Skip to main content Accessibility help
×
Hostname: page-component-7479d7b7d-qs9v7 Total loading time: 0 Render date: 2024-07-11T17:26:06.864Z Has data issue: false hasContentIssue false

3 - Bioinspired Design of Multilayered Composites

Lessons from Nacre

from Part I - Materials

Published online by Cambridge University Press:  28 August 2020

Wole Soboyejo
Affiliation:
Worcester Polytechnic Institute, Massachusetts
Leo Daniel
Affiliation:
Kwara State University, Nigeria
Get access

Summary

In the past, significant research has been focused on improving the mechanical properties of lightweight structural materials due to the large demand in bioengineering, aerospace, automotive, armor, and construction applications. This primarily includes advanced structural materials, which are lightweight materials with outstanding mechanical properties such as strength and toughness. Meanwhile, various materials exist in nature that inherently have these exceptional mechanical properties [1]. There is, therefore, a great interest in understanding and analyzing the structure and mechanical behavior of these materials [2]–[7]. Evolution has brought about beautiful, optimized solutions to many problems. Nacre [8], mantis shrimp club [9], bone [10], deep sea sponge [11], bamboo [12,13], and elk antler [14] are just a few of these structural biological materials.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2020

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ortiz, C., & Boyce, M. C. (2008). Bioinspired structural materials. Science, 319(5866), 10531054.Google Scholar
Weaver, J. C., Milliron, G. W., Miserez, A., et al. (2012). The stomatopod dactyl club: A formidable damage-tolerant biological hammer. Science, 336(6086), 12751280.Google Scholar
Barthelat, F. (2010). Nacre from mollusk shells: A model for high-performance structural materials. Bioinspiration & Biomimetics, 5(3), 035001.Google Scholar
Woesz, A., Weaver, J. C., Kazanci, M., et al. (2006). Micromechanical properties of biological silica in skeletons of deep-sea sponges. Journal of Materials Research, 21(08), 20682078.CrossRefGoogle Scholar
Espinosa, H. D., Juster, A. L., Latourte, F. J., Loh, O. Y., Gregoire, D., & Zavattieri, P. D. (2011). Tablet-level origin of toughening in abalone shells and translation to synthetic composite materials. Nature Communications, 2, 173.Google Scholar
Mayer, G., & Sarikaya, M. (2002). Rigid biological composite materials: structural examples for biomimetic design. Experimental Mechanics, 42(4), 395403.CrossRefGoogle Scholar
Currey, J. D., Landete-Castillejos, T., Estevez, J., et al. (2009). The mechanical properties of red deer antler bone when used in fighting. Journal of Experimental Biology, 212(24), 39853993.CrossRefGoogle Scholar
Li, X., Chang, W. C., Chao, Y. J., Wang, R., & Chang, M. (2004). Nanoscale structural and mechanical characterization of a natural nanocomposite material: The shell of red abalone. Nano Letters,4(4), 613617.Google Scholar
Grunenfelder, L. K., Suksangpanya, N., Salinas, C., et al. (2014). Bio-inspired impact-resistant composites. Acta Biomaterialia, 10(9), 39974008.Google Scholar
Prabhakaran, M. P., Venugopal, J., & Ramakrishna, S. (2009). Electrospun nanostructured scaffolds for bone tissue engineering. Acta Biomaterialia, 5(8), 28842893.CrossRefGoogle ScholarPubMed
Johnson, M., Walter, S. L., Flinn, B. D., & Mayer, G. (2010). Influence of moisture on the mechanical behavior of a natural composite. Acta Biomaterialia, 6(6), 21812188.Google Scholar
Askarinejad, S., Kotowski, P., Shalchy, F., & Rahbar, N. (2015). Effects of humidity on shear behavior of bamboo. Theoretical and Applied Mechanics Letters, 5(6), 236243.CrossRefGoogle Scholar
Askarinejad, S., Kotowski, P., Youssefian, S., & Rahbar, N. (2016). Fracture and mixed-mode resistance curve behavior of bamboo. Mechanics Research Communications, 78, 7985.Google Scholar
Launey, M. E., Chen, P. Y., McKittrick, J., & Ritchie, R. O. (2010). Mechanistic aspects of the fracture toughness of elk antler bone. Acta Biomaterialia, 6(4), 15051514.CrossRefGoogle ScholarPubMed
Song, Z. Q., Ni, Y., Peng, L. M., Liang, H. Y., & He, L. H. (2016). Interface failure modes explain non-monotonic size-dependent mechanical properties in bioinspired nanolaminates. Scientific Reports, 6, 23724.Google Scholar
Xu, Z. H., & Li, X. (2011). Deformation strengthening of biopolymer in nacre. Advanced Functional Materials, 21(20), 38833888.CrossRefGoogle Scholar
Ji, B., & Gao, H. (2004). Mechanical properties of nanostructured biological materials. Journal of Mechanics and Physics of Solids, 1963–1990.Google Scholar
Askarinejad, S., Choshali, H. A., Flavin, C., & Rahbar, N. (2018). Effects of tablet waviness on the mechanical response of architected multilayered materials: Modeling and experiment. Composite Structures, 195, 118125.Google Scholar
Wang, R. Z., Suo, Z., Evans, A. G., Yao, N., & Aksay, I. A. (2001). Deformation mechanisms in nacre. Journal of Materials Research, 16(09), 24852493.Google Scholar
Jackson, A. P., Vincent, J. F. V., & Turner, R. M. (1988). The mechanical design of nacre. Proceedings of the Royal Society of London Series B, 234, 415440.Google Scholar
Meyers, M. A., Chen, P. Y., Lin, A. Y. M., & Seki, Y. (2008). Biological materials: Structure and mechanical properties. Progress in Materials Science, 53(1), 1206.Google Scholar
Espinosa, H. D., Rim, J. E., Barthelat, F., & Buehler, M. J. (2009). Merger of structure and material in nacre and bone: Perspectives on de novo biomimetic materials. Progress in Materials Science, 54(8), 10591100.Google Scholar
Meyers, M. A., McKittrick, J., & Chen, P. Y. (2013). Structural biological materials: Critical mechanics-materials connections. Science, 339(6121), 773779.Google Scholar
Porter, M. M., Yeh, M., Strawson, J., et al. (2012). Magnetic freeze casting inspired by natureMaterials Science and Engineering: A556, 741750.Google Scholar
Munch, E., Launey, M. E., Alsem, D. H., Saiz, E., Tomsia, A. P., & Ritchie, R. O. (2008). Tough, bio-inspired hybrid materials. Science, 322(5907), 15161520.Google Scholar
Launey, M. E., Munch, E., Alsem, D. H., Saiz, E., Tomsia, A. P., & Ritchie, R. O. (2010). A novel biomimetic approach to the design of high-performance ceramic/metal composites. Journal of the Royal Society Interface, 7(46), 741753.Google Scholar
Wang, R. Z., Wen, H. B., Cui, F. Z., Zhang, H. B., & Li, H. D. (1995). Observations of damage morphologies in nacre during deformation and fracture. Journal of Materials Research, 30(9), 22992304.Google Scholar
Ritchie, R. O. (2011). The conflicts between strength and toughness. Nature Materials, 10(11), 817822.Google Scholar
Hunger, P. M., Donius, A. E., & Wegst, U. G. (2013). Platelets self-assemble into porous nacre during freeze casting. Journal of the Mechanical Behaviour of Biomedical Materials, 19, 8793.Google Scholar
Bonderer, L. J., Feldman, K., & Gauckler, L. J. (2010). Platelet-reinforced polymer matrix composites by combined gel-casting and hot-pressing. Part I: Polypropylene matrix composites. Composite Science and Technology, 70(13), 19581965.Google Scholar
Tang, Z., Kotov, N. A., Magono, S., & Ozturk, B. (2003). Nanostructured artificial nacre. Nature Materials, 2(6), 413418.Google Scholar
Bouville, F., Maire, E., Meille, S., Van de Moortle, B., Stevenson, A. J., & Deville, S. (2014). Strong, tough and stiff bioinspired ceramics from brittle constituents. Nature Materials, 13(5), 508514.Google Scholar
Jackson, A. P., Vincent, J. F. V., & Turner, R. M. (1989). A physical model of nacre. Composite Science and Technology, 36(3), 255266.Google Scholar
Bass, J. D. (1995). Elasticity of minerals, glasses, and melts. In Mineral physics and crystallography: A handbook of physical constants, vol. 2, 4563.Google Scholar
Currey, J. D., & Taylor, J. D. (1974). The mechanical behavior of some molluscan hard tissues. Journal of Zoology, London, 173, 395406.CrossRefGoogle Scholar
Currey, J. D. (1976). Further studies on the mechanical properties of mollusc shell material. Journal of Zoology, London 180, 445453.CrossRefGoogle Scholar
Verma, D., Katti, K., & Katti, D. (2007). Nature of water in nacre: A 2D Fourier transform infrared spectroscopic study. Spectrochimica Acta A, 67(3), 784788.Google Scholar
Mohanty, B., Katti, K. S., Katti, D. R., & Verma, D. (2006). Dynamic nanomechanical response of nacre. Journal of Materials Research, 21(08), 20452051.CrossRefGoogle Scholar
Feng, Q. L., Cui, F. Z., Pu, G., Wang, R. Z., & Li, H. D. (2000). Crystal orientation, toughening mechanisms and a mimic of nacre. Materials Science and Engineering C, 11(1), 1925.Google Scholar
Barthelat, F., & Espinosa, H. D. (2007). An experimental investigation of deformation and fracture of nacre/mother of pearl. Experimental Mechanics, 47(3), 311324.CrossRefGoogle Scholar
Barthelat, F., Li, C. M., Comi, C., & Espinosa, H. D. (2006). Mechanical properties of nacre constituents and their impact on mechanical performance. Journal of Materials Research, 21(8), 19771986.Google Scholar
Bruet, B. J. F, Qi, H. J., Boyce, M.C., et al. (2005). Nanoscale morphology and indentation of individual nacre tablets from the gastropod mollusc Trochus niloticus. Journal of Materials Research, 20(9), 24002419.Google Scholar
Smith, B. L., Schaffer, T. E., Viani, M., et al. (1999). Molecular mechanistic origin of the toughness of natural adhesives, fibres and composites. Nature, 399(6738), 761763.Google Scholar
Mohanty, B., Katti, K. S., & Katti, D. R. (2008). Experimental investigation of nanomechanics of the mineral-protein interface in nacre. Mechanics Research Communications, 35(1), 1723.Google Scholar
Katti, K. S., Mohanty, B., & Katti, D. R. (2006). Nanomechanical properties of nacre. Journal of Materials Research, 21(5), 12371242.Google Scholar
Moshe-Drezner, H., Shilo, D., Dorogoy, A., & Zolotoyabko, E. (2010). Nanometer-scale mapping of elastic modules in biogenic composites: The nacre of mollusk shells. Advanced Functional Materials, 20(16), 27232728.CrossRefGoogle Scholar
Xu, Z. H., Yang, Y., Huang, Z., & Li, X. (2011). Elastic modulus of biopolymer matrix in nacre measured using coupled atomic force microscopy bending and inverse finite element techniques. Materials Science and Engineering C, 31(8), 18521856.Google Scholar
Stempfle, P., Pantale, O., Njiwa, R. K., Rousseau, M., Lopez, E., & Bourrat, X. (2007). Friction-induced sheet nacre fracture: Effects of nano-shocks on cracks location. International Journal of Nanotechnology, 4(6), 712729.CrossRefGoogle Scholar
Stempfle, P. H., Pantale, O., Rousseau, M., Lopez, E., & Bourrat, X. (2010). Mechanical properties of the elemental nanocomponents of nacre structure. Materials Science and Engineering C, 30(5), 715721.CrossRefGoogle Scholar
Ghosh, P., Katti, D. R., & Katti, K. S. (2007). Mineral proximity influences mechanical response of proteins in biological mineral-protein hybrid systems. Biomacromolecules, 8(3), 851856.Google Scholar
Barthelat, F., Tang, H., Zavattieri, P. D., Li, C. M., & Espinosa, H. D. (2007). On the mechanics of mother-of-pearl: A key feature in the material hierarchical structure. Journal of Mechanics and Physics of Solids, 55(2), 306337.Google Scholar
Meyers, M. A., Lin, A. Y. M., Chen, P. Y., & Muyco, J. (2008). Mechanical strength of abalone nacre: Role of the soft organic layer. Journal of the Mechanical Behaviour of Biomedical Materials, 1(1), 7685.Google Scholar
Xu, Z. H., & Li, X. (2011). Deformation strengthening of biopolymer in nacre. Advanced Functional Materials, 21(20), 38833888.Google Scholar
Schaffer, T. E., Ionescu-Zanetti, C., Proksch, R., et al. (1997). Does abalone nacre form by heteroepitaxial nucleation or by growth through mineral bridges? Chemistry of Materials, 9(8), 17311740.Google Scholar
Weiner, S., & Lowenstam, H. (1986). Organization of extracellularly mineralized tissues: A comparative study of biological crystal growth. Critical Reviews in Biochemistry, 20(4), 365408.Google Scholar
Addadi, L., & Weiner, S. (1997). Biomineralization: A pavement of pearl. Nature, 389(6654), 912915.Google Scholar
Song, F., Soh, A. K., & Bai, Y. L. (2003). Effect of nanostructures on the fracture strength of the interfaces in nacre. Journal of Materials Research, 18(8), 17411744.Google Scholar
Song, F., Soh, A. K., & Bai, Y. L. (2003). Structural and mechanical properties of the organic matrix layers of nacre. Biomaterials, 24, 36233631.Google Scholar
Cartwright, J. H., & Checa, A. G. (2007). The dynamics of nacre self-assembly. Journal of the Royal Society Interface, 4(14), 491504.Google Scholar
Hou, W. T., & Feng, Q. L. (2003). Crystal orientation preference and formation mechanism of nacreous layer in mussel. Journal of Crystal Growth, 258(3), 402408.Google Scholar
Checa, A. G., & Rodriguez-Navarro, A. B. (2005). Self-organisation of nacre in the shells of Pterioida (Bivalvia: Mollusca). Biomaterials, 26(9), 10711079.CrossRefGoogle ScholarPubMed
Checa, A. G., Okamoto, T., & Ramrez, J. (2006). Organization pattern of nacre in Pteriidae (Bivalvia: Mollusca) explained by crystal competition. Proceedings of the Royal Society B: Biological Sciences, 273(1592), 13291337.Google Scholar
Checa, A. G., Cartwright, J. H., & Willinger, M. G. (2011). Mineral bridges in nacre. Journal of Structural Biology, 176(3), 330339.Google Scholar
Dimas, L. S., Bratzel, G. H., Eylon, I., & Buehler, M. J. (2013). Tough composites inspired by mineralized natural materials: Computation, 3D printing, and testing. Advanced Functional Materials, 23(36), 46294638.Google Scholar
Dimas, L. S., Buehler, M. J. (2014). Modeling and additive manufacturing of bio-inspired composites with tunable fracture mechanical properties. Soft Matter, 10(25), 44364442.Google Scholar
Currey, J. D. (1977). Mechanical properties of mother of pearl in tension. Proceedings of the Royal Society B, . 196, 443463.Google Scholar
Gao, H., Ji, B. H., Jager, I. L., Arzt, E., & Fratzl, P. (2003). Materials become insensitive to flaws at nanoscale: Lessons from nature. Proceedings of the National Academy of Sciences, 100, 55975600.Google Scholar
Katti, D. R., Katti, K. S., Sopp, J. M., & Sarikaya, M. (2001). 3D finite element modeling of mechanical response in nacre-based hybrid nanocomposites. Computational and Theoretical Polymer Science, 11, 397404.Google Scholar
Katti, K. S., Katti, D. R., Pradhan, S. M., & Bhosle, A. (2005). Platelet interlocks are the key to toughness and strength in nacre. Journal of Materials Research, 20(05), 10971100.Google Scholar
Sen, D., & Buehler, M. J. (2011). Structural hierarchies define toughness and defect-tolerance despite simple and mechanically inferior brittle building blocks. Scientific Reports, 1, 35.Google Scholar
Katti, D. R, & Katti, K. S. (2001). Modeling microarchitecture and mechanical behavior of nacre using 3d finite element techniques. Journal of Materials Science, 36, 14111417.Google Scholar
Katti, D. R., Pradhan, S. M., & Katti, K. S. (2004). Modeling the organic-inorganic interfacial nanoasperities in a model bio-nanocomposite, nacre. Reviews on Advanced Materials Science, 6(2), 162168.Google Scholar
Evans, A. G., Suo, Z., Wang, R. Z., Aksay, I. A., He, M. Y., Hutchinson, J. W. (2001). Model for the robust mechanical behavior of nacre. Journal of Materials Research, 16(9), 24752484.Google Scholar
Shao, Y., Zhao, H. P., Feng, X. Q., & Gao, H. (2012). Discontinuous crack-bridging model for fracture toughness analysis of nacre. Journal of the Mechanics and Physics of Solids, 60(8), 14001419.CrossRefGoogle Scholar
Shao, Y., Zhao, H. P., & Feng, X. Q. (2014). On flaw tolerance of nacre: A theoretical study. Journal of the Royal Society Interface, 11(92), 20131016.Google Scholar
Begley, M. R., Philips, N. R., Compton, B. G., et al. (2012). Micromechanical models to guide the development of synthetic brick and mortarcomposites. Journal of the Mechanics and Physics of Solids, 60(8), 15451560.Google Scholar
Askarinejad, S., & Rahbar, N. (2015). Toughening mechanisms in bioinspired multilayered materials. Journal of the Royal Society Interface, 12(102), 20140855.Google Scholar
Dimas, L. S., & Buehler, M. J. (2012). Influence of geometry on mechanical properties of bio-inspired silica-based hierarchical materials. Bioinspiration & Biomimetics, 7(3), 036024.Google Scholar
Zhu, T. T., Bushby, A. J., & Dunstan, D. J. (2008). Size effect in the initiation of plasticity for ceramics in nanoindentation. Journal of the Mechanics and Physics of Solids, 56(4), 11701185.Google Scholar
Dunstan, D. J., & Bushby, A. J. (2013). The scaling exponent in the size effect of small scale plastic deformation. International Journal of Plasticity, 40, 152162.Google Scholar
Li, N., Nastasi, M., & Misra, A. (2012). Defect structures and hardening mechanisms in high dose helium ion implanted Cu and Cu/Nb multilayer thin films. International Journal of Plasticity, 32, 116.Google Scholar
Salehinia, I., Wang, J., Bahr, D. F., & Zbib, H. M. (2014). Molecular dynamics simulations of plastic deformation in Nb/NbC multilayers. International Journal of Plasticity, 59, 119132.Google Scholar
Salehinia, I., Shao, S., Wang, J., & Zbib, H. M. (2015). Interface structure and the inception of plasticity in Nb/NbC nanolayered composites. Acta Materialia, 86, 331340.Google Scholar
Salehinia, I., Shao, S., Wang, J., & Zbib, H. M. (2014). Plastic deformation of metal/ceramic nanolayered composites. JOM, 66(10), 20782085.CrossRefGoogle Scholar
Dutta, A., Tekalur, S. A., & Miklavcic, M. (2013). Optimal overlap length in staggered architecture composites under dynamic loading conditions. Journal of the Mechanics and Physics of Solids, 61(1), 145160.Google Scholar
Yao, H., Song, Z., Xu, Z., & Gao, H. (2013). Cracks fail to intensify stress in nacreous composites. Composites Science and Technology, 81, 2429.Google Scholar
Zhang, Z. Q., Liu, B., Huang, Y., Hwang, K. C., & Gao, H. (2010). Mechanical properties of unidirectional nanocomposites with non-uniformly or randomly staggered platelet distribution. Journal of the Mechanics and Physics of Solids, 58(10), 16461660.Google Scholar
Liu, G., Ji, B., Hwang, K. C., & Khoo, B. C. (2011). Analytical solutions of the displacement and stress fields of the nanocomposite structure of biological materials. Composites Science and Technology, 71(9), 11901195.Google Scholar
Dimas, L. S., Giesa, T., & Buehler, M. J. (2014). Coupled continuum and discrete analysis of random heterogeneous materials: elasticity and fracture. Journal of the Mechanics and Physics of Solids, 63, 481490.Google Scholar
Jager, I., & Fratzl, P. (2000). Mineralized collagen fibrils: A mechanical model with a staggered arrangement of mineral particles. Biophysical Journal, 79(4), 17371746.Google Scholar
Wagner, H. D., & Weiner, S. (1992). On the relationship between the microstructure of bone and its mechanical stiffness. Journal of Biomechanics, 25(11), 13111320.Google Scholar
Kotha, S. P., Kotha, S., & Guzelsu, N. (2000). A shear-lag model to account for interaction effects between inclusions in composites reinforced with rectangular platelets. Composites Science and Technology, 60(11), 21472158.Google Scholar
Shuchun, Z., & Yueguang, W. (2007). Effective elastic modulus of bone-like hierarchical materials. Acta Mechanica Solida Sinica, 20(3), 198205.Google Scholar
Chen, B., Wu, P. D., & Gao, H. (2009). A characteristic length for stress transfer in the nanostructure of biological composites. Composites Science and Technology, 69(7), 11601164.Google Scholar
Wei, X., Naraghi, M., & Espinosa, H. D. (2012). Optimal length scales emerging from shear load transfer in natural materials: Application to carbon-based nanocomposite design. ACS Nano, 6(3), 23332344.Google Scholar
Li, X., Gao, H., Scrivens, W. A., et al. (2005). Structural and mechanical characterization of nanoclay-reinforced agarose nanocomposites. Nanotechnology, 16(10), 2020.Google Scholar
Morits, M., Verho, T., Sorvari, J., et al. (2017). Toughness and fracture properties in nacremimetic clay/polymer nanocomposites. Advanced Functional Materials, 27 (10), 1605378.Google Scholar
Niebel, T. P., Bouville, F., Kokkinis, D., & Studart, A. R. (2016). Role of the polymer phase in the mechanics of nacre-like composites. Journal of the Mechanics and Physics of Solids, 96, 133146.Google Scholar
Long, B., Wang, C. A., Lin, W., Huang, Y., & Sun, J. (2007). Polyacrylamide-clay nacre-like nanocomposites prepared by electrophoretic deposition. Composites Science and Technology, 67(13), 27702774.Google Scholar
Bonderer, L. J., Studart, A. R., & Gauckler, L. J. (2008). Bioinspired design and assembly of platelet reinforced polymer films. Science, 319(5866), 10691073.CrossRefGoogle ScholarPubMed
Mammeri, F., Le Bourhis, E., Rozes, L., & Sanchez, C. (2005). Mechanical properties of hybrid organicinorganic materials. Journal of Materials Chemistry, 15(35–36), 37873811.Google Scholar
Chen, R., Wang, C. A., Huang, Y., & Le, H. (2008). An efficient biomimetic process for fabrication of artificial nacre with ordered-nanostructure. Materials Science and Engineering: C, 28(2), 218222.Google Scholar
Corni, I., Harvey, T. J., Wharton, J. A., Stokes, K. R., Walsh, F. C., & Wood, R. J. K. (2012). A review of experimental techniques to produce a nacre-like structure. Bioinspiration & Biomimetics, 7(3), 031001.Google Scholar
Valashani, S. M. M., & Barthelat, F. (2015). A laser-engraved glass duplicating the structure, mechanics and performance of natural nacre. Bioinspiration & Biomimetics, 10(2), 026005.Google Scholar
Zlotnikov, I., Gotman, I., Burghard, Z., Bill, J., & Gutmanas, E. Y. (2010). Synthesis and mechanical behavior of bioinspired ZrO2-organic nacre-like laminar nanocomposites. Colloids and Surfaces A: Physicochemical Engineering Aspects, 361(1), 138142.Google Scholar
Bai, H., Walsh, F., Gludovatz, B., et al. (2016). Bioinspired hydroxyapatite/poly (methyl methacrylate) composite with a nacre mimetic architecture by a bidirectional freezing method. Advanced Materials, 28(1), 5056.Google Scholar
Deville, S., Saiz, E., & Tomsia, A. P. (2006). Freeze casting of hydroxyapatite scaffolds for bone tissue engineering. Biomaterials, 27(32), 54805489.Google Scholar
Launey, M. E., Munch, E., Alsem, D. H., et al. (2009). Designing highly toughened hybrid composites through nature-inspired hierarchical complexity. Acta Materialia, 57(10), 29192932.Google Scholar
Wegst, U. G., Schecter, M., Donius, A. E., & Hunger, P. M. (2010). Biomaterials by freeze casting. Philosophical Transactions of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, 368(1917), 20992121.Google Scholar
Askarinejad, S., & Rahbar, N. (2018). Mechanics of bioinspired lamellar structured ceramic/polymer composites: Experiments and models. International Journal of Plasticity, 107, 122149.Google Scholar
Liu, M., Sun, J., Sun, Y., Bock, C., & Chen, Q. (2009). Thickness-dependent mechanical properties of polydimethylsiloxane membranes. Journal of Micromechanics and Microengineering, 19(3), 035028.Google Scholar
Qi, H. J., & Boyce, M. C. (2005). Stressstrain behavior of thermoplastic polyurethanes. Mechanics of Materials, 37(8), 817839.Google Scholar
ASTM International. (2006). ASTM E1820–06: Standard test method for measurement of fracture toughness annual book of ASTM standards, Vol. 03.01: metals – mechanical testing; elevated and low-temperature tests; metallography. West Conshohocken, PA: ASTM International.Google Scholar
Hedgepeth, J. M. (1961). Stress concentrations in filamentary structures.Google Scholar
Nairn, J. A. (1988). Fracture mechanics of unidirectional composites using the shear-lag model I: Theory. Journal of Composite Materials, 22(6), 561588.Google Scholar
Nairn, J. A., & Mendels, D. A. (2001). On the use of planar shear-lag methods for stress-transfer analysis of multilayered composites. Mechanics of Materials, 33(6), 335362.Google Scholar
Benveniste, Y., & Miloh, T. (1986). The effective conductivity of composites with imperfect thermal contact at constituent interfaces. International Journal of Engineering Science, 24(9), 15371552.Google Scholar
Cheng, Z. Q., He, L. H., & Kitipornchai, S. (2000). Influence of imperfect interfaces on bending and vibration of laminated composite shells. International Journal of Solids and Structures, 37(15), 21272150.Google Scholar
Wang, Z., Zhu, J., Jin, X. Y., Chen, W. Q., & Zhang, C. (2014). Effective moduli of ellipsoidal particle reinforced piezoelectric composites with imperfect interfaces. Journal of the Mechanics and Physics of Solids, 65, 138156.Google Scholar
Hashin, Z. (1991). Composite materials with interphase: Thermoelastic and inelastic effects. In Inelastic deformation of composite materials. New York: Springer; pp. 334.Google Scholar
Gu, S. T., He, Q. C., & Pense, V. (2015). Homogenization of fibrous piezoelectric composites with general imperfect interfaces under anti-plane mechanical and in-plane electrical loadings. Mechanics of Materials, 88, 1229.Google Scholar
Nairn, J. A., & Liu, Y. C. (1997). Stress transfer into a fragmented, anisotropic fiber through an imperfect interface. International Journal of Solids and Structures, 34(10), 12551281.Google Scholar
Nairn, J. A. (2007). Numerical implementation of imperfect interfaces. Computational Materials Science, 40(4), 525536.Google Scholar
Martin, P. A. (1992). Boundary integral equations for the scattering of elastic waves by elastic inclusions with thin interface layers. Journal of Nondestructive Evaluation, 11(3–4), 167174.Google Scholar
Tada, H., Paris, P. C., & Irwin, G. R. (2000). The analysis of cracks handbook (pp. 5858). New York: ASME Press. Chicago.Google Scholar
Munch, E., Launey, M. E., Alsem, D. H., Saiz, E., Tomsia, A. P., & Ritchie, R. O. (2008). Tough, bio-inspired hybrid materials. Science, 322(5907), 15161520.Google Scholar
Thouless, M. D., & Evans, A. G. (1988). Effects of pull-out on the mechanical properties of ceramic-matrix composites. Acta Metallurgica, 36(3), 517522.Google Scholar
Marshall, D. B., Evans, A. G., Drory, M., et al. (1986). Fracture mechanics of ceramics.Google Scholar
Phillips, D. C. (1972). The fracture energy of carbon-fibre reinforced glass. Journal of Materials Science, 7(10), 11751191.Google Scholar
Marshall, D. B., & Evans, A. G. (1985). Failure mechanisms in ceramic-fiber/ceramic-matrix composites. Journal of the American Ceramic Society, 68(5), 225231.Google Scholar
Cox, B. N., & Marshall, D. B. (1994). Concepts for bridged cracks in fracture and fatigue. Acta Metallurgica et Materialia, 42(2), 341363.Google Scholar
Stewart, R. L., Chyung, K., Taylor, M. P., et al. (1986). Fracture mechanics of ceramics. New York: Plenum Press, 33.Google Scholar
Curkovic, L., Bakic, A., Kodvanj, J., & Haramina, T. (2010). Flexural strength of alumina ceramics: Weibull analysis. Transactions of FAMENA, 34(1), 1319.Google Scholar
Evans, A. G., & McMeeking, R. M. (1986). On the toughening of ceramics by strong reinforcements. Acta Metallurgica, 34(12), 24352441.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×