (2003), no. 4, 142–158 (Russian); English translation in: St. Petersburg Math. J., 15 (2004), no. 4, 563–573.Google Scholar
[138] NEUGEBAUER, C. J., Inserting Ap-weights, Proc. Amer. Math. Soc., 87 (1983), no. 4, 644648.Google Scholar
[139] NOVIKOV, A. A., On stopping times for Wiener processes, Theory Prob. Appl., 16 (1971), 449456.Google Scholar
[140] OSEKOWSKI, A., On the best constant in the weak type inequality for the square function of a conditionally symmetric martingale, Stat. Prob. Lett., 79 (2009), no. 13, 15361538.Google Scholar
[141] OSEKOWSKI, A., Sharp Martingale and Semimartingale Inequalities, Monografie Matematyczne, 72, Birkhäuser, Basel, 2012.Google Scholar
[142] OSEKOWSKI, A., Some sharp estimates for the Haar system and other bases in L1 (0, 1), Math. Scand., 115 (2014), 123142.Google Scholar
[143] OSEKOWSKI, A., A splitting procedure for Bellman functions and the action of dyadic maximal operator in Lp , Mathematika, 61 (2015), 199212.Google Scholar
[144] OSEKOWSKI, A., Weighted square function inequalities, Publ. Mat., 62 (2018), 7594.Google Scholar
[145] OU, Y., Multi-parameter singular integral operators and representation theorem, Rev. Mat. Iberoam., 33 (2017), no. 1, arXiv:1410.8055, 325–350.Google Scholar
[146] PÉREZ, C., Weighted norm inequalities for general maximal operators, Conference on Mathematical Analysis (El Escorial, 1989), Publ. Mat., 35 (1991), no. 1, 169186.Google Scholar
[147] PÉREZ, C., A remark on weighted inequalities for general maximal operators. Proc. Amer. Math. Soc., 119 (1993), no. 4, 11211126.Google Scholar
[148] PÉREZ, C., On sufficient conditions for the boundedness of the Hardy-Littlewood maximal operator between weighted Lp-spaces with different weights. Proc. London Math. Soc. (3), 71 (1995), no. 1, 135–157.Google Scholar
[149] PÉREZ, C., TREIL, S., VOLBERG, A., On A2 conjecture and corona decomposition of weights, arXiv:1006.2630, 1–39.Google Scholar
[150] PETERMICHL, S., A sharp bound for weighted Hilbert transform in terms of classical Ap characteristic, Amer. J. Math., 129 (2007), 13551375.Google Scholar
[151] PETERMICHL, S., The sharp weighted bound for the Riesz transforms. Proc. Amer. Math. Soc., 136 (2008), no. 4, 12371249.Google Scholar
[152] PETERMICHL, S., VOLBERG, A., Heating the Beurling operator: Weakly quasiregular maps on the plane are quasiregular, Duke Math. J., 112 (2002), 281305.Google Scholar
[153] PICHORIDES, S., On the best values of the constants in the theorems of M. Riesz, Zygmund and Kolmogorov, Stud. Math., XLIV (1972), 165–179.Google Scholar
[154] PISIER, G., Martingales with values in uniformly convex spaces, Israel J. Math., 20 (1975), no. 3–4, 326350.Google Scholar
[155] PISIER, G., Probabilistic methods in the geometry of Banach spaces, Probability and analysis (Varenna, Italy, 1985), Lecture Notes in Math. 1206 (1986), 167–241, Springer-Verlag.Google Scholar
[156] POGORELOV, A. V., Extrinsic geometry of convex surfaces, Translations of Mathematical Monographs, 35, American Mathematical Society, Providence, RI, 1973.Google Scholar
[157] REGUERA, M. C., On Muckenhoupt–Wheeden conjecture, Adv. Math., 227 (2011), no. 4, 14361450.Google Scholar
[158] REGUERA, M. C., THIELE, C., The Hilbert transform does not map L1 (Mw) to L1,∞ (w), Math. Res. Lett., 19 (2012), no. 1, arXiv:1011.1767, 1–7.Google Scholar
[159] REZNIKOV, A., Sharp weak type estimates for weights in the class A p1 p 2 , Rev. Mat. Iberoam., 29 (2013), no. 2, 433478.Google Scholar
[160] REZNIKOV, A., BEZNOSOVA, A., Equivalent definitions of dyadic Muckenhoupt and reverse Hölder classes in terms of Carleson sequences, weak classes, and comparability of dyadic L log L and A constants, Rev. Mat. Iberoam., 30 (2014), no. 4, 11911236.Google Scholar
[161] REZNIKOV, A., TREIL, S., VOLBERG, A., A sharp estimate of weighted dyadic shifts of complexity 0 and 1, arXiv:1104.5347.Google Scholar
[162] REZNIKOV, A., VASYUNIN, V., VOLBERG, A., Extremizers and the Bellman function for the weak type martingale inequality, arXiv:1311.2133.Google Scholar
[163] REZNIKOV, A., VASYUNIN, V., VOLBERG, A., An observation: Cut-off of the weight w does not increase the A p1 ,p 2 -norm of w, arXiv:1008.3635v1.Google Scholar
[164] ROGERS, L. C. G., WILLIAMS, D., Diffusions, Markov processes and martingales, Vol. 1, 2, Cambridge University Press, 2000.Google Scholar
[165] SAWYER, E., Two-weight norm inequalities for certain maximal and integral operators, Lecture Notes Math., 908 (1982), 102127, Springer-Verlag, Berlin–Heidelberg–New York.Google Scholar
[166] SHEPP, L. A., A first passage problem for the Wiener process, Ann. Math. Stat., 38 (1967), 19121914.Google Scholar
[167] SION, M., On general minimax theorems, Pac. J. Math., 8 (1958), 171176.Google Scholar
[168] SLAVIN, L., Bellman function and BMO, PhD thesis, Michigan State University, 2004.Google Scholar
[169] SLAVIN, L., STOKOLOS, A., The Bellman PDE and its solution for the dyadic maximal function, 2006, 1–16.Google Scholar
[170] SLAVIN, L., STOKOLOS, A., AND VASYUNIN, V., Monge-Ampère equations and Bellman functions: The dyadic maximal operator, C. R. Math. Acad. Sci. Paris, 346 (2008), no. 9– 10, 585–588.Google Scholar
[171] SLAVIN, L., VASYUNIN, V., Sharp results in the integral-form John–Nirenberg inequality, Trans. Amer. Math. Soc., 363 (2011), arXiv:0709.4332, 4135–4169.Google Scholar
[172] SLAVIN, L., VASYUNIN, V., Sharp L p estimates on BMO, Indiana Univ. Math. J., 61 (2012), no. 3, 10511110.Google Scholar
[173] STEIN, E. Singular integrals and differentiability properties of functions, Princeton University Press, Princeton, NY, 1986.Google Scholar
[174] STOLYAROV, D. M., ZATITSKIY, P. B., Theory of locally concave functions and its applications to sharp estimates of integral functionals. Adv. Math., 291 (2016), arXiv:1412.5350, 228–273.Google Scholar
[175] SZAREK, S. J., On the best constants in the Khintchine inequality, Stud. Math., 18 (1976), 197208.Google Scholar
[176] SZEGÖ, G., Orthogonal polynomials, Fourth edition, American Mathematical Society, Colloquium Publications, XXIII, American Mathematical Society, Providence, RI, 1975.Google Scholar
[177] TALAGRAND, M., Isoperimetry, logarithmic Sobolev inequalities on the discrete cube, and Margulis’ graph connectivity, Geom. Funct. Anal., 3, (1993), no. 3, 295314.Google Scholar
[178] THIELE, C., TREIL, S., VOLBERG, A., Weighted martingale multipliers in the nonhomogeneous setting and outer measure spaces, Adv. Math., 285 (2015), 11551188.Google Scholar
[179] TOLSA, X., Painlevé’s problem and the semiadditivity of analytic capacity, Acta Math., 190 (2003), no. 1, 105149.Google Scholar
[180] TOLSA, X., Analytic capacity, the Cauchy transform, and non-homogeneous Calderón– Zygmund theory, Progress in Mathematics, Birkhäuser, Basel, 2013.Google Scholar
[181] TREIL, S., Sharp A2 estimates of Haar shifts via Bellman function, Recent trends in analysis, Theta Ser. Adv. Math., 16 (2013), Theta, Bucharest, arXiv:1105.2252v1, 187–208.Google Scholar
[182] TREIL, S., VOLBERG, A., Entropy conditions in two weight inequalities for singular integral operators, Adv. Math., 301 (2016), 499548.Google Scholar
[183] VASYUNIN, V., The sharp constant in the John–Nirenberg inequality, POMI no. 20, 2003.Google Scholar
[184] VASYUNIN, V., The sharp constant in the reverse Hölder inequality for Muckenhoupt weights, Algebra i Analiz, 15 (2003), no. 1, 73–117 (Russian); English translation in: St. Petersburg Math. J., 15 (2004), no. 1, 49–79.Google Scholar
[185] VASYUNIN, V., Sharp constants in the classical weak form of the John-Nirenberg inequality, POMI no. 10, 2011, www.pdmi.ras.ru/preprint/2011/eng-2011.html.Google Scholar
[186] VASYUNIN, V., Cincinnati lectures on Bellman functions, edited by L. Slavin, arXiv:1508.07668, 1–33.Google Scholar
[187] VASYUNIN, V., VOLBERG, A., The Bellman functions for a certain two-weight inequality: A case study, Algebra i Analiz, 18 (2006), no. 2, 24–56 (Russian); English translation in: St. Petersburg Math. J., 18 (2007), 201–222.Google Scholar
[188] VASYUNIN, V., VOLBERG, A., Bellman functions technique in harmonic analysis, 2009, 1–86, www.sashavolberg.wordpress.comGoogle Scholar
[189] VASYUNIN, V., VOLBERG, A., Monge–Ampère equation and Bellman optimization of Carleson embedding theorems, Amer. Math. Soc. Transl. Ser. 2, 226 (2009), 195238.Google Scholar
[190] VASYUNIN, V., VOLBERG, A., Burkholder’s function via Monge-Ampère equation, Illinois J. Math., 54 (2010), no. 4, 13931428.Google Scholar
[191] VASYUNIN, V., VOLBERG, A., Sharp constants in the classical weak form of the John– Nirenberg inequality, Proc. London Math. Soc. (3), 108 (2014), no. 6, 1417–1434.Google Scholar
[192] VOLBERG, A., The proof of the nonhomogeneous T1 theorem via averaging of dyadic shifts, Algebra i Analiz, 27 (2015), no. 3, 75–94; English translation in: St. Petersburg Math. J., 27 (2016), no. 3, 399–413.Google Scholar
[193] VOLBERG, A., Bellman approach to some problems in Harmonic Analysis, Séminaires des Equations aux derivées partielles, Ecole Politéchnique, 2002, exposé XX, 1–14.Google Scholar
[194] VOLBERG, A. Calderón–Zygmund capacities and operators on nonhomogeneous spaces, CBMS Regional Conference Series in Mathematics, 100. Published for the Conference Board of the Mathematical Sciences, Washington, DC; by the American Mathematical Society, Providence, RI, 2003.Google Scholar
[195] VOLBERG, A., ZORIN-KRANICH, P., Sparse domination on non-homogeneous spaces with an application to Ap weights, Rev. Mat. Iberoam., 34 (2018), no 3, arXiv:1606.03340, 1401– 1414.Google Scholar
[196] WANG, G., Sharp square function inequalities for conditionally symmetric martingales, Trans. Amer. Math. Soc., 328 (1991), no. 1, 393419.Google Scholar
[197] WANG, G., Some sharp inequalities for conditionally symmetric martingales, PhD thesis, University of Illinois at Urbana-Champaign, 1989.Google Scholar
[198] WATSON, G. N., A treatise on the theory of Bessel functions, Reprint of the second (1944) edition, Cambridge Mathematical Library, Cambridge University Press, Cambridge, 1995.Google Scholar
[199] WENTZEL, A. D., Course in the theory of stochastic processes, Moscow, Nauka, Fizmatgiz, 1996.Google Scholar
[200] WILSON, M., Weighted Littlewood–Paley theory and exponential-square integrability, Lecture Notes in Math., 1924, Springer-Verlag, New York, 2007.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×