Skip to main content Accessibility help
×
Hostname: page-component-5c6d5d7d68-wpx84 Total loading time: 0 Render date: 2024-08-18T02:43:44.311Z Has data issue: false hasContentIssue false

5 - Low-Density Parity-Check Codes

Published online by Cambridge University Press:  05 June 2012

William Ryan
Affiliation:
Zeta Associates Inc.
Shu Lin
Affiliation:
University of California, Davis
Get access

Summary

Low-density parity-check (LDPC) codes are a class of linear block codes with implementable decoders, which provide near-capacity performance on a large set of data-transmission and data-storage channels. LDPC codes were invented by Gallager in his 1960 doctoral dissertation and were mostly ignored during the 35 years that followed. One notable exception is the important work of Tanner in 1981, in which Tanner generalized LDPC codes and introduced a graphical representation of LDPC codes, now called a Tanner graph. The study of LDPC codes was resurrected in the mid 1990s with the work of MacKay, Luby, and others [3–6], who noticed, apparently independently of Gallager's work, the advantages of linear block codes with sparse (low-density) parity-check matrices.

This chapter introduces LDPC codes and creates a foundation for further study of LDPC codes in later chapters. We start with the fundamental representations of LDPC codes via parity-check matrices and Tanner graphs. We then learn about the decoding advantages of linear codes that possess sparse parity-check matrices. We will see that this sparseness characteristic makes the code amenable to various iterative decoding algorithms, which in many instances provide near optimal performance. Gallager of course recognized the decoding advantages of such low-density parity-check codes and he proposed a decoding algorithm for the BI-AWGNC and a few others for the BSC. These algorithms have received much scrutiny in the past decade, and are still being studied.

Type
Chapter
Information
Channel Codes
Classical and Modern
, pp. 201 - 256
Publisher: Cambridge University Press
Print publication year: 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×