Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-nmvwc Total loading time: 0 Render date: 2024-07-07T22:58:04.422Z Has data issue: false hasContentIssue false

21 - Gene delivery for periodontal regeneration

from Part IV - Biological factor delivery

Published online by Cambridge University Press:  05 February 2015

Andrei D. Taut
Affiliation:
University of Michigan
William V. Giannobile
Affiliation:
University of Michigan
Peter X. Ma
Affiliation:
University of Michigan, Ann Arbor
Get access

Summary

Gene therapy for regenerative medicine

Gene therapy refers to the delivery of genetic material that will activate, hinder, or modify the expression of specific genes to facilitate the natural cellular production of a therapeutic agent to treat disease [1, 2]. The concept has emerged as an effective method to control the course of a disease/disorder, modulate the host-response triggered by pathogen, or regenerate compromised biological tissues [2]. As such, the use of gene delivery technologies offers a novel approach for delivery of putative regenerative molecules to sites in the oral cavity and craniofacial complex [2]. Gene therapy is more advantageous than the traditional therapeutic delivery of compounds and proteins. A greater sustainability in comparison with a single dosage or several of a protein or compound is one of the primary advantages of therapeutic gene delivery. Although the half-lives of conventional pharmaceutical compounds or recombinant proteins range from hours to a few days, viral vector-gene delivery of the corresponding genes can lead to in-vivo expression lasting from weeks to years. Gene therapy also alleviates technical challenges that arise with protein expression and purification. Furthermore, gene delivery of an entire group of regenerative factors combined with existing tissue regeneration therapies could potentially replicate natural biological healing processes and allow engineering of complex three-dimensional (3D), multitissue structures (Figure 21.1) [2]. Therapeutic gene delivery for tissue regeneration is achieved through the use of both viral and non-viral vectors (Table 21.1).

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2014

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ditto, A. J., Shah, P. N. and Yun, Y. H. 2009. Non-viral gene delivery using nanoparticles. Expert Opin. Drug Deliv., 6(11), 1149–60.CrossRefGoogle ScholarPubMed
Rios, H. F., Lin, Z., Oh, B., Park, C. H. and Giannobile, W. V. 2011. Cell- and gene-based therapeutic strategies for periodontal regenerative medicine. J. Periodontol., 82(9), 1223–37.CrossRefGoogle ScholarPubMed
Elsabahy, M., Nazarali, A. and Foldvari, M. 2011. Non-viral nucleic acid delivery: key challenges and future directions. Curr. Drug Deliv., 8(3), 235–44.CrossRefGoogle ScholarPubMed
Watanabe, T., Umehara, T. and Kohara, M. 2007. Therapeutic application of RNA interference for hepatitis C virus. Adv. Drug Deliv. Rev., 59(12), 1263–76.CrossRefGoogle ScholarPubMed
Williams, J. A., Carnes, A. E. and Hodgson, C. P. 2009. Plasmid DNA vaccine vector design: impact on efficacy, safety and upstream production. Biotechnol. Adv., 27(4), 353–70.CrossRefGoogle ScholarPubMed
Liang, W. W., Shi, X., Deshpande, D., Malanga, C. J. and Rajanasakul, Y. 1996. Oligonucleotide targeting to alveolar macrophages by mannose receptor-mediated endocytosis. Biochim. Biophys. Acta, 1279(2), 227–34.CrossRefGoogle ScholarPubMed
Chan, J. H., Lim, S. and Wong, W. S. 2006. Antisense oligonucleotides: from design to therapeutic application. Clin. Exp. Pharmacol. Physiol., 33(5–6), 533–40.CrossRefGoogle ScholarPubMed
Sazani, P. and Kole, R. 2003. Therapeutic potential of antisense oligonucleotides as modulators of alternative splicing. J. Clin. Invest., 112(4), 481–6.CrossRefGoogle ScholarPubMed
Hogrefe, R. I. 1999. An antisense oligonucleotide primer. Antisense Nucleic Acid Drug Dev., 9(4), 351–7.CrossRefGoogle Scholar
Preall, J. B. and Sontheimer, E. J. 2005. RNAi: RISC gets loaded. Cell, 123(4), 543–5.CrossRefGoogle ScholarPubMed
Karikó, K., Bhuyan, P., Capodici, P. et al. 2004. Small interfering RNAs mediate sequence-independent gene suppression and induce immune activation by signaling through toll-like receptor 3. J. Immunol., 172(11), 6545–9.CrossRefGoogle ScholarPubMed
Rao, D. D., Vorhies, J. S., Senzer, N. and Nemunaitis, J. 2009. siRNA vs. shRNA: similarities and differences. Adv. Drug Deliv. Rev., 61(9), 746–59.CrossRefGoogle ScholarPubMed
Lee, Y., Jeon, K., Lee, J. T., Kim, S. and Kim, V. N. 2002. MicroRNA maturation: stepwise processing and subcellular localization. EMBO J., 21(17), 4663–70.CrossRefGoogle ScholarPubMed
Ivics, Z. and Izsvak, Z. 2011. Nonviral gene delivery with the sleeping beauty transposon system. Hum. Gene Ther., 22(9), 1043–51.CrossRefGoogle ScholarPubMed
Carlson, C. M. and Largaespada, D. A. 2005. Insertional mutagenesis in mice: new perspectives and tools. Nature Rev. Genet., 6(7), 568–80.CrossRefGoogle Scholar
Gao, X., Kim, K. S. and Liu, D. 2007. Nonviral gene delivery: what we know and what is next. AAPS J., 9(1), E92–104.CrossRefGoogle ScholarPubMed
Li, P., Liu, D., Sun, X. et al. 2011. A novel cationic liposome formulation for efficient gene delivery via a pulmonary route. Nanotechnology, 22(24), 245104.CrossRefGoogle Scholar
Pi, Y., Zhang, X., Shi, J. et al. 2011. Targeted delivery of non-viral vectors to cartilage in vivo using a chondrocyte-homing peptide identified by phage display. Biomaterials, 32(26), 6324–32.CrossRefGoogle ScholarPubMed
McLachlan, G., Davidson, H., Holder, E. et al. 2011. Pre-clinical evaluation of three non-viral gene transfer agents for cystic fibrosis after aerosol delivery to the ovine lung. Gene Ther., 18(10), 996–1005.CrossRefGoogle ScholarPubMed
Arote, R. B., Jiang, H. L., Kim, Y. K. et al. 2011. Degradable poly(amido amine)s as gene delivery carriers. Expert Opin. Drug Deliv., 8(9), 1237–46.CrossRefGoogle Scholar
Farokhzad, O. C., Karp, J. M. and Langer, R. 2006. Targeted nanoparticle–aptamer bioconjugates for cancer chemotherapy in vivo. Proc. Nat. Acad. Sci. USA, 103(16), 6315–20.CrossRefGoogle ScholarPubMed
Kim, S. H., Jeong, J. H., Mok, H. et al. 2007. Folate receptor targeted delivery of polyelectrolyte complex micelles prepared from ODN–PEG–folate conjugate and cationic lipids. Biotechnol. Prog., 23(1), 232–7.CrossRefGoogle ScholarPubMed
Oishi, M., Kataoka, K. and Nagasaki, Y. 2006. pH-responsive three-layered PEGylated polyplex micelle based on a lactosylated ABC triblock copolymer as a targetable and endosome-disruptive nonviral gene vector. Bioconjug. Chem., 17(3), 677–88.CrossRefGoogle ScholarPubMed
Rozema, D. B., Lewis, D. L., Wakefield, D. H. et al. 2007. Dynamic PolyConjugates for targeted in vivo delivery of siRNA to hepatocytes. Proc. Nat. Acad. Sci. USA, 104(32), 12982–7.CrossRefGoogle ScholarPubMed
Yao, S., Gutierrez, D. L., Ring, S., Liu, D. and Wise, G. E. 2010. Electroporation to deliver plasmid DNA into rat dental tissues. J. Gene Med., 12(12), 981–9.CrossRefGoogle ScholarPubMed
Song, S., Shen, Z., Chen, L., Brayman, A. A. and Miao, C. H. 2011. Explorations of high-intensity therapeutic ultrasound and microbubble-mediated gene delivery in mouse liver. Gene Ther., 18(10), 1006–14.CrossRefGoogle ScholarPubMed
Chen, R., Chiba, M., Mori, S., Fukumoto, M. and Kodama, T. 2009. Periodontal gene transfer by ultrasound and nano/microbubbles. J. Dent. Res., 88(11), 1008–13.CrossRefGoogle ScholarPubMed
Nakashima, M., Tachibana, K., Iohara, K. et al. 2003. Induction of reparative dentin formation by ultrasound-mediated gene delivery of growth/differentiation factor 11. Hum. Gene Ther., 14(6), 591–7.CrossRefGoogle ScholarPubMed
Ramseier, C. A., Abramson, Z. R., Jin, Q., Giannobile, W. V. 2006. Gene therapeutics for periodontal regenerative medicine. Dent. Clin. North Am., 50(2), 245–63 and ix.CrossRefGoogle ScholarPubMed
Waheed, A. A. and Freed, E. O. 2010. The role of lipids in retrovirus replication. Viruses, 2(5), 1146–80.CrossRefGoogle ScholarPubMed
Telenti, A. and McLaren, P. 2010. Genomic approaches to the study of HIV-1 acquisition. J. Infect. Dis., 202(Suppl. 3), S382–6.CrossRefGoogle Scholar
Phillips, J. E., Gersbach, C. A. and Garcia, A. J. 2007. Virus-based gene therapy strategies for bone regeneration. Biomaterials, 28(2), 211–29.CrossRefGoogle ScholarPubMed
Surosky, R. T., Urabe, M., Godwin, S. G. et al. 1997. Adeno-associated virus Rep proteins target DNA sequences to a unique locus in the human genome. J. Virol., 71(10), 7951–9.Google ScholarPubMed
Pihlstrom, B. L., Michalowicz, B. S. and Johnson, N. W. 2005. Periodontal diseases. Lancet, 366(9499), 1809–20.CrossRefGoogle ScholarPubMed
Socransky, S. S., Haffajee, A. D., Cugini, M. A., Smith, C. and Kent, R. L. 1998. Microbial complexes in subgingival plaque. J. Clin. Periodontol., 25(2), 134–44.CrossRefGoogle ScholarPubMed
Tobita, M. and Mizuno, H. 2010. Periodontal disease and periodontal tissue regeneration. Curr. Stem Cell Res. Ther., 5(2), 168–74.CrossRefGoogle ScholarPubMed
Heldin, P., Laurent, T. C. and Heldin, C. H. 1989. Effect of growth factors on hyaluronan synthesis in cultured human fibroblasts. Biochem. J., 258(3), 919–22.CrossRefGoogle ScholarPubMed
Kaplan, D. R., Chao, F. C., Stiles, C. D., Antoniades, H. N. and Scher, C. D. 1979. Platelet alpha granules contain a growth factor for fibroblasts. Blood, 53(6), 1043–52.Google ScholarPubMed
Seppä, H., Grotendorst, G., Seppä, S., Schiffmann, E. and Martin, G. R. 1982. Platelet-derived growth factor is chemotactic for fibroblasts. J. Cell Biol., 92(2), 584–8.CrossRefGoogle ScholarPubMed
Kaigler, D., Avila, G., Wisner-Lynch, L. et al. 2011. Platelet-derived growth factor applications in periodontal and peri-implant bone regeneration. Expert Opin. Biol. Ther., 11(3), 375–85.CrossRefGoogle ScholarPubMed
Rosenkranz, S. and Kazlauskas, A. 1999. Evidence for distinct signaling properties and biological responses induced by the PDGF receptor α and β subtypes. Growth Factors, 16(3): p. 201–16.CrossRefGoogle ScholarPubMed
Zhu, Z., Lee, C. S., Tejeda, K. M. and Giannobile, W. V. 2001. Gene transfer and expression of platelet-derived growth factors modulate periodontal cellular activity. J. Dent. Res., 80(3), 892–7.CrossRefGoogle ScholarPubMed
Giannobile, W. V., Lee, C. S., Tomala, M. P. et al. 2001. Platelet-derived growth factor (PDGF) gene delivery for application in periodontal tissue engineering. J. Periodontol., 72(6), 815–23.CrossRefGoogle ScholarPubMed
Lin, Z., Sugai, J. V., Jin, Q., Chandler, L. A. and Giannobile, W. V. 2008. Platelet-derived growth factor-B gene delivery sustains gingival fibroblast signal transduction. J. Periodontal Res., 43(4), 440–9.CrossRefGoogle ScholarPubMed
Chen, Q. P. and Giannobile, W. V. 2002. Adenoviral gene transfer of PDGF downregulates gas gene product PDGFαR and prolongs ERK and Akt/PKB activation. Am. J. Physiol. Cell Physiol., 282(3), C538–44.CrossRefGoogle ScholarPubMed
Chang, P. C., Cirelli, J. A., Jin, Q. et al. 2009. Adenovirus encoding human platelet-derived growth factor-B delivered to alveolar bone defects exhibits safety and biodistribution profiles favorable for clinical use. Hum. Gene Ther., 20(5), 486–96.CrossRefGoogle ScholarPubMed
Jin, Q., Anusaksathien, O., Webb, S. A., Printz, M. A. and Giannobile, W. V. 2004. Engineering of tooth-supporting structures by delivery of PDGF gene therapy vectors. Molec. Ther., 9(4), 519–26.CrossRefGoogle ScholarPubMed
Anusaksathien, O., Jin, Q., Zhao, M., Somerman, M. J. and Giannobile, W. V. 2004. Effect of sustained gene delivery of platelet-derived growth factor or its antagonist (PDGF-1308) on tissue-engineered cementum. J. Periodontol., 75(3), 429–40.CrossRefGoogle ScholarPubMed
Urist, M. R. 1965. Bone: formation by autoinduction. Science, 150(3698), 893–9.CrossRefGoogle ScholarPubMed
Reddi, A. H. 2001. Bone morphogenetic proteins: from basic science to clinical applications. J. Bone Joint Surg. Am., 83A (Suppl. 1, Part 1), S1–6.CrossRefGoogle Scholar
Amar, S., Chung, K. M., Nam, S. H. et al. 1997. Markers of bone and cementum formation accumulate in tissues regenerated in periodontal defects treated with expanded polytetrafluoroethylene membranes. J. Periodontal Res., 32(1, Part 2), 148–58.CrossRefGoogle ScholarPubMed
Jin, Q. M., Anusaksathien, O., Webb, S. A., Rutherford, W. B. and Giannobile, W. V. 2003. Gene therapy of bone morphogenetic protein for periodontal tissue engineering. J. Periodontol., 74(2), 202–13.CrossRefGoogle ScholarPubMed
Park, C. H., Rios, H. F., Taut, A. D. et al. 2011. Tissue engineering bone–ligament complexes using fiber-guiding scaffolds. Biomaterials, 33(1), 137–45.CrossRefGoogle ScholarPubMed
Brugmann, S. A., Goodnough, L. H., Gregorieff, A. et al. 2007. Wnt signaling mediates regional specification in the vertebrate face. Development, 134(18), 3283–95.CrossRefGoogle ScholarPubMed
van Amerongen, R. and Nusse, R. 2009. Towards an integrated view of Wnt signaling in development. Development, 136(19), 3205–14.CrossRefGoogle ScholarPubMed
Fleming, H. E., Janzen, V., Lo Celso, C. et al. 2008. Wnt signaling in the niche enforces hematopoietic stem cell quiescence and is necessary to preserve self-renewal in vivo. Cell Stem Cell, 2(3), 274–83.CrossRefGoogle ScholarPubMed
Galli, C., Passeri, G. and Macaluso, G. M. 2010. Osteocytes and WNT: the mechanical control of bone formation. J. Dent. Res., 89(4), 331–43.CrossRefGoogle ScholarPubMed
Krishnan, V., Bryant, H. U. and Macdougald, O. A. 2006. Regulation of bone mass by Wnt signaling. J. Clin. Invest., 116(5), 1202–9.CrossRefGoogle ScholarPubMed
Chang, J., Sonoyama, W., Wang, Z. et al. 2007. Noncanonical Wnt-4 signaling enhances bone regeneration of mesenchymal stem cells in craniofacial defects through activation of p38 MAPK. J. Biol. Chem., 282(42), 30938–48.CrossRefGoogle ScholarPubMed
Zhao, Z., Wang, Z., Ge, C., Krebsbach, P. and Franceschi, R. T. 2007. Healing cranial defects with AdRunx2-transduced marrow stromal cells. J. Dent. Res., 86(12), 1207–11.CrossRefGoogle ScholarPubMed
Phillips, J. E., Guldberg, R. E. and Garcia, A. J. 2007. Dermal fibroblasts genetically modified to express Runx2/Cbfa1 as a mineralizing cell source for bone tissue engineering. Tissue Eng., 13(8), 2029–40.CrossRefGoogle ScholarPubMed
Tu, Q., Valverde, P., Li, S. et al. 2007. Osterix overexpression in mesenchymal stem cells stimulates healing of critical-sized defects in murine calvarial bone. Tissue Eng., 13(10), 2431–40.CrossRefGoogle ScholarPubMed
Pola, E., Gao, W., Zhou, Y. et al. 2004. Efficient bone formation by gene transfer of human LIM mineralization protein-3. Gene Ther., 11(8), 683–93.CrossRefGoogle ScholarPubMed
Lattanzi, W., Parrilla, C., Fetoni, A. et al. 2008. Ex vivo-transduced autologous skin fibroblasts expressing human Lim mineralization protein-3 efficiently form new bone in animal models. Gene Ther., 15(19), 1330–43.CrossRefGoogle ScholarPubMed
Giannobile, W. V. 2008. Host–response therapeutics for periodontal diseases. J. Periodontol., 79(8, Suppl.), 1592–600.CrossRefGoogle ScholarPubMed
Cirelli, J. A., Park, C. H., MacKool, K. et al. 2009. AAV2/1-TNFR:Fc gene delivery prevents periodontal disease progression. Gene Ther., 16(3), 426–36.CrossRefGoogle ScholarPubMed
Patil, C. S., Liu, M., Zhao, W. et al. 2008. Targeting mRNA stability arrests inflammatory bone loss. Molec. Ther., 16(10), 1657–64.CrossRefGoogle ScholarPubMed
Yu, H., Li, Q., Herbert, B. et al. 2011. Anti-inflammatory effect of MAPK phosphatase-1 local gene transfer in inflammatory bone loss. Gene Ther., 18(4), 344–53.CrossRefGoogle ScholarPubMed
Hughes, F. J., Ghuman, M. and Talal, A. 2010. Periodontal regeneration: a challenge for the tissue engineer? Proc. Inst. Mech. Eng. H, 224(12), 1345–58.CrossRefGoogle ScholarPubMed
Lin, Z., Rios, H. F., Volk, S. L. et al. 2011. Gene expression dynamics during bone healing and osseointegration. J. Periodontol., 82(7), 1007–17.CrossRefGoogle ScholarPubMed
Chang, P. C., Seol, Y. G., Cirelli, J. A. et al. 2010. PDGF-B gene therapy accelerates bone engineering and oral implant osseointegration. Gene Ther., 17(1), 95–104.CrossRefGoogle ScholarPubMed
Chang, P. C., Lang, N. P. and Giannobile, W. V. 2010. Evaluation of functional dynamics during osseointegration and regeneration associated with oral implants. Clin. Oral Implants Res., 21(1), 1–12.CrossRefGoogle ScholarPubMed
Dunn, C. A., Jin, Q., Taba, M. et al. 2005. BMP gene delivery for alveolar bone engineering at dental implant defects. Molec. Ther., 11(2), 294–9.CrossRefGoogle ScholarPubMed
Zhang, Y., Song, J., Shi, B. et al. 2007. Combination of scaffold and adenovirus vectors expressing bone morphogenetic protein-7 for alveolar bone regeneration at dental implant defects. Biomaterials, 28(31), 4635–42.CrossRefGoogle ScholarPubMed
Won, Y. W., Lim, K. S. and Kim, Y. H. 2011. Intracellular organelle-targeted non-viral gene delivery systems. J. Controlled Release, 152(1), 99–109.CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×