Skip to main content Accessibility help
×
Hostname: page-component-77c89778f8-rkxrd Total loading time: 0 Render date: 2024-07-19T02:15:43.359Z Has data issue: false hasContentIssue false

20 - Cellular therapy

Published online by Cambridge University Press:  05 August 2013

Reinhold Munker
Affiliation:
Louisiana State University, Shreveport
Gerhard C. Hildebrandt
Affiliation:
University of Utah
Hillard M. Lazarus
Affiliation:
Ireland Cancer Center, Case Western Reserve University Hospital, Cleveland
Kerry Atkinson
Affiliation:
University of Queensland
Get access

Summary

Basic principles

In this chapter, established cellular therapies (mainly DLI) as well as novel cellular therapies (regulatory T-cells, NK cells, cytokine-induced killer cells, dendritic cells, mesenchymal stem cells, induced pluripotent stem cells, and genetically modified T-cells) will be reviewed. A survey in Europe in 2008 showed that more than 1000 patients (about 60% autologous and 40% allogeneic) were treated with such novel cellular therapies. The major indications were cardiovascular, hematologic, neurological, and musculoskeletal. Here we will discuss cellular therapies relevant to blood disorders and SCT, and will exclude stem cells delivered for cardiovascular, orthopedic, or neurological indications.

BM contains several lines of cells including: hematopoietic stem cells, progenitor cells, and mature cells, such as B- and T-lymphocytes, monocytes, dendritic cells, and NK cells. Hematopoietic stem cells are valuable for rescuing hematopoiesis after high-dose chemotherapy and radiotherapy, which are toxic to stem cells. This high-dose therapy can be used for the treatment of leukemia and other malignant diseases. However, in the treatment of leukemia, the role of lymphocytes has already been described in the literature (Barnes & Loutit, 1957). Allogeneic SCT was seen as a form of adoptive immunotherapy (Mathé et al., 1965). In human patients, lower relapse rates were seen in patients who developed GVHD (Weiden et al., 1979), and the depletion of T-cells for prevention of GVHD was associated with an increased relapse rate (Goldman et al., 1988). The effect of T-cell depletion on the relapse rate was greatest in CML, less in AML, and least in ALL (Horowitz et al., 1990).

Type
Chapter
Information
The BMT Data Book
Including Cellular Therapy
, pp. 209 - 234
Publisher: Cambridge University Press
Print publication year: 2013

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Alyea, EP, Soiffer, RJ, Canning, C, et al. 1998. Toxicity and efficacy of defined doses of CD4(+) donor lymphocytes for treatment of relapse after allogeneic bone marrow transplant. Blood 91: 3671–3680.Google ScholarPubMed
Alyea, E, Weller, E, Schlossman, R, et al. 2001. T-cell-depleted allogeneic bone marrow transplantation followed by donor lymphocyte infusion in patients with multiple myeloma: induction of graft-versus-myeloma effect. Blood 98: 934–939.CrossRefGoogle ScholarPubMed
Anderlini, P, Acholonu, SA, Okoroji, GJ, et al. 2004. Donor leukocyte infusions in relapsed Hodgkin’s lymphoma following allogeneic stem cell transplantation: CD3+ cell dose, GVHD and disease response. Bone Marrow Transplant 34: 511–514.CrossRefGoogle ScholarPubMed
Anderson, KC & Weinstein, HJ. 1990. Transfusion-associated graft-versus-host disease. N Engl J Med 323: 315–321.CrossRefGoogle ScholarPubMed
Bachanova, V, Burns, LJ, McKenna, DH, et al. 2010. Allogeneic natural killer cells for refractory lymphoma. Cancer Immunol Immunother 59: 1739–1744.CrossRefGoogle ScholarPubMed
Bacigalupo, A, Soracco, M, Vassallo, F, et al. 1997. Donor lymphocyte infusions (DLI) in patients with chronic myeloid leukemia following allogeneic bone marrow transplantation. Bone Marrow Transplant 19: 927–932.CrossRefGoogle ScholarPubMed
Bar, BMAM, Schattenberg, A, Mensink, EJBM, et al. 1993. Donor leukocyte infusions for chronic myeloid leukemia relapsed after allogeneic bone marrow transplantation. J Clin Oncol 11: 513–519.CrossRefGoogle ScholarPubMed
Bargou, R, Leo, E, Zugmaier, G, et al. 2008. Tumor regression in cancer patients by very low doses of a T cell-engaging antibody. Science 321: 974–977.CrossRefGoogle ScholarPubMed
Barnes, DHW & Loutit, JF. 1957. Treatment of murine leukaemia with X-rays and homologous bone marrow. Br J Haematol 3: 241–252.CrossRefGoogle ScholarPubMed
Beitinjaneh, AM, Saliba, R, Bashir, Q, et al. 2012. Durable responses after donor lymphocyte infusion for patients with residual multiple myeloma following non-myeloablative allogeneic stem cell transplantation. Leuk Lymphoma 53: 1525–1529.CrossRefGoogle Scholar
Bellucci, R, Alyea, EP, Weller, E, et al. 2002. Immunologic effects of prophylactic donor lymphocyte infusion after allogeneic marrow transplantation for multiple myeloma. Blood 99: 4610–4617.CrossRefGoogle ScholarPubMed
Bellucci, R, Wu, CJ, Chiaretti, S, et al. 2004. Complete response to donor lymphocyte infusion in multiple myeloma is associated with antibody responses to highly expressed antigens. Blood 103: 656–663.CrossRefGoogle ScholarPubMed
Bishop, MR, Dean, RM, Steinberg, SM, et al. 2008. Clinical evidence of a graft-versus-lymphoma effect against relapsed diffuse large B-cell lymphoma after allogeneic hematopoietic stem-cell transplantation. Ann Oncol 19: 1935–1940.CrossRefGoogle ScholarPubMed
Bloor, AJ, Thomson, K, Chowdhry, N, et al. 2008. High response rate to donor lymphocyte infusion after allogeneic stem cell transplantation for indolent non-Hodgkin lymphoma. Biol Blood Marrow Transplant 14: 50–58.CrossRefGoogle ScholarPubMed
Bonini, C, Ciceri, F, Marktel, S, et al. 1998. Suicide-gene-transduced T-cells for the regulation of the graft-versus-leukemia effect. Vox Sang 74: S341–S343.CrossRefGoogle ScholarPubMed
Buccisano, F, Maurillo, L, Del Principe, MI, et al. 2012. Prognostic and therapeutic implications of minimal residual disease detection in acute myeloid leukemia. Blood 119: 332–341.CrossRefGoogle ScholarPubMed
Buhmann, R, Simoes, B, Stanglmaier, M, et al. 2009. Immunotherapy of recurrent B-cell malignancies after allo-SCT with Bi20 (FBTA05), a trifunctional anti-CD3 x anti-CD20 antibody and donor lymphocyte infusion. Bone Marrow Transplant 43: 383–397.CrossRefGoogle Scholar
Cardoso, AA, Schultze, JL, Boussiotis, VA, et al. 1996. Pre-B acute lymphoblastic leukemia cells may induce T-cell anergy to alloantigen. Blood 88: 41–48.Google ScholarPubMed
Cathcart, K, Pinilla-Ibarz, J, Korontsvit, T, et al. 2004. A multivalent bcr-abl fusion peptide vaccination trial in patients with chronic myeloid leukemia. Blood 103: 1037–1042.CrossRefGoogle ScholarPubMed
Champlin, R, Giralt, S, Przepiorka, D, et al. 1992. Selective depletion of CD8-positive T-lymphocytes for allogeneic bone marrow transplantation: engraftment, graft-versus-host disease and graft-versus leukemia. Prog Clin Biol Res 377: 385–398.Google ScholarPubMed
Chen, X, Regn, S, Raffegerst, S, et al. 2000. Interferon alpha in combination with GM-CSF induces the differentiation of leukaemic antigen-presenting cells that have the capacity to stimulate a specific anti-leukaemic cytotoxic T-cell response from patients with chronic myeloid leukaemia. Br J Haematol 111: 596–607.CrossRefGoogle ScholarPubMed
Choi, SJ, Lee, JH, Lee, JH, et al. 2004. Treatment of relapsed acute myeloid leukemia after allogeneic bone marrow transplantation with chemotherapy followed by G-CSF-primed donor leukocyte infusion: a high incidence of isolated extramedullary relapse. Leukemia 18: 1789–1797.CrossRefGoogle ScholarPubMed
Choi, SJ, Lee, JH, Lee, JH, et al. 2005. Treatment of relapsed acute lymphoblastic leukemia after allogeneic bone marrow transplantation with chemotherapy followed by G-CSF-primed donor leukocyte infusion: a prospective study. Bone Marrow Transplant 36: 163–169.CrossRefGoogle ScholarPubMed
Collins, RH, Shpilberg, O, Drobyski, WR, et al. 1997. Donor leukocyte infusions in 140 patients with relapsed malignancy after allogeneic bone marrow transplantation. J Clin Oncol 15: 433–444.CrossRefGoogle ScholarPubMed
Crisan, M, Yap, S, Casteilla, L, et al. 2008. A perivascular origin for mesenchymal stem cells in multiple human organs. Cell Stem Cell 3: 301–313.CrossRefGoogle ScholarPubMed
Curti, A, Ruggeri, L, D’Addio, A, et al. 2011. Successful transfer of alloreactive haploidentical KIR ligand-mismatched natural killer cells after infusion in elderly high risk acute myeloid leukemia patients. Blood 118: 3273–3279.CrossRefGoogle ScholarPubMed
Cwynarski, K, Laylor, R, Macchiarulo, E, et al. 2004. Imatinib inhibits the activation and proliferation of normal T lymphocytes in vitro. Leukemia 18: 1332–1339.CrossRefGoogle ScholarPubMed
Dazzi, F, Szydlo, RM, Cross, NC, et al. 2000. Durability of responses following donor lymphocyte infusions for patients who relapse after allogeneic stem cell transplantation for chronic myeloid leukemia. Blood 96: 2712–2716.Google ScholarPubMed
Depil, S, Deconinck, E, Milpied, N, et al. 2004. Donor lymphocyte infusion to treat relapse after allogeneic bone marrow transplantation for myelodysplastic syndrome. Bone Marrow Transplant 33: 531–534.CrossRefGoogle ScholarPubMed
Di Ianni, M, Falzetti, F, Carotti, A, et al. 2011. Tregs prevent GVHD and promote immune reconstitution in HLA-haploidentical transplantation. Blood 117: 3921–3928.CrossRefGoogle ScholarPubMed
Di Stasi, A, Tey, SK, Dotti, G, et al. 2011. Inducible apoptosis as a safety switch for adoptive cell therapy. N Engl J Med 365: 1673–1683.CrossRefGoogle ScholarPubMed
Edinger, M, Hoffmann, P, Ermann, J, et al. 2003. CD4+CD25+ regulatory T cells preserve graft-versus-tumor activity while inhibiting graft-versus-host disease after bone marrow transplantation. Nat Med 9: 1144–1150.CrossRefGoogle ScholarPubMed
Eibl, B, Ebner, S, Duba, Ch, et al. 1997. Philadelphia-chromosome positive dendritic cells (DC) of chronic myelocytic leukemia (CML) patients induce primary cytotoxic T-cell responses to CML cells. Bone Marrow Transplant 19: S33.Google Scholar
Elmaagacli, AH, Koldehoff, M, Hindahl, H, et al. 2006. Mutations in innate immune system NOD2/CARD 15 and TLR-4 (Thr399Ile) genes influence the risk for severe acute graft-versus-host disease in patients who underwent an allogeneic transplantation. Transplantation 81: 247–254.CrossRefGoogle ScholarPubMed
Ertl, HCJ, Zaia, J, Rosenberg, SA, et al. 2011. Considerations for the clinical application of chimeric antigen receptor T cells: observations from a recombinant DNA advisory committee symposium held June 15, 2010. Cancer Res 71: 3175–3181.CrossRefGoogle ScholarPubMed
Ferrara, JL, Cooke, KR, Pan, L, et al. 1996. The immunopathophysiology of acute graft-versus-host-disease. Stem Cells 14: 473–489.CrossRefGoogle ScholarPubMed
Gao, L, Xue, SA, Hasserjian, R, et al. 2003. Human cytotoxic T lymphocytes specific for Wilms’ tumor antigen-1 inhibit engraftment of leukemia-initiating stem cells in non-obese diabetic-severe combined immunodeficient recipients. Transplantation 75: 1429–1436.CrossRefGoogle ScholarPubMed
Gao, L, Yang, TH, Tourdot, S, et al. 1999. Allo-major histocompatibility complex-restricted cytotoxic T lymphocytes in bone marrow transplant recipents without causing graft-versus-host disease. Blood 94: 2999–3006.Google Scholar
Giralt, S, Davis, M, O’Brien, S, et al. 1997. Studies of decitabine with allogeneic progenitor cell transplantation. Leukemia 11: S32–S34.Google ScholarPubMed
Gladstone, DE, Bedi, A, Miller, CB, et al. 1999. Philadelphia chromosome-negative engraftment after autologous transplantation with granulocyte-macrophage colony-stimulating factor for chronic myeloid leukemia. Biol Blood Marrow Transplant 5: 394–399.CrossRefGoogle ScholarPubMed
Goldman, JM, Apperley, J, Jones, L, et al. 1986. Bone marrow transplantation for patients with chronic myeloid leukemia. N Engl J Med 314: 202.CrossRefGoogle ScholarPubMed
Goldman, JM, Gale, RP, Horowitz, MM, et al. 1988. Bone marrow transplantation for chronic myelogenous leukemia in chronic phase: increased risk of relapse associated with T-cell depletion. Ann Intern Med 108: 806–814.CrossRefGoogle ScholarPubMed
Goulmy, E. 1997. Human minor histocompatibility antigens: new concepts for marrow transplantation and adoptive immunotherapy. Immunol Rev 157: 125–130.CrossRefGoogle ScholarPubMed
Goulmy, E, Schipper, R, Pool, J, et al. 1996. Mismatches of minor histocompatibility antigens between HLA-identical donors and recipients and the development of graft-versus-host disease after bone marrow transplantation. N Engl J Med 334: 281–285.CrossRefGoogle ScholarPubMed
Graef, T, Kuendgen, A, Fenk, R, et al. 2007. Successful treatment of relapsed AML after allogeneic stem cell transplantation with azacitidine. Leuk Res 31: 257–259.CrossRefGoogle ScholarPubMed
Gratwohl, A, Hermans, J, Goldman, JM, et al. 1998. Risk assessment for patients with chronic myeloid leukaemia before allogeneic blood or marrow transplantation. Chronic Leukemia Working Party of the European Group for Blood and Marrow Transplantation. Lancet 352: 1087–1092.CrossRefGoogle ScholarPubMed
Greiner, J, Schmitt, M, Li, L, et al. 2006. Expression of tumor-associated antigens in acute myeloid leukemia: implications for specific immunotherapeutic approaches. Blood 108: 4109–4117.CrossRefGoogle ScholarPubMed
Gribben, JG, Zahrieh, D, Stephans, K, et al. 2005. Autologous and allogeneic stem cell transplantations for poor-risk chronic lymphocytic leukemia. Blood 106: 4389–4396.CrossRefGoogle ScholarPubMed
Hanley, J, Rastegarli, G, & Nathwani, AC. 2010. An introduction to induced pluripotent stem cells. Br J Haematol 151: 16–24.CrossRefGoogle ScholarPubMed
Hashimoto, D & Merad, M. 2011. Harnessing dendritic cells to improve allogeneic hematopoietic cell transplantation outcome. Sem Immunol 23: 50–57.CrossRefGoogle ScholarPubMed
Heimesaat, MM, Nogai, A, Bereswill, S, et al. 2010. MyD88/TLR9 mediated immunopathology and gut microbiota dynamics in a novel murine model of intestinal graft-versus-host disease. Gut 59: 1079–1087.CrossRefGoogle Scholar
Holler, E, Kolb, HJ, Mittermüller, J, et al. 1995. Modulation of acute graft-versus-host disease after allogeneic bone marrow transplantation by tumor necrosis factor (TNF) release in the course of pretransplant conditioning: role of conditioning regimens and prophylactic application of a monoclonal antibody neutralizing human TNF (MAK 195F). Blood 86: 890–899.Google Scholar
Holler, E, Rogler, G, Herfarth, H, et al. 2004. Both donor and recipient NOD2/CARD15 mutations associate with transplant-related mortality and GvHD following allogeneic stem cell transplantation. Blood 104: 889–894.CrossRefGoogle ScholarPubMed
Horowitz, MM, Gale, RP, Sondel, PM, et al. 1990. Graft-versus-leukemia reactions after bone marrow transplantation. Blood 75: 555–562.Google ScholarPubMed
Huff, CA, Fuchs, EJ, Smith, BD, et al. 2006. Graft-versus-host reactions and the effectiveness of donor lymphocyte infusions. Biol Blood Marrow Transplant 12: 414–421.CrossRefGoogle ScholarPubMed
Jena, B, Dotti, G, & Cooper, LJN. 2010. Redirecting T-cell specificity by introducing a tumor-specific chimeric antigen receptor. Blood 116: 1035–1044.CrossRefGoogle ScholarPubMed
Johnson, BD, Becker, EE, LaBelle, JL, et al. 1999. Role of immunoregulatory donor T cells in suppression of graft-versus-host disease following donor leukocyte infusion therapy. J Immunol 163: 6479–6487.Google ScholarPubMed
Johnson, BD, Drobyski, WR, & Truitt, RL. 1993. Delayed infusion of normal donor cells after MHC-matched bone marrow transplantation provides an antileukemia reaction without graft-versus-host disease. Bone Marrow Transplant 11: 329–336.Google ScholarPubMed
Kalantari, T, Kamali-Sarvestani, E, Ciric, B, et al. 2011. Generation of immunogenic and tolerogenic clinical-grade dendritic cells. Immunol Res 51: 153–160.CrossRefGoogle ScholarPubMed
Kantarjian, HM, O’Brien, S, Cortes, JE, et al. 2002. Imatinib mesylate therapy for relapse after allogeneic stem cell transplantation for chronic myelogenous leukemia. Blood 100: 1590–1595.Google ScholarPubMed
Karre, K, Ljunggren, HG, Piontek, G, et al. 1986. Selective rejection of H-2-deficient lymphoma variants suggests alternative immune defence strategy. Nature 319: 675–678.CrossRefGoogle ScholarPubMed
Kolb, HJ. 2008. Graft-versus-leukemia effects of transplantation and donor lymphocytes. Blood 112: 4371–4383.CrossRefGoogle ScholarPubMed
Kolb, HJ, Bigalke, I, Termeer, D, et al. 2008. Graft-vs-leukemia effects of allogeneic stem cell transplantation from HLA-haploidentical family members as compared to HLA-identical sibling donors. ASH Annual Meeting Abstracts 112: 3009.Google Scholar
Kolb, HJ, Günther, W, Schumm, M, et al. 1997. Adoptive immunotherapy in canine chimeras. Transplantation 63: 430–436.CrossRefGoogle ScholarPubMed
Kolb, HJ, Mittermuller, J, Clemm, C, et al. 1990. Donor leukocyte transfusions for treatment of recurrent chronic myelogenous leukemia in marrow transplant patients. Blood 76: 2462–2465.Google ScholarPubMed
Kolb, HJ, Schattenberg, A, Goldman, JM, et al. 1995. Graft-versus-leukemia effect of donor lymphocyte transfusions in marrow grafted patients. Blood 86: 2041–2050.Google ScholarPubMed
Koreth, J, Matsuoka, K, Kim, HT, et al. 2011. Interleukin-2 and regulatory T cells in graft-versus-host disease. N Engl J Med 365: 2055–2066.CrossRefGoogle ScholarPubMed
Kroger, N, Badbaran, A, Lioznov, M, et al. 2009. Post-transplant immunotherapy with donor-lymphocyte infusion and novel agents to upgrade partial into complete and molecular remission in allografted patients with multiple myeloma. Exp Hematol 37: 791–798.CrossRefGoogle ScholarPubMed
Kroger, N, Kruger, W, Renges, H, et al. 2001. Donor lymphocyte infusion enhances remission status in patients with persistent disease after allografting for multiple myeloma. Br J Haematol 112: 421–423.CrossRefGoogle ScholarPubMed
Kroger, N, Shimoni, A, Zagrivnaja, M, et al. 2004. Low-dose thalidomide and donor lymphocyte infusion as adoptive immunotherapy after allogeneic stem cell transplantation in patients with multiple myeloma. Blood 104: 3361–3363.CrossRefGoogle ScholarPubMed
Kufner, S, Zitzelsberger, H, Kroell, T, et al. 2005. Leukaemia-derived dendritic cells can be generated from blood or bone marrow cells from patients with myelodysplasia: a methodological approach under serum-free culture conditions. Scand J Immunol 62: 75–85.CrossRefGoogle ScholarPubMed
Le Blanc, K, Frassoni, F, Ball, L, et al. 2008. Mesenchymal stem cells for treatment of steroid-resistant severe acute graft-versus-host disease: a phase II study. Lancet 371: 1579–1586.CrossRefGoogle ScholarPubMed
Levenga, H, Levison-Keating, S, Schattenberg, AV, et al. 2007. Multiple myeloma patients receiving pre-emptive donor lymphocyte infusion after partial T-cell-depleted allogeneic stem cell transplantation show a long progression-free survival. Bone Marrow Transplant 40: 355–359.CrossRefGoogle ScholarPubMed
Levenga, H, Woestenenk, R, Schattenberg, AV, et al. 2007. Dynamics in chimerism of T cells and dendritic cells in relapsed CML patients and the influence on the induction of alloreactivity following donor lymphocyte infusion. Bone Marrow Transplant 40: 585–592.CrossRefGoogle ScholarPubMed
Levine, JE, Braun, T, Penza, SL, et al. 2002. Prospective trial of chemotherapy and donor leukocyte infusions for relapse of advanced myeloid malignancies after allogeneic stem cell transplantation. J Clin Oncol 15: 405–412.CrossRefGoogle Scholar
Linn, YC & Hui, KM. 2010. Cytokine-induced NK-like T cells: from bench to bedside. J Biomed Biotechn .
Lioznov, M, El-Cheikh, J, Hoffmann, F, et al. 2010. Lenalidomide as salvage therapy after allo-SCT for multiple myeloma is effective and leads to an increase of activated NK (NKp44(+)) and T (HLA-DR(+)) cells. Bone Marrow Transplant 45: 349–353.CrossRefGoogle Scholar
Lokhorst, HM, Wu, K, Verdonck, LF, et al. 2004. The occurrence of graft-versus-host disease is the major predictive factor for response to donor lymphocyte infusions in multiple myeloma. Blood 103: 4362–4364.CrossRefGoogle ScholarPubMed
Mackinnon, S, Papadopoulos, EB, Carabasi, MH, et al. 1995. Adoptive immunotherapy evaluating escalating doses of donor leukocytes for relapse of chronic myeloid leukemia after bone marrow transplantation: separation of graft-versus-leukemia responses from graft-versus-host disease. Blood 86: 1261–1268.Google ScholarPubMed
Mailander, V, Scheibenbogen, C, Thiel, E, et al. 2003. Complete remission in a patient with recurrent acute myeloid leukemia induced by vaccination with WT1 peptide in the absence of hematological or renal toxicity. Leukemia 18: 165–166.CrossRefGoogle Scholar
Mandigers, CM, Verdonck, LF, Meijerink, JP, et al. 2003. Graft-versus-lymphoma effect of donor lymphocyte infusion in indolent lymphomas relapsed after allogeneic stem cell transplantation. Bone Marrow Transplant 32: 1159–1163.CrossRefGoogle ScholarPubMed
Mapara, MY & Sykes, M. 2005. Induction of mixed vs full chimerism to potentiate GVL effects after bone-marrow transplantation. Methods Mol Med 109: 469–474.Google ScholarPubMed
Marijt, WA, Heemskerk, MH, Kloosterboer, FM, et al. 2003. Hematopoiesis-restricted minor histocompatibility antigens HA-1 or HA-2-specific T cells can induce complete remissions of relapsed acute leukemia. Proc Natl Acad Sci USA 100: 2742–2747.CrossRefGoogle ScholarPubMed
Marks, DI, Lush, R, Cavenagh, J, et al. 2002. The toxicity and efficacy of donor lymphocyte infusions given after reduced-intensity conditioning allogeneic stem cell transplantation. Blood 100: 3108–3114.CrossRefGoogle ScholarPubMed
Martin, PJ. 2011. CIK: a path to GVL without GVHD?Biol Blood Marrow Transplant 17: 1569–1570.CrossRefGoogle ScholarPubMed
Mathé, G, Amiel, JL, Schwarzenberg, L, et al. 1965. Adoptive immunotherapy of acute leukemia: experimental and clinical results. Cancer Res 25: 1525–1530.Google ScholarPubMed
Matte, CC, Cormier, J, Anderson, BE, et al. 2004. Graft-versus-leukemia in a retrovirally induced murine CML model: mechanisms of T-cell killing. Blood 103: 4353–4361.CrossRefGoogle Scholar
Miklos, DB, Kim, HT, Miller, KH, et al. 2005. Antibody responses to H-Y minor histocompatibility antigens correlate with chronic graft-versus-host disease and disease remission. Blood 105: 2973–2978.CrossRefGoogle Scholar
Miller, JS, Weisdorf, DJ, Burns, LJ, et al. 2007. Lymphodepletion followed by donor lymphocyte infusion (DLI) causes significantly more acute graft-versus-host disease than DLI alone. Blood 110: 2761–2763.CrossRefGoogle ScholarPubMed
Mittermueller, J, Kolb, HJ, Gerhartz, HH, et al. 1986. In vivo differentiation of leukemic blasts and effect of low dose ara-c in a marrow grafted patient with leukemic relapse. Brit J Haematol 62: 757–762.CrossRefGoogle Scholar
Molldrem, JJ, Komanduri, K, & Wieder, E. 2002. Overexpressed differentiation antigens as targets of graft-versus-leukema reactions. Curr Opin Hematol 9: 503–508.CrossRefGoogle ScholarPubMed
Morgan, RA, Dudley, ME, Wunderlich, JR, et al. 2006. Cancer regression in patients after transfer of genetically engineered lymphocytes. Science 314: 126–129.CrossRefGoogle ScholarPubMed
Morris, E & Mackinnon, S. 2005. Outcome following alemtuzumab (CAMPATH-1H)-containing reduced intensity allogeneic transplant regimen for relapsed and refractory non-Hodgkin’s lymphoma (NHL). Transfus Apheresis Sci 32: 73–83.CrossRefGoogle Scholar
Morris, E, Thomson, K, Craddock, C, et al. 2004. Outcomes after alemtuzumab-containing reduced-intensity allogeneic transplantation regimen for relapsed and refractory non-Hodgkin lymphoma. Blood 104: 3865–3871.CrossRefGoogle ScholarPubMed
Ngo, MC, Rooney, CM, Howard, JM, et al. 2011. Ex vivo gene transfer for improved adoptive immunotherapy of cancer. Hum Mol Genet 20: R93–R99.CrossRefGoogle ScholarPubMed
Nijmeijer, BA, van Schie, ML, Verzaal, P, et al. 2005. Responses to donor lymphocyte infusion for acute lymphoblastic leukemia may be determined by both qualitative and quantitative limitations of antileukemic T-cell responses as observed in an animal model for human leukemia. Exp Hematol 33: 1172–1181.CrossRefGoogle Scholar
Olavarria, E, Craddock, C, Dazzi, F, et al. 2002. Imatinib mesylate (STI571) in the treatment of relapse of chronic myeloid leukemia after allogeneic stem cell transplantation. Blood 99: 3861–3862.CrossRefGoogle ScholarPubMed
Passweg, JR, Tiberghien, P, Cahn, JY, et al. 1998. Graft-versus-leukemia effects in T lineage and B lineage acute lymphoblastic leukemia. Bone Marrow Transplant 21: 153–158.CrossRefGoogle Scholar
Patil, S & Schwarer, T. 2009. Natural killer cells – new understanding of basic biology may lead to more effective allogeneic haematopoietic stem cell transplantation. Int Med J 39: 639–647.CrossRefGoogle ScholarPubMed
Peggs, KS, Sureda, A, Qian, W, et al. 2007. Reduced-intensity conditioning for allogeneic haematopoietic stem cell transplantation in relapsed and refractory Hodgkin lymphoma: impact of alemtuzumab and donor lymphocyte infusions on long-term outcomes. Br J Haematol 139: 70–80.CrossRefGoogle ScholarPubMed
Peggs, KS, Thomson, K, Hart, DP, et al. 2004. Dose-escalated donor lymphocyte infusions following reduced intensity transplantation: toxicity, chimerism, and disease responses. Blood 103: 1548–1556.CrossRefGoogle ScholarPubMed
Picker, LJ, Treer, JR, Ferguson Darnell, B, et al. 1993. Control of lymphocyte recirculation in man. I. Differential regulation of the peripheral lymph node homing receptor L-selection on T cells during the virgin to memory cell transition. J Immunol 150: 1105–1121.Google Scholar
Porter, DL, Collins, RH, Hardy, C, et al. 2000. Treatment of relapsed leukemia after unrelated donor marrow transplantation with unrelated donor leukocyte infusions. Blood 95: 1214–1221.Google ScholarPubMed
Porter, DL, Levine, BL, Kalos, M, et al. 2011. Chimeric antigen receptor-modified T cells in chronic lymphoid leukemia. N Engl J Med 365: 725–733.CrossRefGoogle ScholarPubMed
Rager, A & Porter, DL. 2012. Cellular therapy following allogeneic stem-cell transplantation. Therap Adv Hematol 2: 409–428.CrossRefGoogle Scholar
Raiola, AM, van Lint, MT, Valbonesi, M, et al. 2003. Factors predicting response and graft-versus-host disease after donor lymphocyte infusions: a study on 593 infusions. Bone Marrow Transplant 31: 687–693.CrossRefGoogle ScholarPubMed
Ram, R, Storb, R, Sandmaier, BM, et al. 2011. Non-myeloablative conditioning with allogeneic hematopoietic cell transplantation for the treatment of high-risk acute lymphoblastic leukemia. Haematologica 96: 1113–1120.CrossRefGoogle ScholarPubMed
Raya, A, Rodriguez-Piza, I, Guenechea, G, et al. 2009. Disease-corrected haematopietic progenitors from Fanconi anaemia induced pluripotent stem cells. Nature 460: 53–59.CrossRefGoogle Scholar
Ren, G, Chen, X, Dong, F, et al. 2012. Concise review: mesenchymal stem cells and translational medicine: emerging issues. Stem Cells Transl Med 12: 51–58.CrossRefGoogle Scholar
Ringden, O & Le Blanc, K. 2011. Mesenchymal stem cells for treatment of acute and chronic graft-versus-host disease, tissue toxicity and hemorrhages. Best Pract Res Clin Haematol 24: 65–72.CrossRefGoogle ScholarPubMed
Ritgen, M, Stilgenbauer, S, von Neuhoff, N, et al. 2004. Graft-versus-leukemia activity may overcome therapeutic resistance of chronic lymphocytic leukemia with unmutated immunoglobulin variable heavy-chain gene status: implications of minimal residual disease measurement with quantitative PCR. Blood 104: 2600–2602.CrossRefGoogle ScholarPubMed
Rodt, H, Netzel, B, Niethammer, D, et al. 1977. Specific absorbed antithymocyte globulin for incubation treatment in human marrow transplantation. Transplant Proc 9: 187–191.Google ScholarPubMed
Rodt, H, Thierfelder, S, Bender-Gotze, C, et al. 1983. Serological inhibition of graft versus host disease: recent results in 28 patients with leukemia. Haematol Blood Transfus 28: 92–96.Google ScholarPubMed
Rosenberg, SA. 2011. Cell transfer immunotherapy for metastatic solid cancer – what clinicians need to know. Nature Rev Clin Oncol 8: 577–585.CrossRefGoogle ScholarPubMed
Ruggeri, L, Capanni, M, Casucci, M, et al. 1999. Role of natural killer cell alloreactivity in HLA-mismatched hematopoietic stem cell transplantation. Blood 94: 333–339.Google ScholarPubMed
Rutten, CE, van Luxemburg-Heijs, SA, Griffioen, M, et al. 2008. HLA-DP as specific target for cellular immunotherapy in HLA class II-expressing B-cell leukemia. Leukemia 22: 1387–1394.CrossRefGoogle ScholarPubMed
Sacchetti, B, Funari, A, Michienzi, S, et al. 2007. Self-renewing osteoprogenitors in bone marrow sinusoids can organise a hematopoietic microenvironment. Cell 131: 324–336.CrossRefGoogle Scholar
Salama, M, Nevill, T, Marcellus, D, et al. 2000. Donor leukocyte infusions for multiple myeloma. Bone Marrow Transplant 26: 1179–1184.CrossRefGoogle ScholarPubMed
Savani, BN, Montero, A, Kurlander, R, et al. 2005. Imatinib synergizes with donor lymphocyte infusions to achieve rapid molecular remission of CML relapsing after allogeneic stem cell transplantation. Bone Marrow Transplant 36: 1009–1015.CrossRefGoogle ScholarPubMed
Schmetzer, HM, Kremser, A, Loibl, J, et al. 2007. Quantification of ex vivo generated dendritic cells (DC) and leukemia-derived DC contributes to estimate the quality of DC, to detect optimal DC-generating methods or to optimize DC-mediated T-cell-activation-procedures ex vivo or in vivo. Leukemia 21: 1338–1341.CrossRefGoogle ScholarPubMed
Schmid, C, Labopin, M, Nagler, A, et al. 2007. Donor lymphocyte infusion in the treatment of first hematological relapse after allogeneic stem-cell transplantation in adults with acute myeloid leukemia: a retrospective risk factors analysis and comparison with other strategies by the EBMT Acute Leukemia Working Party. J Clin Oncol 25: 4938–4945.CrossRefGoogle ScholarPubMed
Schmid, C, Schleuning, M, Aschan, J, et al. 2004. Low dose ara-c, donor cells and GM-CSF for treatment of recurrent acute myeloid leukemia after allogeneic stem cell transplantation: a pilot study. Leukemia 18: 1430–1433.CrossRefGoogle Scholar
Schmidt-Wolf, IG, Negrin, RS, Kiem, HP, et al. 1991. Use of a SCID mouse/human lymphoma model to evaluate cytokine-induced killer cells with potent antitumor cell activity. J Exp Med 174: 139–149.CrossRefGoogle ScholarPubMed
Schuster, FR, Buhmann, R, Reuther, S, et al. 2008. Improved effector function of leukemia-specific T-lymphocyte clones trained with AML-derived dendritic cells. Cancer Genomics Proteomics 5: 275–286.Google ScholarPubMed
Shiobara, S, Nakao, S, Ueda, M, et al. 2000. Donor leukocyte infusion for Japanese patients with relapsed leukemia after allogeneic bone marrow transplantation: lower incidence of acute graft-versus-host disease and improved outcome. Bone Marrow Transplant 26: 769–774.CrossRefGoogle ScholarPubMed
Shlomchik, WD, Couzens, MS, Tang, CB, et al. 1999. Prevention of graft versus host disease by inactivation of host antigen-presenting cells. Science 285: 412–415.CrossRefGoogle ScholarPubMed
Smit, WM, Rijnbeck, M, van Bergen, CAM, et al. 1996. Dendritic cells generated from FACS sorted chronic myeloid leukemia (CML) precursor cells express BCR/ABL, and are potent stimulators for allogeneic T cells. Br J Haematol 93: 313 (abstr.1186).Google Scholar
Spellman, S, Warden, MB, Haagenson, M, et al. 2009. Effects of mismatching for minor histocompatibility antigens on clinical outcomes in HLA-matched, unrelated hematopoietic stem cell transplants. Biol Blood Marrow Transplant 15: 856–863.CrossRefGoogle ScholarPubMed
Sullivan, KM, Deeg, HJ, Sanders, J, et al. 1986. Hyperacute graft-v-host disease in patients not given immunosuppression after allogeneic marrow transplantation. Blood 67: 1172–1175.Google Scholar
Sullivan, KM, Storb, R, Buckner, CD, et al. 1989. Graft-versus-host disease as adoptive immunotherapy in patients with advanced hematologic neoplasms. N Engl J Med 320: 828–834.CrossRefGoogle ScholarPubMed
Sykes, M, Preffer, F, McAfee, S, et al. 1999. Mixed lymphohaemopoietic chimerism and graft-versus-lymphoma effects after non-myeloablative therapy and HLA-mismatched bone-marrow transplantation. Lancet 353: 1755–1759.CrossRefGoogle ScholarPubMed
Teshima, T, Ordemann, R, Reddy, P, et al. 2002. Acute graft-versus-host disease does not require alloantigen expression on host epithelium. Nat Med 8: 575–581.CrossRefGoogle Scholar
Tricot, G, Vesole, DH, Jagannath, S, et al. 1996. Graft-versus-myeloma effect: proof of principle. Blood 87: 1196–1198.Google ScholarPubMed
van de Donk, NW, Kroger, N, Hegenbart, U, et al. 2006. Prognostic factors for donor lymphocyte infusions following non-myeloablative allogeneic stem cell transplantation in multiple myeloma. Bone Marrow Transplant 37: 1135–1141.CrossRefGoogle ScholarPubMed
Verdonck, LF, Lokhorst, HM, Dekker, AW, et al. 1996. Graft-versus-myeloma effect in two cases. Lancet 347: 800–801.CrossRefGoogle ScholarPubMed
Vogt, MH, van den Muijsenberg, JW, Goulmy, E, et al. 2002. The DBY gene codes for an HLA-DQ5-restricted human male-specific minor histocompatibility antigen involved in graft-versus-host disease. Blood 99: 3027–3032.CrossRefGoogle ScholarPubMed
Warren, EH, Greenberg, PD, & Riddell, SR. 1998. Cytotoxic T-lymphocyte-defined human minor histocompatibility antigens with a restricted tissue distribution. Blood 91: 2197–2207.Google ScholarPubMed
Weiden, PL, Flournoy, N, Thomas, ED, et al. 1979. Antileukemic effects of graft versus host disease in human recipients of allogeneic marrow grafts. N Eng J Med 300: 1068–1070.CrossRefGoogle Scholar
Weisser, M, Schleuning, M, Haferlach, C, et al. 2007. Allogeneic stem-cell transplantation provides excellent results in advanced stage chronic myeloid leukemia with major cytogenetic response to pre-transplant imatinib therapy 11. Leuk Lymphoma 48: 295–301.CrossRefGoogle Scholar
Weisser, M, Tischer, J, Schnittger, S, et al. 2006. A comparison of donor lymphocyte infusions or imatinib mesylate for patients with chronic myelogenous leukemia who have relapsed after allogeneic stem cell transplantation 53. Haematologica 91: 663–666.Google ScholarPubMed
Woiciechowsky, A, Regn, S, Kolb, H-J, et al. 2001. Leukemic dendritic cells generated in the presence of FLT3 ligand have the capacity to stimulate an autologous leukaemia-specific cytotoxic T cell response from patients with acute myeloid leukaemia. Leukemia 15: 246–255.CrossRefGoogle Scholar
Wu, SM & Hochedlinger, K. 2011. Harnessing the potential of induced pluripotent stem cells for regenerative medicine. Nat Cell Biol 13: 497–505.CrossRefGoogle ScholarPubMed
Zeiser, R, Penack, O, Holler, E, et al. 2011. Danger signals activating innate immunity in graft-versus-host disease. J Mol Med (Berl) 89: 833–845.CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×