Skip to main content Accessibility help
×
Hostname: page-component-7bb8b95d7b-dtkg6 Total loading time: 0 Render date: 2024-09-17T12:18:05.121Z Has data issue: false hasContentIssue false

5 - Stress, Pharmacology, and Creativity

from Part II - Pharmacology and Psychopathology

Published online by Cambridge University Press:  19 January 2018

Rex E. Jung
Affiliation:
University of New Mexico
Oshin Vartanian
Affiliation:
University of Toronto
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2018

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Alexander, J. K., Hillier, A., Smith, R. M., Tivarus, M. E., & Beversdorf, D. Q. (2007). Noradrenergic modulation of cognitive flexibility during stress. Journal of Cognitive Neuroscience, 19, 468478.CrossRefGoogle ScholarPubMed
Angwin, A. J., Chenery, H. J., Copland, D. A., Arnott, W. L., Murdoch, B. E., & Silburn, P. A. (2004). Dopamine and semantic activation: An investigation of masked direct and indirect priming. Journal of the International Neuropsychological Society, 10, 1525.CrossRefGoogle ScholarPubMed
Arnsten, A. F. T. (2007). Catecholamine and second messenger influences on prefrontal cortical networks of ‘representational knowledge’: A rational bridge between genetics and the symptoms of mental illness. Cerebral Cortex, 17, i6i15.CrossRefGoogle ScholarPubMed
Arnsten, A. F. T. (2009). Ameliorating prefrontal cortical dysfunction in mental illness: Inhibition of phosphotidyl inositol–protein kinase C signaling. Psychopharmacology, 202, 445455.CrossRefGoogle ScholarPubMed
Arnsten, A. F., & Goldman-Rakic, P. S. (1984). Selective prefrontal cortical projections to the region of the locus coeruleus and raphe nuclei in the rhesus monkey. Brain Research, 306, 918.CrossRefGoogle Scholar
Arnsten, A. F., & Goldman-Rakic, P. S. (1985). Alpha-2 adrenergic mechanisms in prefrontal cortex associated with cognitive decline in aged non-human primates. Science, 230, 12731276.CrossRefGoogle Scholar
Arnsten, A. F. T., Cai, J. X., & Goldman-Rakic, P. S. (1988). The alpha-2 adrenergic agonist guanfacine improves memory in aged monkeys without sedative or hypotensive side effects: Evidence for alpha-2 receptor subtypes. Journal of Neuroscience, 8, 42874298.CrossRefGoogle ScholarPubMed
Arnsten, A. F., Cai, J. X., Murphy, B. L., & Goldman-Rakic, P. S. (1994). Dopamine D1 receptor mechanisms in the cognitive performance of young adult and aged monkeys. Psychopharmacology (Berlin), 116, 143151.CrossRefGoogle ScholarPubMed
Arnsten, A. F. T., & Leslie, F. M. (1991). Behavioral and receptor binding analysis of the alpha-2 adrenergic agonist, 5-bromo-6 [2-imidazoline-2-yl amino] quinoxaline (UK-14304): Evidence for cognitive enhancement at an alpha-2-adrenoreceptor subtype. Neuropharmacology, 30, 12791289.CrossRefGoogle Scholar
Aston-Jones, G., & Cohen, J. D. (2005). An integrative theory of locus coeruleus–norpeinephrine function: Adaptive gain and optimal performance. Annual Review of Neuroscience, 28, 403450.CrossRefGoogle ScholarPubMed
Aston-Jones, G., Rajkowski, J., & Cohen, J. (1999). Role of locus coeruleus in attention and behavioral flexibility. Biological Psychiatry, 46, 13091320.CrossRefGoogle ScholarPubMed
Barnes, C. A., & Pompeiano, M. (1991). Neurobiology of the locus coeruleus. Progress in Brain Research, 88, 307321.Google Scholar
Belmonte, M. K., Allen, G., Beckel-Mitchener, A., Boulanger, L. M., Carper, R. A., & Webb, S. J. (2004). Autism and abnormal development of brain connectivity. Journal of Neuroscience, 24, 92289231.CrossRefGoogle ScholarPubMed
Beversdorf, D. Q., Carpenter, A. L., Miller, R. F., Cios, J. S., & Hillier, A. (2008). Effect of propranolol on verbal problem solving in autism spectrum disorder. Neurocase, 14, 378383.CrossRefGoogle ScholarPubMed
Beversdorf, D. Q., Hughes, J. H., Steinberg, B. A., Lewis, L. D., & Heilman, K. M. (1999). Noradrenergic modulation of cognitive flexibility in problem solving. NeuroReport, 10, 27632767.CrossRefGoogle ScholarPubMed
Beversdorf, D. Q., Narayanan, A., Hillier, A., & Hughes, J. D. (2007a). Network model of decreased context utilization in autism spectrum disorder. Journal of Autism and Developmental Disorders, 37, 10401048.CrossRefGoogle ScholarPubMed
Beversdorf, D. Q., Ratcliffe, N. R., Rhodes, C. H., & Reeves, A. G. (1997). Pure alexia: Clinical–pathologic evidence for a lateralized visual language association cortex. Clinical Neuropathology, 16, 328–31.Google ScholarPubMed
Beversdorf, D. Q., Saklayen, S., Higgins, K. F., Bodner, K. E., Kanne, S. M., & Christ, S. E. (2011). Effect of propranolol on word fluency in autism. Cognitive and Behavioral Neurology, 24, 1117.CrossRefGoogle ScholarPubMed
Beversdorf, D. Q., Sharma, U. K., Phillips, N. N., Notestine, M. A., Slivka, A. P., Friedman, N. M., … Hillier, A. (2007b). Effect of propranolol on naming in chronic Broca’s aphasia with anomia. Neurocase, 13, 256259.CrossRefGoogle ScholarPubMed
Beversdorf, D. Q., White, D. M., Cheever, D. C., Hughes, J. D., & Bornstein, R. A. (2002). Central beta-adrenergic blockers modulation of cognitive flexibility. NeuroReport, 13, 25052507.CrossRefGoogle ScholarPubMed
Bowden, E. M., & Jung-Beeman, M. (2003). Normative data for 144 compound remote associate problems. Behavior Research Methods, Instruments, & Computers, 35, 634639.CrossRefGoogle ScholarPubMed
Brennan, A. R., & Arnsten, A. F. T. (2008). Neuronal mechanisms underlying attention deficit hyperactivity disorder: The influence of arousal on prefrontal cortical function. Annals of the New York Academy of Science, 1129, 236245.CrossRefGoogle ScholarPubMed
Cahill, L., Prins, B., Weber, M., & McGaugh, J. L. (1994). β-Adrenergic activation and memory for emotional events. Nature, 371, 702704.CrossRefGoogle ScholarPubMed
Cai, D. J., Mednick, S. A., Harrison, E. M., Kanady, J. C., & Mednick, S. C. (2009). REM, not incubation, improves creativity by priming associative networks. Proceedings of the National Academy of Sciences of the USA, 106, 1013010134.CrossRefGoogle Scholar
Campbell, H. L., Tivarus, M. E., Hillier, A., & Beversdorf, D. Q. (2008). Increased task difficulty results in greater impact of noradrenergic modulation of cognitive flexibility. Pharmacology, Biochemistry, and Behavior, 88, 222229.CrossRefGoogle ScholarPubMed
Chamberlain, S. R., Müller, U., Blackwell, , Clark, A. D., Robbins, L., , T. W., & Sahakian, B. (2006). Neurochemical modulation of response inhibition and probabilistic learning in humans. Science, 311, 861863.CrossRefGoogle ScholarPubMed
Chamberlain, S. R., Müller, U., Blackwell, , Robbins, A. D., , T. W., & Sahakian, B. (2006). Noradrenergic modulation of working memory and emotional memory in humans. Psychopharmacology, 188, 397407.CrossRefGoogle ScholarPubMed
Chatterjee, A., Hamilton, R. H., & Amorapanth, P. X. (2006). Art produced by a patient with Parkinson’s disease. Behavioral Neurology, 17, 105108.CrossRefGoogle ScholarPubMed
Chermahini, S. A., & Hommel, B. (2010). The (b)link between creativity and dopamine: Spontaneous eye blink rates predict and dissociated divergent and convergent thinking. Cognition, 115, 458465.CrossRefGoogle Scholar
Choi, Y., Novak, J., Hillier, A., Votolato, N. A., & Beversdorf, D. Q. (2006). The effect of α-2 adrenergic agonists on memory and cognitive flexibility Cognitive and Behavioral Neurology, 19, 204207.CrossRefGoogle ScholarPubMed
Cios, J. S., Miller, R. F., Hillier, A., Tivarus, M. E., & Beversdorf, D. Q. (2009). Lack of noradrenergic modulation of indirect semantic priming. Behavioral Neurology, 21, 137143.CrossRefGoogle ScholarPubMed
Clarke, H. F., Walker, S. C., Crofts, H. S., Dalley, J. W., Robbins, T. W., & Roberts, A. C. (2005). Prefrontal serotonin depletion affects reversal learning but not attentional set shifting. Journal of Neuroscience, 25, 532538.CrossRefGoogle Scholar
Cohen, J. D., Braver, T. S., & Brown, J. W. (2002). Computational perspectives in dopamine function in prefrontal cortex. Current Opinion in Neurobiology, 12, 223229.CrossRefGoogle ScholarPubMed
Colombo, B., Bartesaghi, N., Simonelli, L., & Antonietti, A. (2015). The combined effects of neurostimulation and priming on creative thinking. A preliminary tDCS study on dorsolateral prefrontal cortex. Frontiers in Human Neuroscience, 9, 403. doi:10.3389/fnhum.2015.00403.CrossRefGoogle Scholar
Cools, R. (2006). Dopaminergic modulation of cognitive function – Implications for l-DOPA treatment in Parkinson’s disease. Neuroscience and Biobehavioral Reviews, 30, 123.CrossRefGoogle ScholarPubMed
Cools, R., Gibbs, S. E., Miyakawa, A., Jagust, W., & D’Esposito, M. (2008a). Working memory capacity predicts dopamine synthesis capacity in the human striatum. Journal of Neuroscience, 28, 12081212.CrossRefGoogle ScholarPubMed
Cools, R., & Robbins, T. W. (2004). Chemistry of the adaptive mind. Philosophical Transactions of the Royal Society of London Series A: Mathematical, Physical, and Engineering Sciences, 362, 28712888.CrossRefGoogle ScholarPubMed
Cools, R., Robinson, O. J., & Sahakian, B. (2008b). Acute tryptophan depletion in healthy volunteers enhances punishment prediction but does not affect reward prediction. Neuropsychopharmacology, 33, 22912299.CrossRefGoogle Scholar
Copland, D. A., McMahon, K. L., Silburn, P. A., & de Zubicaray, G. I. (2009). Dopaminergic neruomodulation of semantic priming: A 4T fMRI study with levodopa. Cerebral Cortex, 19, 26512658.CrossRefGoogle ScholarPubMed
Coull, J. T., Frith, C. D., Dolan, R. J., Frackowiak, R. S. J., & Grasby, P. M. (1997). The neural correlates of the noradrenergic modulation of human attention, arousal and learning. European Journal of Neuroscience, 9, 589598.CrossRefGoogle ScholarPubMed
Coull, J. T., Jones, M. E. P., Egan, T. D., Frith, C. D., & Maze, M. (2004). Attentional effects of noradrenaline vary with arousal level: Selective activation of thalamic pulvinar in humans. NeuroImage, 22, 315322.CrossRefGoogle ScholarPubMed
Coull, J. T., Middleton, H. C., Robbins, T. W., & Sahakian, B. J. (1995). Contrasting effects of clonidine and diazepam on tests of working memory and planning. Psychopharmacology, 120, 311321.CrossRefGoogle ScholarPubMed
Curran, L. K., Newschaffer, C. J., Lee, L., Crawford, S. O., Johnston, M. V., & Zimmerman, A. W. (2007). Behaviors associated with fever in children with autism spectrum disorders. Pediatrics, 120, e1386e1392.CrossRefGoogle ScholarPubMed
De Manzano, Ö., Cervenka, S., Karabanov, A., Farde, L., & Ullén, F. (2010). Thinking outside a less intact box: Thalamic dopamine D2 receptor densities are negatively related to psychometric creativity in healthy individuals. PLoS ONE, 5(5), e10670. doi:10.1371/journal.pone.0010670.CrossRefGoogle ScholarPubMed
De Quervain, D. J. F., Roozendaal, B., Nitsch, R. M., McGaugh, J. L., & Hock, C. (2000). Acute cortisone administration impairs retrieval of long-term declarative memory in humans. Nature Neuroscience, 3, 313314.CrossRefGoogle ScholarPubMed
Ding, X., Tang, Y. Y., Tang, R., & Posner, M. I. (2014). Improving creativity performance by short-term meditation. Behavioral Brain Functions, 10, 9. doi: 10.1186/1744-9081-10-9.CrossRefGoogle ScholarPubMed
Dodd, M. L., Klos, K. J., Bower, J. H., Geda, Y. E., Josephs, K. A., & Ahlskog, J. E. (2005). Pathological gambling caused by drugs used to treat Parkinson disease. Archives of Neurology, 62, 13771381.CrossRefGoogle ScholarPubMed
Duncan, J., Burgess, P., & Emslie, H. (1995). Fluid intelligence after frontal lobe lesions. Neuropsychologia, 33, 261268.CrossRefGoogle ScholarPubMed
Ehlers, A., Hackmann, A., & Michael, T. (2004). Intrusive re-experiencing in post-traumatic stress disorder: Phenomenology, theory, and therapy. Memory, 12, 403415.CrossRefGoogle ScholarPubMed
Ehlers, A., Hackmann, A., Steil, R., Clohessy, S., Wenninger, K., & Winter, H. (2002). The nature of intrusive memories after trauma: The warning signal hypothesis. Behavioral Research and Therapy, 40, 9951002.CrossRefGoogle ScholarPubMed
Eslinger, P. J., & Grattan, L. M. (1993). Frontal lobe and frontal–striatal substrates for different forms of human cognitive flexibility. Neuropsychologia, 31, 1728.CrossRefGoogle ScholarPubMed
Faigel, H. C. (1991). The effect of beta blockade on stress-induced cognitive dysfunction in adolescents. Clinical Pediatrics, 30, 441445.CrossRefGoogle ScholarPubMed
Farah, M. J., Haimm, C., Sankoorikal, G., Smith, M. E., & Chatterjee, A. (2009). When we enhance cognition with Adderall, do we sacrifice creativity? A preliminary study. Psychopharmacology, 202, 541547.CrossRefGoogle ScholarPubMed
Faust-Socher, A., Kennet, Y. N., Cohen, O. S., Hassin-Baer, S., & Inzelberg, R. (2014). Enhanced creative thinking under dopaminergic therapy in Parkinson disease. Annals of Neurology, 75, 935942.CrossRefGoogle ScholarPubMed
Floresco, S. B., Ghods-Sharifi, S., Vexelman, C., & Magyar, O. (2006). Dissociable roles for the nucleus accumbens core and shell in regulating set shifting. Journal of Neuroscience, 26, 24492457.CrossRefGoogle ScholarPubMed
Floresco, S. B., Magyar, O., Ghods-Sharifi, S., Vexelman, C., & Tse, M. T. L. (2005). Multiple dopamine receptor subtypes in the medial prefrontal cortex of the rat regulate set-shifting. Neuropsychopharmacology, 31, 297309.CrossRefGoogle Scholar
Foster, D. J., Good, D. C., Fowlkes, A., & Sawaki, L. (2006). Atomoxetine enhances a short-term model of plasticity in humans. Archives of Physical Medicine and Rehabilitation, 87, 216221.CrossRefGoogle ScholarPubMed
Franowicz, J. S., & Arnsten, A. F. T. (1999). Treatment with the noradrenergic alpha-2 agonist clonidine, but not diazepam, improves spatial working memory in normal rhesus monkeys. Neuropsychopharmacology, 21, 611621.CrossRefGoogle ScholarPubMed
Gallagher, D. A., O’Sullivan, S. S., Evans, A. H., Lees, A. L., & Schrag, A. (2007). Pathological gambling in Parkinson’s disease: Risk factors and differences from dopaminergic dysregulation. An analysis of published case series. Movement Disorders, 22, 17571763.CrossRefGoogle ScholarPubMed
Ghacibeh, G. A., Shenker, J. I., Shenal, B., Uthman, B. M., & Heilman, K. M. (2006). Effect of vagus nerve stimulation on creativity and cognitive flexibility. Epilepsy and Behavior, 8, 720725.CrossRefGoogle ScholarPubMed
Gibbs, S. E., & D’Esposito, M. (2005). Individual capacity differences predict working memory performance and prefrontal activity following dopamine receptor stimulation. Cognitive and Affective Behavioral Neuroscience, 5, 212221.CrossRefGoogle ScholarPubMed
Gill, T. M., Sarter, M., & Givens, B. (2000). Sustained visual attention performance-associated prefrontal neuronal activity evidence for cholinergic modulation. Journal of Neuroscience, 20, 47454757.CrossRefGoogle ScholarPubMed
Green, A. E., Spiegel, K. A., Giangrande, E. J., Weinberger, A. B., Gallagher, N. M., & Turkeltaub, P. E. (2017). Thinking cap plus thinking zaps: tDCS of frontopolar cortex improves creative analogical reasoning and facilitates conscious augmentation of state creativity and verbal expression. Cerebral Cortex, 27, 26282639.Google Scholar
Groman, S. M., Hames, A. S., Seu, E., Tran, S., Clark, T. A., Harpster, S. N., … Jentsch, J. D. (2014). In the blink of an eye: Relating positive-feedback sensitivity to striatal dopamine D2-line receptors through blink rate. Journal of Neuroscience, 34, 1444314454.CrossRefGoogle Scholar
Hall, H., Sedvall, G., Magnusson, O., Kopp, J., Halldin, C., & Farde, L. (1994). Distribution of D1- and D2-dopamine receptors, and dopamine and its metabolites in the human brain. Neuropsychopharmacology, 11, 245256.CrossRefGoogle ScholarPubMed
Hasselmo, M. E., & Bower, J. M. (1992). Cholinergic suppression specific to intrinsic not afferent fiber synapses in rat piriform (olfactory) cortex. Trends in Neuroscience, 67, 12221229.Google Scholar
Hasselmo, M. E., Linster, C., Patil, M., Ma, D., & Cecik, M. (1997). Noradrenergic suppression of synaptic transmission may influence cortical signal-to-noise ratio. Journal of Neurophysiology, 77, 33263339.CrossRefGoogle ScholarPubMed
Hasselmo, M. E., & Wyble, B. P. (1997). Simulation of the effects of scopolamine on free recall and recognition in a network model of the hippocampus. Behavoural Brain Research, 89, 134.CrossRefGoogle Scholar
Heaton, R. K. (1981). Wisconsin Card Sort Test Manual. Odessa, FL: Psychological Assessment Resources.Google Scholar
Hecht, P. M., Will, M. J., Schachtman, T. R., Welby, L. M., & Beversdorf, D. Q. (2014). Beta-adrenergic antagonist effects on a novel cognitive flexibility task in rodents. Behavioral Brain Research, 260, 148154.CrossRefGoogle ScholarPubMed
Heilman, K. M., Nadeau, S. E., & Beversdorf, D. Q. (2003). Creative innovation: Possible brain mechanisms. Neurocase, 9, 369379.CrossRefGoogle ScholarPubMed
Heimer, L. (1995). The human brain and spinal cord (2nd ed.). New York, NY: Springer-Verlag.CrossRefGoogle Scholar
Het, S., Ramlow, G., & Wolf, O. T. (2005). A meta-analytic review of the effects of acute cortisol administration on human memory. Psychoneuroendocrinology, 30, 771784.CrossRefGoogle ScholarPubMed
Jäkälä, P., Riekkinen, , Sirvi, M., Koivisto, J., Kejonen, E., Vanhanen, K., , M., & Riekkinen, P. Jr. (1999). Guanfacine, but not clonidine, improves planning and working memory performance in humans. Neuropsychopharmacology, 20, 460470.CrossRefGoogle ScholarPubMed
Jiang, W., Shang, S., & Su, Y. (2015). Genetic influences on insight problem solving: The role of catechol-O-methyltransferase (COMT) gene polymorphisms. Frontiers in Psychology, 6, 1569. doi:10.3389/fpsyg.2015.01569.CrossRefGoogle ScholarPubMed
Just, M. A., Cherkassky, V. L., Keller, T. A., Kana, R. K., & Minshew, N. J. (2007). Functional and anatomical cortical underconnectivity in autism: Evidence from an fMRI study of an executive function task and corpus callosum morphometry. Cerebral Cortex, 17, 951961.CrossRefGoogle ScholarPubMed
Just, M. A., Cherkassky, V. L., Keller, T. A., & Minshew, N. J. (2004). Cortical activation and synchronization during sentence comprehension in high-functioning autism: Evidence of underconnectivity. Brain, 127, 18111821.CrossRefGoogle ScholarPubMed
Karnath, H. O., & Wallesch, C. W. (1992). Inflexibility of mental planning: A characteristic disorder with prefrontal lobe lesions. Neuropsychologia, 30, 10111016.CrossRefGoogle ScholarPubMed
Kelley, B. J., Yeager, K. R., Pepper, T. H., & Beversdorf, D. Q. (2005). Cognitive impairment in acute cocaine withdrawal. Cognitive and Behavioral Neurology, 18, 108112.CrossRefGoogle ScholarPubMed
Kelley, B. J., Yeager, K. R., Pepper, T. H., Bornstein, R. A., & Beversdorf, D. Q. (2007). The effect of propranolol on cognitive flexibility and memory in acute cocaine withdrawal. Neurocase, 13, 320327.CrossRefGoogle ScholarPubMed
Kim, N., Goel, P. K., Tivarus, M., Hillier, A., & Beversdorf, D. Q. (2010). Independent component analysis of the effect of l-dopa on fMRI of language processing. PLoS -ONE, 5(8), e11933. doi:10.1371/journal.pone.0011933.CrossRefGoogle ScholarPubMed
Kimberg, D. Y., D’Esposito, M., & Farah, M. J. (1997). Effects of bromocriptine on human subjects depend on working memory capacity. Neuroreport, 8, 35813585.CrossRefGoogle ScholarPubMed
Kirschbaum, C., Pirke, K. M., & Hellhammer, D. H. (1993). The ‘Trier Social Stress Test’ – A tool for investigating psychobiological stress responses in a laboratory setting. Neuropsychobiology, 28, 7681.CrossRefGoogle Scholar
Kischka, U., Kammer, T. H., Maier, S., Weisbord, M., Thimm, M., & Spitzer, M. (1996). Dopaminergic modulation of semantic network activation. Neuropsychologia, 34, 11071113.CrossRefGoogle ScholarPubMed
Krantz, G. S., Kasper, S., & Lanzenberger, R. (2010). Reward and the serotonergic system. Neuroscience, 166, 10231035.CrossRefGoogle Scholar
Kroes, M. C., Tona, K. D., den Uden, H. E., Vogel, S., van Wingen, G. A., & Fernández, G. (2015). How administration of the beta-blocker propranolol before extinction can prevent the return of fear. Neuropsychopharmacology, October 14, 2015 doi:10.1038/npp.2015.315. [Epub ahead of print].Google ScholarPubMed
Kulisevsky, J., Pagonabarraga, J., & Martinez-Corral, M. (2009). Changes in artistic style and behaviour in Parkinson’s disease: Dopamine and creativity. Journal of Neurology, 256, 816819.CrossRefGoogle ScholarPubMed
Kvetnansky, R., Pacak, K., Sabban, E. L., Kopin, I. J., & Goldstein, D. S. (1998). Stressor specificity of peripheral catecholaminergic activation. Advances in Pharmacology, 42, 556560.CrossRefGoogle ScholarPubMed
Lader, M. (1988). Beta-adrenergic antagonists in neuropsychiatry: An update. Journal of Clinical Psychiatry, 49, 213223.Google ScholarPubMed
Lapiz, M. D. S., & Morilak, D. A. (2006). Noradrenergic modulation of cognitive function in rat medial prefrontal cortex as measured by attentional set shifting capability. Neuroscience, 137, 10391049.CrossRefGoogle ScholarPubMed
Laverdue, B., & Boulenger, J. P. (1991). Medications beta-bloquantes et anxiete. Un interet therapeutique certain. [Beta-blocking drugs and anxiety. A proven therapeutic value.] L’Encephale, 17, 481492.Google Scholar
Li, B. M., Mao, Z. M., Wang, M., & Mei, Z. T. (1999). Alpha-2 adrenergic modulation of prefrontal cortical neuronal activity related to spatial working memory in monkeys. Neuropsychopharmacology, 21, 601610.CrossRefGoogle ScholarPubMed
Li, B.-M., & Mei, Z.-T. (1994). Delayed response deficit induced by local injection of the alpha-2 adrenergic antagonist yohimbine into the dosolateral prefrontal cortex in young adult monkeys. Behavioral and Neural Biology, 62, 134139.CrossRefGoogle Scholar
Lidow, M., Goldman-Rakic, P., Gallager, D., & Rakic, P. (1991). Distribution of dopaminergic receptors in the primate cerebral cortex: Quantitative autoradiographic analysis using (H3) raclopide, (H3) spiperone and (H3) SCH23390. Neuroscience, 40, 657671.CrossRefGoogle Scholar
Lipnicki, D. M., & Byrne, D. G. (2005). Thinking on your back: Solving anagrams faster when supine than when standing. Cognitive Brain Research, 24, 719722.CrossRefGoogle ScholarPubMed
Malyszko, J., Urano, T., Takada, Y., & Takada, A. (1994). Time-dependent changes in platelet aggregation, fibrinolytic activity, and peripheral serotonergic measures in rats subjected to water immersion restraint stress. Homeostasis, 24, 236242.Google ScholarPubMed
Martchek, M., Thevarkunnel, S., Bauman, M., Blatt, G., & Kemper, T. (2006). Lack of evidence of neuropathology in the locus coeruleus in autism. Acta Neuropathologica, 111, 497499.CrossRefGoogle ScholarPubMed
Martindale, C., & Greenough, J. (1973). The differential effect of increased arousal on creative and intellectual performance. Journal of Genetic Psychology, 123, 329335.CrossRefGoogle ScholarPubMed
Mehler, M. F., & Purpura, D. P. (2009). Autism, fever, epigenetics and the locus coeruleus. Brain Research Reviews, 59, 388392.CrossRefGoogle ScholarPubMed
Mehta, M. A., Manes, F. F., Magnolfi, G., Sahakian, B. J., & Robbins, T. W. (2004). Impaired set-shifting and dissociable effects on tests of spatial working memory following the dopamine D2 receptor antagonist sulpiride in human volunteers. Psychopharmacolgy, 176, 331342.CrossRefGoogle ScholarPubMed
Milano, N., Goldman, A., Woods, A., Williamson, J., Acosta, L., Lamb, D., … Heilman, K. (2016). The influence of right and left frontotemporal stimulation on visuospatial creativity. Neurology, 78(Meeting Abstracts), P4.051.CrossRefGoogle Scholar
Minderaa, R. B., Anderson, G. M., Volkmar, F. R., Akkerhuis, G. W., & Cohen, D. J. (1994). Noradrenergic and adrenergic functioning in autism. Biological Psychiatry, 36, 237241.CrossRefGoogle ScholarPubMed
Nakamura, K., Matsumoto, M., & Hikosaka, O. (2008). Reward-dependent modulation of neural activity in the primate dorsal raphe nucleus. Journal of Neuroscience, 28, 53315343.CrossRefGoogle ScholarPubMed
Narayanan, A., White, C. A., Saklayen, S., Scaduto, M. J., Carpenter, A. L., Abduljalil, A., … Beversdorf, D. Q. (2010). Effect of propranolol on functional connectivity in autism spectrum disorder. Brain Imaging and Behavior, 4, 189197.CrossRefGoogle ScholarPubMed
Newhouse, P. A., Potter, A., Corwin, J., & Lenox, R. (1992). Acute nicotinic blockade produces cognitive impairment in normal humans. Psychopharmacology, 108, 480484.CrossRefGoogle ScholarPubMed
Newhouse, P. A., Potter, A., Corwin, J., & Lenox, R. (1994). Age-related effects of the nicotinic antagonist mecamylamine on cognition and behavior. Neuropsychopharmacology, 10, 93107.CrossRefGoogle ScholarPubMed
Newman, L. A., & McGaughy, J. (2008). Cholinergic deafferentation of prefrontal cortex increases sensitivity to cross-modal distractors during a sustained attention task. Journal of Neuroscience, 28, 26422650.CrossRefGoogle ScholarPubMed
Paladini, C. A., & Williams, J. T. (2004). Noradrenergic inhibition of midbrain dopamine neurons. Journal of Neuroscience, 24, 45684575.CrossRefGoogle ScholarPubMed
Pederzolli, A. S., Tivarus, M. E., Agrawal, P., Kostyk, S. K., Thomas, K. M., & Beversdorf, D. Q. (2008). Dopaminergic modulation of semantic priming in Parkinson disease. Cognitive and Behavioral Neurology, 21, 134137.CrossRefGoogle ScholarPubMed
Pessiglione, M., Czernecki, V., Pillon, B., Dubois, B., Schüpback, M., Agid, , , Y., & Tremblay, L. (2005). An effect of dopamine depletion on decision-making: the temporal coupling of deliberation and execution. Journal of Cognitive Neuroscience, 17, 18861896.CrossRefGoogle ScholarPubMed
Pitman, R. K., Sanders, K. M., Zusman, R. M., Healy, A. R., Cheema, F., Lasko, N. B., … Orr, S. P. (2002). Pilot study of secondary prevention of posttraumatic stress disorder with propranolol. Biological Psychiatry, 51, 189192.CrossRefGoogle ScholarPubMed
Power, R. A., Steinberg, S., Bjornsdottir, G., Rietveld, C. A., Abdellaoui, A., Nivard, M. M., … Stefansson, K. (2015). Polygenic risk scores for schizophrenia and bipolar disorder predict creativity. Nature Neuroscience, 18, 953955.CrossRefGoogle ScholarPubMed
Ramos, B. P., Colgan, L. A., Nou, E., & Arnsten, A. F. T. (2008). β2 adrenergic agonist, clenbuterol, enhances working memory performance in aging animals. Neurobiology of Aging, 29, 10601069.CrossRefGoogle ScholarPubMed
Ramos, B. P., Colgan, L., Nou, E., Ovaria, S., Wilson, S. R., & Arnsten, A. F. T. (2005). The beta-1 adrenergic antagonist, betaxolol, improves working memory performance in rats and monkeys. Biological Psychiatry, 58, 894900.CrossRefGoogle ScholarPubMed
Ratey, J. J., Bemporad, J., Sorgi, P., Bick, P., Polakoff, S., O’Driscoll, G., & Mikkelsen, E. (1987). Brief report: Open trial effects of beta-blockers on speech and social behaviors in 8 autistic adults. Journal of Autism and Developmental Disorders, 17, 439446.CrossRefGoogle Scholar
Reuter, M., Roth, S., Holve, K., & Hennig, J. (2006). Identification of first candidate gene for creativity: A pilot study. Brain Research, 1069, 190197.CrossRefGoogle ScholarPubMed
Robbins, T. W. (2007). Shifting and stopping: Frontostriatal substrates, neurochemical modulation and clinical implications. Philosophical Transactions of the Royal Society of London. Series B: Biological Sciences, 362, 917932.CrossRefGoogle ScholarPubMed
Roesch, M. R., Calu, D. J., & Schoenbaum, G. (2007). Dopamine neurons encode the better option in rats between deciding between differently delayed or sized rewards. Nature Neuroscience, 10, 16151624.CrossRefGoogle ScholarPubMed
Roesch-Ely, D., Weiland, S., Scheffel, H., Schwaninger, M., Hundemer, H.-P., Kolter, T., & Weisbrod, M. (2006). Dopaminergic modulation of semantic priming in healthy volunteers. Biological Psychiatry, 60, 604611.CrossRefGoogle ScholarPubMed
Roozendaal, B., McReynolds, J. R., & McGaugh, J. L. (2004). The basolateral amygdala interacts with the medial prefrontal cortex in regulating glucocorticoid effects on working memory impairment. Journal of Neuroscience, 24, 13851392.CrossRefGoogle ScholarPubMed
Sarter, M., & Bruno, J. P. (1997). Cognitive functions of cortical acetylcholine: Toward a unifying hypothesis. Brain Research Reviews, 23, 2846.CrossRefGoogle Scholar
Sarter, M., & Bruno, J. P. (2001). The cognitive neuroscience of sustained attention: Where top-down meets bottom-up. Brain Research Reviews, 35, 146160.CrossRefGoogle ScholarPubMed
Sawaguchi, T., & Goldman-Rakic, P. S. (1991). D1 dopamine receptors in prefrontal cortex: Involvement in working memory. Science, 251, 947950.CrossRefGoogle ScholarPubMed
Schultz, W. (2007). Multiple dopamine functions at different time courses. Annual Review of Neuroscience, 30, 259288.CrossRefGoogle ScholarPubMed
Selden, N. R., Gitelman, D. R., Salamon-Murayama, N., Parrish, T. B., & Mesulam, M.-M. (1998). Trajectories of cholinergic pathways within the cerebral hemispheres of the brain. Brain,121, 22492257.CrossRefGoogle Scholar
Shields, G. S., Bonner, C., & Moons, W. G. (2015). Does cortisol influence core executive functions? A meta-analysis of acute cortisol administration effects on working memory, inhibition, and set-shifting. Psychoneuroendocrinology, 58, 91103.CrossRefGoogle ScholarPubMed
Silver, J. A., Hughes, J. D., Bornstein, R. A., &Beversdorf, D. Q. (2004). Effect of anxiolytics on cognitive flexibility in problem solving. Cognitive and Behavioral Neurology, 17, 9397.CrossRefGoogle ScholarPubMed
Smith, A., & Nutt, D. (1996). Noradrenaline and attention lapses. Nature, 380, 291.CrossRefGoogle ScholarPubMed
Smith, R. M., & Beversdorf, D. Q. (2008). Effects of semantic relatedness on recall of stimuli preceding emotional oddballs. Journal of the International Neuropsychological Society, 14, 620628.CrossRefGoogle ScholarPubMed
Smyth, S. F., & Beversdorf, D. Q. (2007). Lack of dopaminergic modulation of cognitive flexibility. Cognitive and Behavioral Neurology, 20, 225229.CrossRefGoogle ScholarPubMed
Smyth, S. F., & Beversdorf, D. Q. (submitted). Muscarinic and nicotinic modulation of memory but not cognitive flexibility.Google Scholar
Stefani, M. R., & Moghaddam, B. (2005). Systemic and prefrontal cortical NMDA receptor blockade differentially affect discrimination learning and set-shift ability in rats. Behavioral Neuroscience, 119, 420428.CrossRefGoogle ScholarPubMed
Stickgold, R., Hobson, J. A., Fosse, R., & Fosse, M. (2001). Sleep, learning, and dreams: Off-line memory reprocessing. Science, 294, 10521057.CrossRefGoogle ScholarPubMed
Subramaniam, K., Kounios, J., Parrish, T. B., & Jung-Beeman, M. (2008). A brain mechanism for facilitation of insight by positive affect. Journal of Cognitive Neuroscience, 21, 415432.CrossRefGoogle Scholar
Takeuchi, H., Taki, Y., Sassa, Y., Hashizume, H., Sekiguchi, A., Fukushima, A., & Kawashima, R. (2010). Regional gray matter volume of dopaminergic system associate with creativity: Evidence from voxel-based morphometry. NeuroImage, 51, 578585.CrossRefGoogle ScholarPubMed
Tivarus, M. E., Hillier, A., Schmalbrock, P., & Beversdorf, D. Q. (2008). Functional connectivity in an fMRI study of semantic and phonological processes and the effect of L-dopa. Brain and Languge, 104, 4250.CrossRefGoogle Scholar
Usher, M., Cohen, J. D., Servan-Schreiber, D., Rajkowski, J., & Aston-Jones, G. (1999). The role of locus coeruleus in the regulation of cognitive performance. Science, 283, 549554.CrossRefGoogle ScholarPubMed
Vaiva, G., Ducrocq, F., Jezequel, K., Averland, B., Lestavel, P., Brunet, A., & Marmar, C. R. (2003). Immediate treatment with propranolol decreases posttraumatic stress disorder two months after trauma. Biological Psychaiatry, 54, 947949.CrossRefGoogle ScholarPubMed
van Stegeren, A. H., Everaerd, W., Cahill, L., McGaugh, J. L., & Gooren, L. J. G. (1998). Memory for emotional events: Differential effects of centrally versus peripherally acting β-blocking agents. Psychopharmacology, 138, 305310.CrossRefGoogle ScholarPubMed
Vikki, J. (1992). Cognitive flexibility and mental programming after closed head injuries and anterior and posterior cerebral excisions. Neuropsychologia, 30, 807814.CrossRefGoogle Scholar
Ward, M. M., Metford, I. N., Parker, S. D., Chesney, M. A., Taylor, C. B., Keegan, D. L., & Barchas, J. D. (1983). Epinephrine and norepinephrine responses in continuously collected human plasma to a series of stressors. Psychosomatic Medicine, 45, 471486.CrossRefGoogle ScholarPubMed
Whitehouse, P. J., Price, D. L., Strubble, R. G., Clark, A. W., Coyle, J. T., & DeLong, M. R. (1982). Alzheimer’s disease and senile dementia – Loss of neurons in the basal forebrain. Science, 215, 1237–39.CrossRefGoogle ScholarPubMed
Williams, G., & Goldman-Rakic, P. (1995). Modulation of memory fields by dopamine D1 receptors in prefrontal cortex. Nature, 376, 549550.CrossRefGoogle ScholarPubMed
Yerkes, R. M., & Dodson, J. D. (1908). The relation of strength of stimulus to rapidity of habit-formation. Journal of Comparative Neurology and Psychology, 18, 458482.CrossRefGoogle Scholar
Zabelina, D. L., O’Leary, D., Pornpattananangkul, N., Nusslock, R., & Beeman, M. (2015). Creativity and sensory gating indexed by the P50: Selective versus leaky sensory gating in divergent thinkers and creative achievers. Neuropsychologia, 69, 7784.CrossRefGoogle ScholarPubMed
Zamzow, R. M., Christ, S. E., Saklayen, S. S., Moffitt, A. J., Bodner, K. E., Higgins, K. F., & Beversdorf, D. Q. (2014). Effect of propranolol on facial scanning in autism spectrum disorder: A preliminary investigation. Journal of Clinical and Experimental Neuropsychology, 36, 431445.CrossRefGoogle ScholarPubMed
Zamzow, R. M., Ferguson, B. J., Stichter, J. P., Porges, E. C., Ragsdale, A. S., Lewis, M. L., & Beversdorf, D. Q. (2016). Effects of propranolol on conversational reciprocity in autism spectrum disorder: A pilot, double-blinded, single-dose psychopharmacological challenge study. Psychopharmacology, 233, 11711178.CrossRefGoogle ScholarPubMed
Zamzow, R. M., Ferguson, B. J., Ragsdale, A. S., Lewis, M. L., & Beversdorf, D. Q. (2017). Effects of acute beta-adrenergic antagonism on verbal problem solving in autism spectrum disorder and exploration of treatment response markers. Journal of Clinical and Experimental Neuropsychology, 39, 596606.CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×