Skip to main content Accessibility help
×
Hostname: page-component-5c6d5d7d68-vt8vv Total loading time: 0.001 Render date: 2024-08-07T04:11:16.304Z Has data issue: false hasContentIssue false

Part II - Structures

Published online by Cambridge University Press:  28 August 2020

Wole Soboyejo
Affiliation:
Worcester Polytechnic Institute, Massachusetts
Leo Daniel
Affiliation:
Kwara State University, Nigeria
Get access
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2020

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

References

Colgate, J. E., & Lynch, K. M. (2004). Mechanics and control of swimming: A review. IEEE Journal of Oceanic Engineering, 29(3), 660673.CrossRefGoogle Scholar
Bandyopadhyay, P. R. (2005). Trends in biorobotic autonomous undersea vehicles. IEEE Journal of Oceanic Engineering, 30(1), 109139.Google Scholar
Fish, F. E., Lauder, G. V., Mittal, R., et al. (2003). Conceptual design for the construction of a biorobotic AUV based on biological hydrodynamics. In 13th International Symposium on Unmanned Untethered Submersible Technology, Durham, NH. 24–27.Google Scholar
Fish, F. E., Smits, A. J., & Bart-Smith, H. (2010). Biomimetic swimmer inspired by the manta ray. In Bar-Cohen, Y. (Ed.), Biomimetics: Nature-based innovation, Boca Raton, FL: CRC Press.Google Scholar
Triantafyllou, M. S., & Triantafyllou, G. S. (1995). An efficient swimming machine. Scientific American, 272(3), 6471.Google Scholar
Rufo, M., & Smithers, M. (2011). Ghostswimmer? AUV: Applying biomimetics to underwater robotics for achievement of tactical relevance. Marine Technology Society Journal, 45(4).Google Scholar
Lutz, P. L., Musick, J. A., & Wyneken, J. (2002). The biology of sea turtles (Vol. 2). CRC Press, Boca Raton, FL.Google Scholar
Fish, F. E. (2000). Biomechanics and energetics in aquatic and semiaquatic mammals: platypus to whale. Physiological and Biochemical Zoology, 73(6), 683698.CrossRefGoogle ScholarPubMed
Eloy, C. (2012). Optimal Strouhal number for swimming animals. Journal of Fluids and Structures, 30, 205218.Google Scholar
Buchholz, J. H. J., & Smits, A. J. (2006). On the evolution of the wake structure produced by a low-aspect-ratio pitching panel. Journal of Fluid Mechanics, 546, 433443.CrossRefGoogle Scholar
Van Buren, T., Floryan, D., Brunner, D., Senturk, U., & Smits, A. J. (2017). Impact of trailing edge shape on the wake and propulsive performance of pitching panels. Physical Review Fluids, 2(1), 014702.Google Scholar
Floryan, D., Van Buren, T., & Smits, A. J. (2019). Swimmers’ wakes are not reliable indicators of swimming performance. arXiv:1906.10826.Google Scholar
Floryan, D., Van Buren, T.,Rowley, C. W., & Smits, A. J. (2017). Scaling the propulsive performance of heaving and pitching foils. Journal of Fluid Mechanics, 822, 386397.Google Scholar
Van Buren, T., Floryan, D., Wei, N., & Smits, A. J. (2018). Flow speed has little impact on propulsive characteristics of oscillating foils. Physical Review Fluids, 3(1), 013103.Google Scholar
Quinn, D. B., Lauder, G. V., & Smits, A. J. (2015). Maximizing the efficiency of a flexible propulsor using experimental optimization. Journal of Fluid Mechanics, 767, 430448.Google Scholar
Xu, M., & Wei, M. (2016). Using adjoint-based optimization to study kinematics, deformation of flapping wings. Journal of Fluid Mechanics, 799, 5699.CrossRefGoogle Scholar
Van Buren, T., Floryan, D., & Smits, A. J. (2018). Scaling and performance of simultaneously heaving and pitching foils. AIAA Journal, 1–12.Google Scholar
Van Buren, T., Floryan, D, Quinn, D., & Smits, A. J. (2017). Nonsinusoidal gaits for unsteady propulsion. Physical Review Fluids, 2, 053101.Google Scholar
Floryan, D., Van Buren, T., & Smits, A. J. (2017). Forces and energetics of intermittent swimming. Acta Mechanica Sinica, 33(4), 725732.Google Scholar
Quinn, D. B., Moored, K. W., Dewey, P. A., & Smits, A. J. (2014). Unsteady propulsion near a solid boundary. Journal of Fluid Mechanics, 742, 152170.CrossRefGoogle Scholar
Quinn, D. B., Lauder, G. V., & Smits, A. J. (2014). Flexible propulsors in ground effect. Bioinspiration & Biomimetics, 9(3), 036008.CrossRefGoogle ScholarPubMed
Dewey, P. A., Quinn, D. B., Boschitsch, B. M., & Smits, A. J. (2014). Propulsive performance of unsteady tandem hydrofoils in a side-by-side configuration. Physics of Fluids, 26(4), 041903.Google Scholar
Boschitsch, B. M., Dewey, P. A., & Smits, A. J. (2014). Propulsive performance of unsteady tandem hydrofoils in an in-line configuration. Physics of Fluids, 26(5), 051901.Google Scholar
Maertens, A. P., Gao, A., & Triantafyllou, M. S. (2017). Optimal undulatory swimming for a single fish-like body and for a pair of interacting swimmers. Journal of Fluid Mechanics, 813, 301345.Google Scholar
Dewey, P. A., Boschitsch, B. M., Moored, K. W., Stone, H. A., & Smits, A. J. (2013). Scaling laws for the thrust production of flexible pitching panels. Journal of Fluid Mechanics, 732, 2946.Google Scholar
Dewey, P. A. (2013). Underwater flight: Hydrodynamics of the manta ray [PhD thesis]. Princeton, NJ: Princeton University.Google Scholar
Quinn, D. B. (2015). Optimizing the efficiency of Batoid-inspired swimming [PhD thesis]. Princeton, NJ: Princeton University.Google Scholar
Floryan, D., & Rowley, C. W. (2018). Clarifying the relationship between efficiency and resonance for flexible inertial swimmers. Journal of Fluid Mechanics, 853, 271300.CrossRefGoogle Scholar
Allen, J. J., & Smits, A. J. (2001). Energy harvesting eel. Journal of Fluids and Structures, 15(3–4), 629640.Google Scholar
Quinn, D. B., Lauder, G. V., & Smits, A. J. (2014). Scaling the propulsive performance of heaving flexible panels. Journal of Fluid Mechanics, 738, 250267.CrossRefGoogle Scholar
Dabiri, J. O., Colin, S. P., Katija, K., & Costello, J. H. (2010). A wake-based correlate of swimming performance and foraging behavior in seven co-occurring jellyfish species. Journal of Experimental Biology, 213(8), 12171225.Google Scholar
Glezer, A., & Amitay, M. (2002). Synthetic jets. Annual Review of Fluid Mechanics, 34, 503529.CrossRefGoogle Scholar
Van Buren, T., Whalen, E., & Amitay, M. (2014). Vortex formation of a finite-span synthetic jet: high Reynolds numbers. Physics of Fluids, 26, 014101–21.Google Scholar
Dhanak, M. R., & Bernardinis, B. (1981). The evolution of an elliptic vortex ring. Journal of Fluid Mechanics, 109, 189216.CrossRefGoogle Scholar
Van Buren, T., Whalen, E., & Amitay, M. (2014). Vortex formation of a finite-span synthetic jet: effect of rectangular orifice geometry. Journal of Fluid Mechanics, 745, 180207.CrossRefGoogle Scholar
Gharib, M., Rambod, E., & Shariff, K. (1998). A universal time scale for vortex ring formation. Journal of Fluid Mechanics, 360, 121140.CrossRefGoogle Scholar
Holman, R., Utturkar, Y., Mittal, R., Smith, B., & Cattafesta, L. (2005). Formation criterion for synthetic jets. AIAA Journal, 43(10), 21102115.Google Scholar
Huggins, E. R. (1966). Impulse and vortices. Physical Review Letters, 17(26), 1284.Google Scholar
Shusser, M., Gharib, M., Rosenfeld, M., & Mohseni, K. (2002). On the effect of pipe boundary layer growth on the formation of a laminar vortex ring generated by a piston/cylinder arrangement. Theoretical and Computational Fluid Dynamics, 15(5), 303316.Google Scholar
Dabiri, J. O., & Gharib, M. (2004). A revised slug model boundary layer correction for starting jet vorticity flux. Theoretical and Computational Fluid Dynamics, 17(4), 293295.Google Scholar
Krueger, P. S., & Gharib, M. (2003). The significance of vortex ring formation to the impulse and thrust of a starting jet. Physics of Fluids, 15(5), 12711281.Google Scholar
Choi, H., Jeon, W. P., & Kim, J. (2008). Control of flow over a bluff body. Annual Review of Fluid Mechanics, 40, 113139.Google Scholar
Cattafesta, L., & Sheplak, M. (2011). Actuators for active flow control. Annual Review of Fluid Mechanics, 43, 247272.Google Scholar
Fish, F. E., Hurley, J., & Costa, D. P. (2003). Maneuverability by the sea lion zalophus californianus: turning performance of an unstable body design. Journal of Experimental Biology, 206(4), 667674.Google Scholar
Hoerner, S. F. (1965). Fluid-dynamic drag: Practical information on aerodynamic drag and hydrodynamic resistance. Brick Town, NJ: Hoerner Fluid Dynamics.Google Scholar
Taira, K., & Colonius, T. (2007). The immersed boundary method: a projection approach. Journal of Computational Physics, 225(2), 21182137.Google Scholar
Colonius, T., & Taira, K. (2008). A fast immersed boundary method using a nullspace approach and multi-domain far-field boundary conditions. Computer Methods in Applied Mechanics and Engineering, 197(25), 21312146.CrossRefGoogle Scholar
Cabrera, D., & Ruina, A. (2006). Propulsive efficiency of rowing oars [Technical report]. Ithaca, NY: Cornell University.Google Scholar

References

World Health Organization (WHO). (2012). Oral health fact sheet. Retrieved from www.who.int/news-room/fact-sheets/detail/oral-health.Google Scholar
Francis, L. F., Vaidya, K. J., Huang, H. Y., & Wolf, W. D. (1995). Design and processing of ceramic-based analogs to the dental crown. Materials Science and Engineering: C, 3(2), 6374. doi:10.1016/0928-4931(95)00088-7Google Scholar
Huang, M., Niu, X., Shrotriya, P., Thompson, V., Rekow, D., & Soboyejo, W. O. (2005). Contact damage of dental multilayers: Viscous deformation and fatigue mechanisms. Journal of Engineering Materials and Technology, 127(1), 33. doi:10.1115/1.1836769CrossRefGoogle Scholar
Kelly, J. R. (1997). Ceramics in restorative and prosthetic dentistry. Annual Review of Materials Science, 27(1), 443468. doi:10.1146/annurev.matsci.27.1.443Google Scholar
Lawn, B. R., Lee, K. S., Chai, H., et al. (2000). Damage-resistant brittle coatings. Advanced Engineering Materials, 2(11), 745748. doi:10.1002/1527-2648(200011)2:11<745::AID-ADEM745>3.0.CO;2-EGoogle Scholar
Lawn, B. R., Pajares, A., Zhang, Y., et al. (2004). Materials design in the performance of all-ceramic crowns. Biomaterials, 25(14), 28852892. doi:10.1016/j.biomaterials.2003.09.050Google Scholar
Lee, C.-S., Kim, D. K., Sanchez, J., Pedro, M., Antonia, P., & Lawn, B. R. (2002). Rate effects in critical loads for radial cracking in ceramic coatings. Journal of the American Ceramic Society, 85(8), 20192024.Google Scholar
Malament, K. A., & Socransky, S. S. (1999). Survival of Dicor glass-ceramic dental restorations over 14 years: Part I. Survival of Dicor complete coverage restorations and effect of internal surface acid etching, tooth position, gender, and age. The Journal of Prosthetic Dentistry, 81(1), 2332.CrossRefGoogle ScholarPubMed
Rekow, D., & Thompson, V. P. (2007). Engineering long term clinical success of advanced ceramic prostheses. Journal of Materials Science: Materials in Medicine, 18(1), 4756. doi:10.1007/s10856-006-0661-1Google Scholar
Zhang, Y., Lawn, B. R., Rekow, E. D., & Thompson, V. P. (2004). Effect of sandblasting on the long-term performance of dental ceramics. Journal of Biomedical Materials Research. Part B, Applied Biomaterials, 71(2), 381386. doi:10.1002/jbm.b.30097Google Scholar
Zhou, J., Huang, M., Niu, X., & Soboyejo, W. O. (2007). Substrate creep on the fatigue life of a model dental multilayer structure. Journal of Biomedical Materials Research. Part B, Applied Biomaterials, 82(2), 374382. doi:10.1002/jbm.b.30742Google Scholar
Niu, X., & Soboyejo, W. (2006). Effects of loading rate on the deformation and cracking of dental multilayers: Experiments and models. Journal of Materials Research, 21(04), 970975. doi:10.1557/jmr.2006.0114Google Scholar
Niu, X., Yang, Y., & Soboyejo, W. (2008). Contact deformation and cracking of zirconia/cement/foundation dental multilayers. Materials Science and Engineering: A, 485(1–2), 517523. doi:10.1016/j.msea.2007.09.014Google Scholar
Shrotriya, P., Wang, R., Katsube, N., Seghi, R., & Soboyejo, W. O. (2003). Contact damage in model dental multilayers: An investigation of the influence of indenter size. Journal of Materials Science: Materials in Medicine, 14(1), 1726.Google Scholar
Zhang, Y., Pajares, A., & Lawn, B. R. (2004). Fatigue and damage tolerance of y-tzp ceramics in layered biomechanical systems. Journal of Biomedical Materials Research. Part B, Applied Biomaterials, 71(1), 166171. doi:10.1002/jbm.b.30083Google Scholar
Huang, M., Thompson, V. P., Rekow, E. D., & Soboyejo, W. O. (2007). Modeling of water absorption induced cracks in resin-based composite supported ceramic layer structures. Journal of Biomedical Materials Research, 1, 124130. doi:10.1002/jbmbGoogle Scholar
Lin, C. P., & Douglas, W. H. (1994). Structure-property relations and crack resistance at the bovine dentin-enamel junction. Journal of Dental Research, 73(5), 10721078. doi:10.1177/00220345940730050901Google Scholar
Tsai, Y. L., Petsche, P. E., Anusavice, K. J., & Yang, M. C. (1998). Influence of glass-ceramic thickness on Hertzian and bulk fracture mechanisms. The International Journal of Prosthodontics, 11(1), 2732.Google Scholar
Thompson, J. Y., Anusavice, K. J., Naman, A., & Morris, H. F. (1994). Fracture surface characterization of clinically failed all-ceramic crowns. Journal of Dental Research, 73(12), 18241832. doi:10.1177/00220345940730120601Google Scholar
Lawn, B., Deng, Y., Miranda, P., Pajares, A., Chai, H., & Kim, D. K. (2002). Overview: Damage in brittle layer structures from concentrated loads. Journal of Materials Research, 17(12), 30193036. doi:10.1557/JMR.2002.0440Google Scholar
Huang, M., Rahbar, N., Wang, R., Thompson, V., Rekow, D., & Soboyejo, W. O. (2007). Bioinspired design of dental multilayers. Journal of Materials Science: Materials in Medicine, 18(1), 5764. doi:10.1007/s10856-006-0662-0Google Scholar
Lawn, B. R., Padture, N. P., Cait, H., & Guiberteau, F. (1994). Making ceramics “ductile.” Science, 263(5150), 11141116. doi:10.1126/science.263.5150.1114Google Scholar
Lawn, B. R. (2005). Indentation of ceramics with spheres: A century after Hertz. Journal of the American Ceramic Society, 81(8), 19771994. doi:10.1111/j.1151-2916.1998.tb02580.xGoogle Scholar
Peterson, I. M., Wuttiphan, S., Lawn, B. R., & Chyung, K. (1998). Role of microstructure on contact damage and strength degradation of micaceous glass-ceramics. Dental Materials, 14(1), 8089.Google Scholar
Soboyejo, W. (2003). Mechanical properties of engineered materials. CRC Press.Google Scholar
Wiederhorn, S. M. (1974). Subcritical crack growth in ceramics. In Bradt, R. C., Hasselman, D. P. H., & Lange, F.F. (Eds.), Fracture mechanics of ceramics. Springer. doi:10.1007/978-1-4615-7014-1_12Google Scholar
Zhang, Y., Kim, J.-W., Bhowmick, S., Thompson, V. P., & Rekow, E. D. (2009). Competition of fracture mechanisms in monolithic dental ceramics: Flat model systems. Journal of Biomedical Materials Research. Part B, Applied Biomaterials, 88(2), 402411. doi:10.1002/jbm.b.31100CrossRefGoogle ScholarPubMed
Ratner, B. D., Hoffman, A. S., Schoen, F. J., & Lemons, J. E. (2004). Biomaterials science: An introduction to materials in medicine. Elsevier.Google Scholar
Burke, F. J. T., Fleming, G. J. P., Nathanson, D., & Marquis, P. M. (2002). Are Adhesive technologies needed to support ceramics? An assessment of the current evidence. The Journal of Adhesive Dentistry, 4(1), 722.Google ScholarPubMed
McLean, J. W. (1979). The science and art of dental ceramics. Volume I: The nature of dental ceramics and their clinical uses.Google Scholar
Craig, R. G. (1989). Restorative dental materials. MosbyGoogle Scholar
Mowafy, O. M. El., & Watts, D. C. (1986). Fracture toughness of human dentin. Journal of Dental Research, 65(5), 677681. doi:10.1177/00220345860650050901Google Scholar
Rosenstiel, S. F., & Porter, S. S. (1989). Apparent fracture toughness of all-ceramic crown systems The Journal of Prosthetic Dentistry, 62(5), 529532. doi:10.1016/0022-3913(89)90073-5CrossRefGoogle ScholarPubMed
Taira, M., Nomura, Y., Wakasa, K., Yamaki, M., & Matsui, A. (1990). Studies on fracture toughness of dental ceramics. Journal of Oral Rehabilitation, 17(6), 551563.CrossRefGoogle ScholarPubMed
DeLong, R., Sasik, C., Pintado, M. R., & Douglas, W. H. (1989). The wear of enamel when opposed by ceramic systems. Dental Materials, 5(4), 266271.CrossRefGoogle ScholarPubMed
Cate, A. R. (1980). Ten. Oral histology: Development, structure and function.Google Scholar
Miles, A. E. W. (1967). Structural and chemical organization of teeth.Google Scholar
Linde, A. (1984). Dentin and dentinogenesis. CRC Press.Google Scholar
Rasmussen, S. T., Patchin, R. E., Scott, D. B., & Heuer, A. H. (1976). Fracture properties of human enamel and dentin. Journal of Dental Research, 55(1), 154164. doi:10.1177/00220345760550010901Google Scholar
Lin, C. P., Douglas, W. H., & Erlandsen, S. L. (1993). Scanning electron microscopy of type i collagen at the dentin-enamel junction of human teeth. Journal of Histochemistry & Cytochemistry, 41(3), 381388. doi:10.1177/41.3.8429200Google Scholar
White, S. N., Miklus, V. G., Chang, P. P., et al. (2005). Controlled failure mechanisms toughen the dentino-enamel junction zone. The Journal of Prosthetic Dentistry, 94(4), 330335. doi:10.1016/j.prosdent.2005.08.013CrossRefGoogle ScholarPubMed
Fong, H., Sarikaya, M., White, S. N., & Snead, M. L. (2000). Nano-mechanical properties profiles across dentin–enamel junction of human incisor teeth. Materials Science and Engineering: C, 7(2), 119128. doi:10.1016/S0928-4931(99)00133-2Google Scholar
Marshall, G. W., Balooch, M., Gallagher, R. R., Gansky, S. A., & Marshall, S. J. (2001). Mechanical properties of the dentinoenamel junction: AFM studies of nanohardness, elastic modulus, and fracture. Journal of Biomedical Materials Research, 54(1), 8795.Google Scholar
Rasmussen, S. T. (1984). Fracture properties of human teeth in proximity to the dentinoenamel junction. Journal of Dental Research, 63(11), 12791283. doi:10.1177/00220345840630110501Google Scholar
Xu, H. H. K., Smith, D. T., Jahanmir, S., et al. (1998). Indentation damage and mechanical properties of human enamel and dentin. Journal of Dental Research, 77(3), 472480. doi:10.1177/00220345980770030601Google Scholar
Efflandt, S. E., Magne, P., Douglas, W. H., & Francis, L. F. (2002). Interaction between bioactive glasses and human dentin. Journal of Materials Science. Materials in Medicine, 13(6), 557565.Google Scholar
Zhang, K., Ma, Y., & Francis, L. F. (2002). Porous polymer/bioactive glass composites for soft-to-hard tissue interfaces. Journal of Biomedical Materials Research, 61(4), 551563. doi:10.1002/jbm.10227Google Scholar
Rousseau, C.-E., & Tippur, H. V. (2001). Dynamic fracture of compositionally graded materials with cracks along the elastic gradient: Experiments and analysis. Mechanics of Materials, 33(7), 403421. doi:10.1016/S0167-6636(01)00065-5Google Scholar
Park, S., Quinn, J. B., Romberg, E., & Arola, D. (2008). On the brittleness of enamel and selected dental materials. Dental Materials, 24(11), 14771485. doi:10.1016/j.dental.2008.03.007Google Scholar
Du, J., Niu, X., Rahbar, N., & Soboyejo, W. (2013). Bio-inspired dental multilayers: Effects of layer architecture on the contact-induced deformation. Acta Biomaterialia, 9(2), 52735279. doi:10.1016/j.actbio.2012.08.034Google Scholar
Yang, J., & Xiang, H.-J. (2007). A three-dimensional finite element study on the biomechanical behavior of an FGBM dental implant in surrounding bone. Journal of Biomechanics, 40(11), 23772385. doi:10.1016/j.jbiomech.2006.11.019Google Scholar
Traini, T., Mangano, C., Sammons, R. L., Mangano, F., Macchi, A., & Piattelli, A. (2008). Direct laser metal sintering as a new approach to fabrication of an isoelastic functionally graded material for manufacture of porous titanium dental implants. Dental Materials, 24(11), 15251533. doi:10.1016/j.dental.2008.03.029Google Scholar
Paulino, G. H., Jin, Z.-H., & Dodds, R. H. (2007). 2.13-failure of functionally graded materials. In Comprehensive structural integrity (pp. 607644). Elsevier Ltd.Google Scholar
Kim, J.-H., & Paulino, G. H. (2003). An accurate scheme for mixed-mode fracture analysis of functionally graded materials using the interaction integral and micromechanics models. International Journal for Numerical Methods in Engineering, 58(10), 14571497. doi:10.1002/nme.819Google Scholar
Walters, M. C., Paulino, G. H., & Dodds, R. H. (2004). Stress-intensity factors for surface cracks in functionally graded materials under Mode-I thermomechanical loading. International Journal of Solids and Structures, 41(3–4), 10811118. doi:10.1016/j.ijsolstr.2003.09.050Google Scholar
Niu, X., Rahbar, N., Farias, S., & Soboyejo, W. (2009). Bio-inspired design of dental multilayers: Experiments and model. Journal of the Mechanical Behavior of Biomedical Materials, 2(6), 596602. doi:10.1016/j.jmbbm.2008.10.009Google Scholar
Niu, X. (2008). Contact damage of dental multilayers. Princeton University.Google Scholar

References

Famulari, A., De Simone, P., Verzaro, R., et al. (2003). Artificial organs as a bridge to transplantation. Artificial Cells, Blood Substitutes, and Biotechnology 31, 163168.Google Scholar
Anderson, J. M., & McNally, A. K. (2011). Biocompatibility of implants: Lymphocyte/macrophage interactions. Seminars in Immunopathology, 33, 221233.Google Scholar
Veiseh, O., Doloff, J. C., Ma, et al. (2015). Size- and shape-dependent foreign body immune response to materials implanted in rodents and non-human primates. Nature Materials, 14, 643651.Google Scholar
Zhang, L., Cao, Z., Bai, T., et al. (2013). Zwitterionic hydrogels implanted in mice resist the foreign-body reaction. Nature Biotechnology, 31(6), 553556.Google Scholar
Vincent, J. F. V., & Wegst, U. G. K. (2004). Design and mechanical properties of insect cuticle. Arthropod Structure Development, 33(3), 187199.Google Scholar
Ji, B., & Gao, H. (2004). Mechanical properties of nanostructure of biological materials. Journal of the Mechanics and Physics of Solids, 52(9), 19631990.Google Scholar
Ratner, B. D., Hoffman, A. S., Schoen, F. J., & Lemons, J. E. (2006). Biomaterials science: An introduction to materials in medicine. MRS Bulletin31, 59.Google Scholar
Vincent, J. (2012). Structural biomaterials (3rd ed.) Princeton, NJ: Princeton University Press.Google Scholar
Cebon, D., & Ashby, M. F. (1992). Materials selection in mechanical design. In Barry, T. & Reynard, K. (Eds.), Computerization and networking of materials databases: Third volume. West Conshohocken, PA: ASTM International..Google Scholar
Agache, P. G., Monneur, C., Leveque, J. L., & De Rigal, J. (1980). Mechanical properties and Young’s modulus of human skin in vivo. Archives of Dermatological Research, 269(3), 221232.Google Scholar
Kong, Y. L., Gupta, M. K., Johnson, B. N., & McAlpine, M. C. (2016). 3D printed bionic nanodevices. Nano Today, 11(3), 330350.CrossRefGoogle ScholarPubMed
Fratzl, P., & Weinkamer, R. (2007). Nature’s hierarchical materials. Progress in materials Science, 52(8), 12631334.Google Scholar
Sebastian Mannoor, M. (2014). Bionic Nanosystems.Google Scholar
Marro, A., Bandukwala, T., & Mak, W. (2016). Three-dimensional printing and medical imaging: A review of the methods and applications. Current Problems in Diagnostic Radiology, 45(1), 29.Google Scholar
Fenster, A., & Downey, D. B. (1996). 3-D ultrasound imaging: A review. IEEE Engineering in Medicine and Biology Magazine, 15(6), 4151.Google Scholar
Murphy, S. V., & Atala, A. (2014). 3D bioprinting of tissues and organs. Nature Biotechnology, 32(8), 773785.Google Scholar
Nakamura, M., Iwanaga, S., Henmi, C., Arai, K., & Nishiyama, Y. (2010). Biomatrices and biomaterials for future developments of bioprinting and biofabrication. Biofabrication, 2(1), 014110.Google Scholar
Rowley, J. A., Madlambayan, G., & Mooney, D. J. (1999). Alginate hydrogels as synthetic extracellular matrix materials. Biomaterials, 20(1), 4553.CrossRefGoogle ScholarPubMed
Re’em, T., Tsur-Gang, O., & Cohen, S. (2010). The effect of immobilized RGD peptide in macroporous alginate scaffolds on TGFβ1-induced chondrogenesis of human mesenchymal stem cells. Biomaterials, 31(26), 67466755.Google Scholar
Xu, T., Jin, J., Gregory, C., Hickman, J. J., & Boland, T. (2005). Inkjet printing of viable mammalian cells. Biomaterials, 26(1), 9399.Google Scholar
Roth, E. A., Xu, T., Das, M., Gregory, C., Hickman, J. J., & Boland, T. (2004). Inkjet printing for high-throughput cell patterning. Biomaterials, 25(17), 37073715.Google Scholar
Xu, T., Gregory, C. A., Molnar, P., et al. (2006). Viability and electrophysiology of neural cell structures generated by the inkjet printing method. Biomaterials, 27(19), 35803588.Google Scholar
Boland, T., Xu, T., Damon, B., & Cui, X. (2006). Application of inkjet printing to tissue engineering. Biotechnology Journal: Healthcare Nutrition Technology, 1(9), 910917.Google Scholar
Saunders, R. E., Gough, J. E., & Derby, B. (2008). Delivery of human fibroblast cells by piezoelectric drop-on-demand inkjet printing. Biomaterials, 29(2), 193203.Google Scholar
Bohandy, J., Kim, B. F., & Adrian, F. J. (1986). Metal deposition from a supported metal film using an excimer laser. Journal of Applied Physics, 60(4), 15381539.Google Scholar
Chuang, A. T., Margo, C. E., & Greenberg, P. B. (2014). 2 Retinal implants: A systematic review. British Journal of Ophthalmology, 98(7), 852856.Google Scholar
Stingl, K., Bartz-Schmidt, K. U., Besch, D., et al. (2013). Artificial vision with wirelessly powered subretinal electronic implant alpha-IMS. Proceedings of the Royal Society B: Biological Sciences, 280(1757), 20130077.Google Scholar
Lewis, P. M., Ayton, L. N., Guymer, R. H., et al. (2016). Advances in implantable bionic devices for blindness: A review. ANZ Journal of Surgery, 86(9), 654659.Google Scholar
Brindley, G. S., & Lewin, W. S. (1968). The sensations produced by electrical stimulation of the visual cortex. The Journal of Physiology, 196(2), 479493.Google Scholar
Srivastava, N. R., Troyk, P. R., Towle, V. L., et al. (2007). Estimating phosphene maps for psychophysical experiments used in testing a cortical visual prosthesis device. In 2007 3rd International IEEE/EMBS Conference on Neural Engineering. pp. 130–133. doi:10.1109/CNE.2007.369629Google Scholar
Lowery, A. J. (2013). Introducing the Monash vision group’s cortical prosthesis. In 2013 IEEE International Conference on Image Processing. pp. 1536–1539. doi:10.1109/ICIP.2013.6738316Google Scholar
Fernández, E., Greger, B., House, P. A., et al. (2014). Acute human brain responses to intracortical microelectrode arrays: Challenges and future prospects. Frontiers in Neuroengineering, 7, 24Google Scholar
Hochberg, L. R., Bacher, D., Jarosiewicz, B., et al. (2012). Reach and grasp by people with tetraplegia using a neurally controlled robotic arm. Nature, 485(7398), 372375.Google Scholar
Collinger, J. L., Wodlinger, B., Downey, J. E., et al. (2013). High-performance neuroprosthetic control by an individual with tetraplegia. The Lancet, 381(9866), 557564.Google Scholar
Lorach, H., Marre, O., Sahel, J.-A., Benosman, R., & Picaud, S. (2013). Neural stimulation for visual rehabilitation: Advances and challenges. Journal of Physiology – Paris, 107(5), 421431.Google Scholar
Yue, L., Weiland, J. D., Roska, B., & Humayun, M. S. (2016). Retinal stimulation strategies to restore vision: Fundamentals and systems. Progress in Retinal and Eye Research, 53, 2147.Google Scholar
Ruiters, S., Sun, Y., Jong, S. de, Politis, C., & Mombaerts, I. (2016). Computer-aided design and three-dimensional printing in the manufacturing of an ocular prosthesis. British Journal of Ophthalmology, 100(7), 879881.Google Scholar
Wilson, B. S., & Dorman, M. F. (2008). Cochlear implants: Current designs and future possibilities. Journal of Rehabilitation Research and Development, 45(5), 695730.Google Scholar
Lim, H. H., & Lenarz, T. (2015). Auditory midbrain implant: Research and development towards a second clinical trial. Hearing Research, 322, 212223.Google Scholar
Tan, F., Walshe, P., Viani, L., & Al-Rubeai, M. (2013). Surface biotechnology for refining cochlear implants. Trends in Biotechnology, 31(12), 678687.Google Scholar
Cao, Y., Vacanti, J. P., Paige, K. T., Upton, J., & Vacanti, C. A. (1997). Transplantation of chondrocytes utilizing a polymer-cell construct to produce tissue-engineered cartilage in the shape of a human ear. Plastic and Reconstructive Surgery, 100(2), 297302; discussion 303–304.Google Scholar
Bichara, D. A., O’Sullivan, N. A., Pomerantseva, I., et al. (2012). The tissue-engineered auricle: Past, present, and future. Tissue Engineering Part B: Reviews, 18(1), 5161.Google Scholar
Mannoor, M. S., Jiang, Z., James, T., et al. (2013). 3D Printed bionic ears. Nano Letters 13(6), 26342639.Google Scholar
Xu, T., Binder, K. W., Albanna, M. Z., et al. (2013). Hybrid printing of mechanically and biologically improved constructs for cartilage tissue engineering applications. Biofabrication, 5(1), 015001.Google Scholar
Coelho, D. H., & Costanzo, R. M. (2016). Posttraumatic olfactory dysfunction. Auris Nasus Larynx, 43(2), 137143.Google Scholar
Hong, S.-C., Holbrook, E. H., Leopold, D. A., & Hummel, T. (2012). Distorted olfactory perception: A systematic review. Acta Otolaryngologica (Stockh.), 132(Suppl. 1), S27S31.Google Scholar
Conley, D. B., Robinson, A. M., Shinners, M. J., & Kern, R. C. (2003). Age-related olfactory dysfunction: Cellular and molecular characterization in the rat. American Journal of Rhinology, 17(3), 169175.Google Scholar
Doty, R. L. (2012). Olfactory dysfunction in Parkinson disease. Nature Reviews Neurology, 8(6), 329339.Google Scholar
Persaud, K., & Dodd, G. (1982). Analysis of discrimination mechanisms in the mammalian olfactory system using a model nose. Nature, 299(5881), 352355.Google Scholar
Wasilewski, T., Gębicki, J., & Kamysz, W. (2017). Bioelectronic nose: Current status and perspectives. Biosensors and Bioelectronics, 87, 480494.Google Scholar
Goldsmith, B. R., Mitala, J. J. Jr., Josue, J., et al. (2011). Biomimetic chemical sensors using nanoelectronic readout of olfactory receptor proteins. ACS Nano, 5(7), 54085416.Google Scholar
Cook, B. L., Ernberg, K. E., Chung, H., & Zhang, S. (2008). Study of a synthetic human olfactory receptor 17-4: Expression and purification from an inducible mammalian cell line. PLoS ONE, 3(8) p.e2920.Google Scholar
Sanz, G., & Pajot-Augy, E. (2013). Deciphering activation of olfactory receptors using heterologous expression in Saccharomyces cerevisiae and bioluminescence resonance energy transfer. Methods in Molecular Biology Clifton NJ, 1003, 149160.Google Scholar
Lee, S. H., Jin, H. J., Song, H. S., Hong, S., & Park, T. H. (2012). Bioelectronic nose with high sensitivity and selectivity using chemically functionalized carbon nanotube combined with human olfactory receptor. Journal of Biotechnology, 157(4), 467472.Google Scholar
Zhang, X., De la Cruz, O., Pinto, J. M., et al. (2007). Characterizing the expression of the human olfactory receptor gene family using a novel DNA microarray. Genome Biology, 8(5), R86.Google Scholar
Mannoor, M. S., Zhang, S., Link, A. J., & McAlpine, M. C. (2010). Electrical detection of pathogenic bacteria via immobilized antimicrobial peptides. Proceedings of the National Academy of Sciences, 107(4), 1920719212.Google Scholar
Pavan, S., & Berti, F. (2012). Short peptides as biosensor transducers. Analytical and Bioanalytical Chemistry, 402(10), 30553070.Google Scholar
Jin, H. J., Lee, S. H., Kim, T. H., et al. (2012). Nanovesicle-based bioelectronic nose platform mimicking human olfactory signal transduction. Biosensors and Bioelectronics, 35(1), 335341.Google Scholar
Son, M., Kim, D., Ko, H. J., Hong, S., & Park, T. H. (2017). A portable and multiplexed bioelectronic sensor using human olfactory and taste receptors. Biosensors and Bioelectronics 87, 901907.Google Scholar
Firestein, S. (2001). How the olfactory system makes sense of scents. Nature, 413(6852), 211218.Google Scholar
Malnic, B., Hirono, J., Sato, T., & Buck, L. B. (1999). Combinatorial receptor codes for odors. Cell, 96(5), 713723.Google Scholar
Saito, H., Chi, Q., Zhuang, H., Matsunami, H., & Mainland, J. D. (2009). Odor coding by a Mammalian receptor repertoire. Science Signaling, 2(60), ra9.Google Scholar
Jodat, Y. A., Kiaee, K., Vela Jarquin, D., et al. (2020). A 3D‐printed hybrid nasal cartilage with functional electronic olfaction. Advanced Science, 7(5), 1901878.Google Scholar
Quignon, P., Giraud, M., Rimbault, M., et al. (2005). The dog and rat olfactory receptor repertoires. Genome Biology, 6(10), R83.Google Scholar
Tan, J., Savigner, A., Ma, M., & Luo, M. (2010). Odor information processing by the olfactory bulb analyzed in gene-targeted mice. Neuron, 65(6), 912926.Google Scholar
Zhang, X., De la Cruz, O., Pinto, J. M., Nicolae, D., Firestein, S., & Gilad, Y. (2007). Characterizing the expression of the human olfactory receptor gene family using a novel DNA microarray. Genome Biology, 8(5), R86.Google Scholar
Peck, M. D. (2011). Epidemiology of burns throughout the world. Part I: Distribution and risk factors. Burns, 37(7), 10871100.Google Scholar
Supp, D. M., & Boyce, S. T. (2005). Engineered skin substitutes: Practices and potentials. Clinics in Dermatology, 23(4), 403412.CrossRefGoogle ScholarPubMed
Michael, S., Sorg, H., Peck, C. T., et al. (2013). Tissue engineered skin substitutes created by laser-assisted bioprinting form skin-like structures in the dorsal skin fold chamber in mice. PLoS ONE, 8(3), e57741.Google Scholar
Someya, T., Sekitani, T., Iba, S., et al. (2004). A large-area, flexible pressure sensor matrix with organic field-effect transistors for artificial skin applications. Proceedings of the National Academy of Sciences USA, 101(27), 99669970.Google Scholar
Kaltenbrunner, M., Sekitani, T., Reeder, J., et al. (2013). An ultra-lightweight design for imperceptible plastic electronics. Nature, 499(7459), 458463.Google Scholar
Rogers, J. A., Someya, T., & Huang, Y. (2010). Materials and mechanics for stretchable electronics. Science, 327(5973), 16031607.Google Scholar
Kim, D.-H., Ghaffari, R., Lu, N., et al. (2012). Electronic sensor and actuator webs for large-area complex geometry cardiac mapping and therapy. Proceedings of the National Academy of Sciences109(49), 109, 1991019915.Google Scholar
Dowling, R. D., Gray, L. A. Jr, Etoch, S. W., et al. (2003). The AbioCor implantable replacement heart. Annals of Thoracic Surgery, 75(6), S93S99.Google Scholar
Russell, S. J., El-Khatib, F. H., Sinha, M., et al. (2014). Outpatient glycemic control with a bionic pancreas in type 1 diabetes. New England Journal of Medicine, 371(4), 313325.Google Scholar
Dhillon, G. S., Lawrence, S. M., Hutchinson, D. T., & Horch, K. W. (2004). Residual function in peripheral nerve stumps of amputees: Implications for neural control of artificial limbs. The Journal of Hand Surgery, 29(4), 605615; discussion 616–618.Google Scholar
Minev, I. R., Musienko, P., Hirsch, A., et al. (2015). Biomaterials. Electronic dura mater for long-term multimodal neural interfaces. Science, 347(6218), 159163.Google Scholar
Green, R., & Abidian, M. R. (2015). Conducting polymers for neural prosthetic and neural interface applications. Advanced Matererials, 27(46), 76207637.Google Scholar
Vidal, G. W. V., Rynes, M. L., Kelliher, Z., & Goodwin, S. J. (2016). Review of brain-machine interfaces used in neural prosthetics with new perspective on somatosensory feedback through method of signal breakdown. Scientifica, 2016, 8956432, 10 pp.Google Scholar
Barrese, J. C., Rao, N., Paroo, K., et al. (2013). Failure mode analysis of silicon-based intracortical microelectrode arrays in non-human primates. Journal of Neural Engineering, 10(6), 066014.Google Scholar
Kim, D.-H., Lu, N., Ma, R., et al. (2011). Epidermal electronics. Science, 333(6044), 838843.Google Scholar

References

Rao, C. S. (2007). Environmental pollution control engineering. New Delhi: New Age International.Google Scholar
U. S. Energy Information Administration. (2016). Renewable and alternative fuels: Recent data. Retrieved from www.eia.doe.gov/fuelrenewable.htmlGoogle Scholar
BioAge Group. (2017). Green Car Congress: batteries. Retrieved from www.greencarcongress.comGoogle Scholar
Romei, F. (2008). Leonardo Da Vinci. Minneapolis: Oliver Press.Google Scholar
Yisris, . (n.d.). Hayabusa [Photograph]. Flickr, Japan. Retrieved from https://bit.ly/2IUVBxV (Originally photographed 2011, February 20)Google Scholar
Sund, S. (n.d.). Toucan [Photograph]. Flickr, Honduras. Retrieved from https://bit.ly/2GM4t7h (Originally photographed 2007, November 23)Google Scholar
Imeto, K. (n.d.). Beijing Air Pollution [Photograph]. Flickr, Beijing, Retrieved from https://bit.ly/2EGasHt (Originally photographed 2014, February 22)Google Scholar
Lynch, P. J. (n.d.). Lungs diagram with internal details. Wikipedia. Yale University School of Medicine, 23 Dec. 2006, bit.ly/2XLfH1kGoogle Scholar
Green, D. W., Ben-Nissan, B., Yoon, K. S., Milthorpe, B., & Jung, H. S. (2016). Bioinspired materials for regenerative medicine: Going beyond the human archetypes. Journal of Materials Chemistry B, 4(14), 23962406.Google Scholar
Jo, S. H., Chang, T., Ebong, I., Bhadviya, B. B., Mazumder, P., & Lu, W. (2010). Nanoscale memristor device as synapse in neuromorphic systems. Nano Letters, 10(4), 12971301.Google Scholar
Dickerson, M. B., Sandhage, K. H., & Naik, R. R. (2008). Protein-and peptide-directed syntheses of inorganic materialsChemical Reviews108(11), 49354978.Google Scholar
Moriarty, P. (2001). Nanostructured materials. Reports on Progress in Physics, 64(3), 297.Google Scholar
Sanchez, C., Julián, B., Belleville, P., & Popall, M. (2005). Applications of hybrid organic–inorganic nanocompositesJournal of Materials Chemistry15(35–36), 35593592.Google Scholar
Linden, D. (1984). Handbook of batteries and fuel cells. New York: McGraw-Hill.Google Scholar
Tarascon, J. M., & Armand, M. (2011). Issues and challenges facing rechargeable lithium batteries. In Dusastre, V. (Ed.), Materials for sustainable energy: A collection of peer-reviewed research and review articles from Nature Publishing Group (pp. 171179). Singapore: World Scientific Publishing.Google Scholar
Bruce, P. G., Freunberger, S. A., Hardwick, L. J., & Tarascon, J. M. (2012). Li-O2 and Li-S batteries with high energy storage. Nature Materials, 11(1), 1929.Google Scholar
Cui, Y., Wen, Z., & Liu, Y. (2011). A free-standing-type design for cathodes of rechargeable Li–O2 batteries. Energy & Environmental Science, 4(11), 47274734.Google Scholar
Débart, A., Paterson, A. J., Bao, J., & Bruce, P. G. (2008). α‐MnO2 Nanowires: A catalyst for the O2 electrode in rechargeable lithium batteries. Angewandte Chemie, 120(24), 45974600.Google Scholar
Kim, I., Moon, J. S., & Oh, J.-W. (2016). Recent advances in M13 bacteriophage-based optical sensing applications. Nano Convergence, 3(1), 27.Google Scholar
Nam, K. T., Kim, D. W., Yoo, P. J., et al. (2006). Virus-enabled synthesis and assembly of nanowires for lithium ion battery electrodes. Science, 312(5775), 885888.Google Scholar
Okada, S., Sawa, S., Egashira, M., et al. (2001). Cathode properties of phospho-olivine LiMPO4 for lithium secondary batteries. Journal of Power Sources, 97, 430432.Google Scholar
Lee, Y. J., Yi, H., Kim, W. J., et al. (2009). Fabricating genetically engineered high-power lithium-ion batteries using multiple virus genes. Science, 324(5930), 10511055.CrossRefGoogle ScholarPubMed
Kang, Y. M., Song, M. S., Kim, J. H., et al. (2005). A study on the charge–discharge mechanism of Co3O4 as an anode for the Li ion secondary batteryElectrochimica Acta50(18), 36673673.Google Scholar
Laoire, C. O., Mukerjee, S., Abraham, K. M., Plichta, E. J., & Hendrickson, M. A. (2010). Influence of nonaqueous solvents on the electrochemistry of oxygen in the rechargeable lithium−air battery. The Journal of Physical Chemistry C, 114(19), 91789186.Google Scholar
Girishkumar, G., McCloskey, B., Luntz, A. C., Swanson, S., & Wilcke, W. (2010). Lithium–air battery: Promise and challenges. The Journal of Physical Chemistry Letters, 1, 21932203.Google Scholar
Oh, D., Qi, J., Lu, Y. C., Zhang, Y., Shao-Horn, Y., & Belcher, A. M. (2013). Biologically enhanced cathode design for improved capacity and cycle life for lithium-oxygen batteries. Nature Communications, 4, 2756. doi:10.1038/ncomms3756Google Scholar
Lu, Y. C., Gallant, B. M., Kwabi, D. G., et al. (2013). Lithium–oxygen batteries: Bridging mechanistic understanding and battery performance. Energy & Environmental Science, 6(3), 750768.Google Scholar
Xiao, J., Mei, D., Li, X., et al. (2011). Hierarchically porous graphene as a lithium–air battery electrode. Nano Letters, 11(11), 50715078.Google Scholar
Stoker, H. S. (2010). Proteins. In Kennedy, K. (Ed.), General, Organic, and Biological Chemistry (pp. 655697). Monterey, CA: Brooks Cole.Google Scholar
Ryu, J., Kim, S. W., Kang, K., & Park, C. B. (2010). Synthesis of diphenylalanine/cobalt oxide hybrid nanowires and their application to energy storage. ACS Nano, 4(1), 159164.Google Scholar
Abate, I. I., Thompson, L. E., Kim, H.-C., & Aetukuri, N. B. (2016). Robust NaO2 electrochemistry in aprotic Na–O2 batteries employing ethereal electrolytes with a protic additive. The Journal of Physical Chemistry Letters, 7(12), 21642169.Google Scholar
Oh, D., Ozgit-Akgun, C., Akca, E., et al. (2017). Biotemplating pores with size and shape diversity for Li-oxygen battery cathodesScientific Reports7, 45919. doi:10.1038/srep45919Google Scholar

References

Sanchez, C., Arribart, H., & Giraud Guille, M. M. (2005). Biomimetism and bioinspiration as tools for the design of innovative materials and systems. Nature Materials, 4, 277288.Google Scholar
Fauci, A. S. (2006). Emerging and re-emerging infectious diseases: Influenza as a prototype of the host-pathogen balancing act. Cell, 124, 665670.Google Scholar
Morens, D. M., Folkers, G. K., & Fauci, A. S. (2008). Emerging infections: A perpetual challenge. Lancet Infectious Diseases, 8, 710719.Google Scholar
Flint, S. J., Enquist, L. W., Krug, R. M., Racaniello, V. R., & Skalka, A. M. (2000). Principles of virology, molecular biology, pathogenesis, and control. ASM Press.Google Scholar
Daniel, M. -C., & Astruc, D. (2004). Gold nanoparticles: Assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology. Chemical Reviews, 104(1), 293346.Google Scholar
Cossart, P., & Helenius, A. (2014). Endocytosis of viruses and bacteria. Cold Spring Harbor Perspectives in Biology, 6, 128.Google Scholar
Wang, S., Chen, K.-J., Wu, T.-H., et al. (2010). Photothermal effects of supramolecularly assembled gold nanoparticles for the targeted treatment of cancer cells. Angewandte Chemie International Edition, 49, 37773781.Google Scholar
Whitesides, G. M., & Grzybowski, B. (2002) Self-assembly at all scales. Science, 295(5564), 24182421.Google Scholar
Guo, S., & Huang, L. (2011). Nanoparticles escaping RES and endosome: Challenges for siRNA delivery for cancer therapy. Journal of Nanomaterials, 2011, 742895.Google Scholar
Jain, R. K., & Stylianopoulos, T. (2010). Delivering nanomedicine to solid tumors. Nature Reviews Clinical Oncology, 7, 653664.Google Scholar
Jain, R. K. (1999). Transport of molecules, particles, and cells in solid tumors. Annual Review of Biomedical Engineering, 1, 241263.Google Scholar
Galdiero, S., Falanga, A., Vitiello, M., Cantisani, M., Marra, V., & Galdiero, M. (2011). Silver nanoparticles as potential antiviral agents. Molecules, 16(10), 88948918.Google Scholar
Jain, R. K. (1990). Vascular and interstitial barriers to delivery of therapeutic agents in tumors. Cancer and Metastasis Review, 9, 253266.Google Scholar
Mariampillai, A., Leung, M. K. K., Jarvi, M., et al. (2010). Optimized speckle variance OCT imaging of microvasculature. Optics Letters, 35(8), 12571259.Google Scholar
Krissinel, E., & Henrick, K., (2007). Inference of macromolecular assemblies from crystalline state. Journal of Molecular Biology, 372(3), 774797.Google Scholar
Mitragotri, S., & Stayton, P. (2014). Organic nanoparticles for drug delivery and imaging. MRS Bulletin, 39(03), 219223.Google Scholar
Oni, Y., Hao, K., & Dozie-Nwachukwu, S., et al. (2014). Gold nanoparticles for cancer detection and treatment: The role of adhesion. Journal of Applied Physics, 115(8), 084305–084305-8.Google Scholar
Russell, J. T., Lin, Y., Böker, A., et al. (2005). Self-assembly of cross-linking of bionanoparticles at liquid–liquid interfaces. Angewandte Chemie International Edition, 44, 24202426.Google Scholar
Burnett, R. M. (1985). The structure of the adenovirus capsid: II. The packing symmetry of hexon and its implications for viral architecture. Journal of Molecular Biology, 185(1), 125143.Google Scholar
Chen, S.-H., Wang, D.-C., Chen, G.-Y., & Jan, C.-L. (2006). Self-control of the self-assembly gold nanoparticles. Journal of Medical and Biological Engineering, 26(3), 137142.Google Scholar
Bishop, K. J. M., Wilmer, C. E., Sohand, S., & Grzybowski, B. A. (2009). Nanoscale forces and their uses in self-assembly. Small, 5(14), 16001630.Google Scholar
Remskar, M., Skraba, Z., Cléton, F., Sanjinés, R., & Lévy, F. (1996). MoS2 as microtubes. Applied Physics Letters, 69, 351.Google Scholar
Lodish, H, Berk, A, Zipursky, SL, et al. Molecular Cell Biology. 4th edition. New York: W. H. Freeman; 2000. Section 6.3, Viruses: Structure, Function, and Uses. Available from: https://www.ncbi.nlm.nih.gov/books/NBK21523/Google Scholar
Carrillo-Tripp, M., Shepherd, C. M., Borelli, I.A., et al. (2009). VIPERdb2: An enhanced and web API enabled relational database for structural virology. Nucleic Acids Research, 37, D436D442.Google Scholar
Boulant, S., Stanifer, M., & Lozach, P. Y. (2015). Dynamics of virus-receptor interactions in virus binding, signaling, and endocytosis. Viruses, 7, 27942815.Google Scholar
Wessells, N. K., Spooner, B. S., Ash, J. F., et al. (1971). Microfilaments in cellular and developmental processes. Science, 171(3967), 135143.Google Scholar
Kronberg, R. (1974). Chromatin structure: A repeating unit of histones and DNA. Science, 184(4139), 868871.Google Scholar
Douglas, S. M., Dietz, H., Liedl, T., et al. (2009). Self-assembly of DNA into nanoscale three-dimensional shapes. Nature, 459, 414418.Google Scholar
Seeman, N. C. (2003). DNA in a material world. Nature, 421, 427431.Google Scholar
Costerton, J. W., Stewart, P. S., & Greenberg, E. P. (1999). Bacterial biofilms: A common cause of persistent infections. Science, 284(5418), 13181322.Google Scholar
Grove, J., & Marsh, M. (2011). The cell biology of receptor-mediated virus entry. Journal of Cell Biology, 195, 10711082.Google Scholar
Wilen, C. B., Tilton, J.C., & Doms, R.W. (2012). HIV: cell binding and entry. Cold Spring Harbor Perspectives in Medicine, 2, a006866.Google Scholar
Chhabra, E. S., & Higgs, H. N. (2007). The many faces of actin: Matching assembly factors with cellular structures. Nature Cell Biology, 9, 11101121.Google Scholar
Bryant, S. J., & Anseth, K. S. (2002). Hydrogel properties influence ECM production by chondrocytes photoencapsulated in poly(ethylene glycol) hydrogels. Journal of Biomedical Materials Research, 59(1), 6372.Google Scholar
Gao, H., Shi, W., & Freund, L. B. (2005). Mechanics of receptor-mediated endocytosis. Proceedings of the National Academy of Sciences of the United States of America, 102(7), 94699474.Google Scholar
Rust, M. J., Lakadamyali, M., & Zhang, F., et al. (2004). Assembly of endocytic machinery around individual influenza viruses during viral entry. Nature Structural & Molecular Biology, 11, 567573.Google Scholar
Herold, S., Becker, C., Ridge, K. M., & Budinger, G. R. (2015). Influenza virus-induced lung injury: Pathogenesis and implications for treatment. European Respiratory Society, 45(5), 14631478.Google Scholar
Thoulouze, M. I., & Alcover, A. (2011). Can viruses form biofilms? Trends in Microbiology, 19, 257262.Google Scholar
Lodish, H., Berk, A., Zipursky, S. L., et al. (2000). Viruses: Structure, function, and uses. In Molecular cell biology (4th ed.). W. H. Freeman.Google Scholar
Gao, H., Shi, W., & Freund, L. B. (2005). Mechanics of receptor-mediated endocytosis. Proceedings of the National Academy of Sciences of the United States of America, 102(27), 94699474.Google Scholar
Husseiny, M. I., Abd El-Aziz, M., Badr, Y., & Mahmoud, M. A. (2007). Biosynthesis of gold nanoparticles using Pseudomonas aeruginosa. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 67(3–4), 10031006.Google Scholar
Luo, Y. H., Chang, L. W., & Lin, P. (2015). Metal-based nanoparticles and the immune system: Activation, inflammation, and potential applications. BioMed Research International, 2015, 143720.Google Scholar
Bae, Y. H., & Park, K. (2011). Targeted drug delivery to tumors: Myths, reality and possibility. Journal of Controlled Release, 153(3), 198205.Google Scholar
Brannon-Peppas, L., & Blanchette, J. O. (2012). Nanoparticle and targeted systems for cancer therapy. Advanced Drug Delivery Reviews, 64, 206212.Google Scholar
Moein Moghimi, S., Christy Hunter, A., & Clifford Murray, J. (2001). Long-circulating and target-specific nanoparticles: Theory to practice. Pharmacological Reviews, 53(2), 283318.Google Scholar
Sarkissian, S. D & Raizada, M. K. (2007). Therapeutic Potential of Systemic Gene Transfer Strategy for Hypertension and Cardiovascular Disease. In Lip, G. Y.H. and Hall, J. E. (Eds). Comprehensive Hypertension, (pp 429445). Oxford, UK: Elsevier Publishing. doi: https://doi.org/10.1016/B978-0-323-03961-1.50040-4.Google Scholar
Söderström, A, Norkrans, G, Lindh, M. Hepatitis B virus DNA during pregnancy and post partum: aspects on vertical transmission. Scand J Infect Dis 2003; 35: 814–9.Google Scholar
Marintcheva, B. (2018). Introduction to viral structure, diversity and biology. In Harnessing the power of viruses (p. 8). Academic Press.Google Scholar
Koo, B. C., Kwon, M. S., & Kim, T. (2014). Retrovirus-mediated gene transfer. In Pinkert, C. A. (Ed.), Transgenic animal technology: A laboratory handbook (3rd ed.). Elsevier; pp. 167194.Google Scholar
Mali, S. (2013). Delivery systems for gene therapy. Indian Journal of Human Genetics, 19(1), 38.Google Scholar
Lee, C. S., Bishop, E. S., & Zhang, R., et al. (2017). Adenovirus-mediated gene delivery: Potential applications for gene and cell-based therapies in the new era of personalized medicine. Genes and Diseases, 4, 4363.Google Scholar
Samulski, R. J., & Muzyczka, N. (2014). AAV-mediated gene therapy for research and therapeutic purposes. Annual Review of Virology, 1(1), 427451.Google Scholar
Balakrishnan, B., & Jayandharan, G. R. (2014). Basic biology of adeno-associated virus (AAV) vectors used in gene therapy. Current Gene Therapy, 14(2), 86100.Google Scholar
Doshi, N., & Mitragotri, S. (2009). Designer biomaterials for nanomedicine. Advanced Functional Materials, 19(24), 38433854.Google Scholar
Luis Elechiguerra, J., Burt, J. L., Morones, J. R., et al. (2005). Interaction of silver nanoparticles with HIV-1. Journal of Nanobiotechnology, 3, 6.Google Scholar
Alexis, F., Pridgen, E., Molnar, L. K., & Farokhzad, O. C. (2008). Factors affecting the clearance and biodistribution of polymeric nanoparticles. Molecular Pharmaceutics, 5(4), 505515.Google Scholar
Simpson, C. A., Agrawal, A. C., Balinski, A., Harkness, K. M., & Cliffel, D. E. (2011). Short-chain PEG mixed monolayer protected gold clusters increase clearance and red blood cell counts. ACS Nano, 5(5), 35773584.Google Scholar
Amoozgar, Z., & Yeo, Y. (2012). Recent advances in stealth coating of nanoparticle drug delivery systems. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology, 4(2), 219233.Google Scholar
Farokhzad, O. C., & Langer, R. (2006). Nanomedicine: Developing smarter therapeutic and diagnostic modalities. Advanced Drug Delivery Reviews, 58(14), 14561459.Google Scholar
Jin-Wook, Y., Chambers, E., & Samir, M. (2010). Factors that control the circulation time of nanoparticles in blood: Challenges, solutions and future prospects. Current Pharmaceutical Design, 16(21), 22982307.Google Scholar
Berry, C. C., & Curtis, A. S. G. (2003). Functionalisation of magnetic nanoparticles for applications in biomedicine. Journal of Physics D: Applied Physics, 36, R198.Google Scholar
Wang, M., & Thanou, M. (2010). Targeting nanoparticles to cancer. Pharmacological Research, 62(2), 9099.Google Scholar
Gupta, A. K., & Gupta, M. (2005). Synthesis and surface engineering of iron oxide nanoparticles for biomedical applications. Biomaterials, 26(18), 39954021.Google Scholar
Yoo, J. -W., Irvine, D. J., Discher, D. E., & Mitragotri, S. (2011). Bio-inspired, bioengineered and biomimetic drug delivery carriers. Nature Reviews Drug Discovery, 10, 521535.Google Scholar
Obayemi, J. D., Dozie-Nwachukwu, S., Danyuo, Y., et al. (2015). Biosynthesis and the conjugation of magnetite nanoparticles with luteinizing hormone releasing hormone (LHRH). Materials Science and Engineering C, 46, 482496.Google Scholar
Hampp, E., Botah, R., Odusanya, S., Anuku, N., Malatesta, K., & Soboyejo, W. O. (2012). Biosynthesis and adhesion of gold nanoparticles for breast cancer detection and treatment. Journal of Materials Research, 27(22), 2891.Google Scholar
Dozie-Nwachukwu, S., Obayemi, J. D., Danyuo, Y., et al. (2017). Biosynthesis of gold nanoparticles and gold/prodigiosin nanoparticles with Serratia marcescens bacteria. Waste and Biomass Valorization, 8(6), 20452059. doi 10.1007/s12649-016-9734-7Google Scholar
Hu, J., Youssefian, S., Obayemi, J., Malatesta, K., Rahbar, N., & Soboyejo, W. (2018). Investigation of adhesive interactions in the specific targeting of triptorelin-conjugated PEG-coated magnetite nanoparticles to breast cancer cells. Acta Biomaterialia, 71, 363378.Google Scholar
Obayemi, J. D., Hu, J., Uzonwanne, V. O., et al. (2017). Adhesion of ligand-conjugated biosynthesized magnetite nanoparticles to triple negative breast cancer cells. Journal of the Mechanical Behavior of Biomedical Materials, 30(8), 2141.Google Scholar
Oh, N., & Park, J. H. (2014). Endocytosis and exocytosis of nanoparticles in mammalian cells. International Journal of Nanomedicine, 9(Suppl. 1), 5163.Google Scholar
Hu, J., Obayemi, J. D., Malatesta, K., Košmrlj, A., & Soboyejo, W. O. (2018). Enhanced cellular uptake of LHRH-conjugated PEG-coated magnetite nanoparticles for specific targeting of triple negative breast cancer cells. Materials Science and Engineering C, 88, 3245.Google Scholar
Zhang, S., Gao, H., & Bao, G. (2015). Physical principles of nanoparticle cellular endocytosis. ACS Nano, 9, 86558671.Google Scholar
Madheswaran, T., Kandasamy, M., Bose, R. J., & Karuppagounder, V. (2019). Current potential and challenges in the advances of liquid crystalline nanoparticles as drug delivery systems. Drug Discovery Today, 24(7), 14051412.Google Scholar
Kou, L., Hou, Y., Yao, Q., et al. (2017). l-Carnitine-conjugated nanoparticles to promote permeation across bloodbrain barrier and to target glioma cells for drug delivery via the novel organic cation/carnitine transporter OCTN2. Artificial Cells, Nanomedicine and Biotechnology, 3, 112.Google Scholar
Kumar, A., Mansour, H. M., Friedman, A., & Blough, E. R. (2013). Nanomedicine in drug delivery. CRC Press.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • Structures
  • Edited by Wole Soboyejo, Worcester Polytechnic Institute, Massachusetts, Leo Daniel
  • Book: Bioinspired Structures and Design
  • Online publication: 28 August 2020
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • Structures
  • Edited by Wole Soboyejo, Worcester Polytechnic Institute, Massachusetts, Leo Daniel
  • Book: Bioinspired Structures and Design
  • Online publication: 28 August 2020
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • Structures
  • Edited by Wole Soboyejo, Worcester Polytechnic Institute, Massachusetts, Leo Daniel
  • Book: Bioinspired Structures and Design
  • Online publication: 28 August 2020
Available formats
×