Skip to main content Accessibility help
×
Hostname: page-component-78c5997874-94fs2 Total loading time: 0 Render date: 2024-11-19T09:25:39.369Z Has data issue: false hasContentIssue false

9 - Cytogenetics of acute leukemias

from Part II - Cell biology and pathobiology

Published online by Cambridge University Press:  01 July 2010

Susana C. Raimondi
Affiliation:
Member and Director of Cytogenetics Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN, USA
Ching-Hon Pui
Affiliation:
St. Jude Children's Research Hospital, Memphis
Get access

Summary

Introduction

Today, acute leukemia in children is managed through the use of risk-adapted therapy, requiring sensitive methods to detect the presence or absence of particular chromosomal abnormalities, one of the most important factors in stratifying patients by risk groups. Identifying genes involved in recurrent chromosomal abnormalities and understanding the roles of these genes in regulating cell growth and inducing malignant transformation can provide important insights into the altered biology of leukemic cells and potentially lead to improved treatment.

In this chapter, I review the most common conventional and molecular cytogenetic characteristics of the childhood acute leukemias and discuss their impact on clinical management strategies. Considerable attention is paid to abnormalities that were only recently identified in the lymphoid and myeloid leukemias, including the fusion genes involving the MLL (11q23), ETV6 (12p13), and CBFA2 (21q22) loci.

Conventional cytogenetics

Standard chromosomal analysis remains the method of choice for the initial screening for karyotypic abnormalities in leukemic cells. Conventional cytogenetic studies detect chromosomal abnormalities only in clones of mitotically active (metaphase) neoplastic cells and are particularly efficient in identifying abnormalities associated with acute leukemias in children and adolescents. These methods detect an abnormal clone in 90% of patients with acute lymphoblastic leukemia (ALL) and 80% of patients with acute myeloid leukemia (AML). They also permit the study of all complex cytogenetic changes present in neoplastic cells, although complementary genetic methods are needed to detect cryptic abnormalities or to evaluate equivocal results.

Type
Chapter
Information
Childhood Leukemias , pp. 235 - 271
Publisher: Cambridge University Press
Print publication year: 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Rowley, J. D.Chromosome translocations: dangerous liaisons revisited. Nat Rev Cancer, 2001; 1: 245–50.CrossRefGoogle ScholarPubMed
Wang, T. L., Maierhofer, C., Speicher, M. R., et al.Digital karyotyping. Proc Natl Acad Sci U S A, 2002; 99: 16 156–61.CrossRefGoogle ScholarPubMed
Kolomietz, E., Al-Maghrabi, J., Brennan, S., et al.Primary chromosomal rearrangements of leukemia are frequently accompanied by extensive submicroscopic deletions and may lead to altered prognosis. Blood, 2001; 97: 3581–8.CrossRefGoogle ScholarPubMed
Godon, C., Proffitt, J., Dastugue, N.et al.Large deletions 5′ to the ETO breakpoint are recurrent events in patients with t(8;21) acute myeloid leukemia. Leukemia, 2002; 16: 1752–4.CrossRefGoogle Scholar
Kearney, L.The impact of the new FISH technologies on the cytogenetics of haematological malignancies. Br J Haematol, 1999; 104: 648–58.CrossRefGoogle ScholarPubMed
Gozzetti, A., & Le Beau, M. M.Fluorescence in situ hybridization: uses and limitations. Semin Hematol, 2000; 37: 320–33.CrossRefGoogle ScholarPubMed
Raimondi, S. C.Fluorescence in situ hybridization: molecular probes for diagnosis of pediatric neoplastic diseases. Cancer Invest, 2000; 18: 135–47.CrossRefGoogle ScholarPubMed
Speicher, M. R., Ballard, S. G., & Ward, D. C.Karyotyping human chromosomes by combinatorial multi-color FISH. Nat Genet, 1996; 12: 368–75.CrossRefGoogle Scholar
Schrock, E., du Manoir, S., Veldman, T.et al.Multicolor spectral karyotyping of human chromosomes. Science, 1996; 273: 494–7.CrossRefGoogle ScholarPubMed
Rowley, J. D., Reshmi, S., Carlson, K., & Roulston, D.Spectral karyotype analysis of T-cell acute leukemia. Blood, 1999; 93: 2038–42.Google ScholarPubMed
Mathew, S., Rao, P. H., Dalton, J., Downing, J. R., & Raimondi, S. C.Multicolor spectral karyotyping identifies novel translocations in childhood acute lymphoblastic leukemia. Leukemia, 2001; 15: 468–72.CrossRefGoogle ScholarPubMed
Nordgren, A., Farnebo, F., Johansson, B., et al.Identification of numerical and structural chromosome aberrations in 15 high hyperdiploid childhood acute lymphoblastic leukemias using spectral karyotyping. Eur J Haematol, 2001; 66: 297–304.CrossRefGoogle ScholarPubMed
Limbergen, H., Poppe, B., Michaux, L., et al.Identification of cytogenetic subclasses and recurring chromosomal aberrations in AML and MDS with complex karyotypes using M-FISH. Genes Chromosomes Cancer, 2002; 33: 60–72.CrossRefGoogle ScholarPubMed
Elghezal, H., Le Guyader, G., Radford-Weiss, I., et al.Reassessment of childhood B-lineage lymphoblastic leukemia karyotypes using spectral analysis. Genes Chromosomes Cancer, 2001; 30: 383–92.CrossRefGoogle ScholarPubMed
Aurich-Costa, J., Vannier, A., Gregoire, E., Nowak, F., & Cherif, D.IPM-FISH, a new M-FISH approach using IRS-PCR painting probes: application to the analysis of seven human prostate cell lines. Genes Chromosomes Cancer, 2001; 30: 143–60.3.0.CO;2-E>CrossRefGoogle ScholarPubMed
Bernard, O. A., Busson-LeConiat, M., Ballerini, P., et al.A new recurrent and specific cryptic translocation, t(5;14)(q35;q32), is associated with expression of the Hox11L2 gene in T acute lymphoblastic leukemia. Leukemia, 2001; 15: 1495–504.CrossRefGoogle Scholar
Helias, C., Leymarie, V., Entz-Werle, N., et al.Translocation t(5;14)(q35;q32) in three cases of childhood T cell acute lymphoblastic leukemia: a new recurring and cryptic abnormality. Leukemia, 2002; 16: 7–12.CrossRefGoogle Scholar
Scurto, P., Hsu, R. M., Kane, J. R., et al.A multiplex RT-PCR assay for the detection of chimeric transcripts encoded by the risk-stratifying translocations of pediatric acute lymphoblastic leukemia. Leukemia, 1998; 12: 1994–2005.CrossRefGoogle ScholarPubMed
Dongen, J. J., Macintyre, E. A., Gabert, J. A., et al.Standardized RT-PCR analysis of fusion gene transcripts from chromosome aberrations in acute leukemia for detection of minimal residual disease. Report of the BIOMED-1 Concerted Action: investigation of minimal residual disease in acute leukemia. Leukemia 1999; 13: 1901–28.CrossRefGoogle ScholarPubMed
Willis, T. G., Jadayel, D. M., Coignet, L. J., et al.Rapid molecular cloning of rearrangements of the IGHJ locus using long-distance inverse polymerase chain reaction. Blood, 1997; 90: 2456–64.Google ScholarPubMed
Blanco, J. G., Dervieux, T., Edick, M. J., et al.Molecular emergence of acute myeloid leukemia during treatment for acute lymphoblastic leukemia. Proc Natl Acad Sci U S A, 2001; 98: 10 338–43.CrossRefGoogle ScholarPubMed
Raffini, L. J., Slater, D. J., Rappaport, E. F., et al.Panhandle and reverse-panhandle PCR enable cloning of der(11) and der(other) genomic breakpoint junctions of MLL translocations and identify complex translocation of MLL, AF-4, and CDK6. Proc Natl Acad Sci U S A, 2002; 99: 4568–73.CrossRefGoogle ScholarPubMed
Andersson, A., Hoglund, M., Johansson, B., et al.Paired multiplex reverse-transcriptase polymerase chain reaction (PMRT-PCR) analysis as a rapid and accurate diagnostic tool for the detection of MLL fusion genes in hematologic malignancies. Leukemia, 2001; 15: 1293–300.CrossRefGoogle ScholarPubMed
Grimwade, D., Biondi, A., Mozziconacci, M. J., et al.Characterization of acute promyelocytic leukemia cases lacking the classic t(15;17): results of the European Working Party. Groupe Français de Cytogénétique Hématologique, Groupe de Français d'Hématologie Cellulaire, UK Cancer Cytogenetics Group and BIOMED 1 European Community-Concerted Action “molecular cytogenetic diagnosis in haematological malignancies”. Blood, 2000; 96: 1297–308.Google Scholar
Mrozek, K., Prior, T. W., Edwards, C., et al.Comparison of cytogenetic and molecular genetic detection of t(8;21) and inv(16) in a prospective series of adults with de novo acute myeloid leukemia: a Cancer and Leukemia Group B Study. J Clin Oncol, 2001; 19: 2482–92.CrossRefGoogle Scholar
Mitelman, F., ed. International System for Human Cytogenetic Nomenclature (1995) ISCN (1995). (Basel, Switzerland: Karger, 1995).Google Scholar
Pui, C. H., Carroll, A. J., Head, D., et al.Near-triploid and near-tetraploid acute lymphoblastic leukemia of childhood. Blood, 1990; 76: 590–6.Google ScholarPubMed
Raynaud, S. D., Dastugue, N., Zoccola, D., et al.Cytogenetic abnormalities associated with the t(12;21): a collaborative study of 169 children with t(12;21)-positive acute lymphoblastic leukemia. Leukemia, 1999; 13: 1325–30.CrossRefGoogle Scholar
Williams, D. L., Tsiatis, A., Brodeur, G. M., et al.Prognostic importance of chromosome number in 136 untreated children with acute lymphoblastic leukemia. Blood, 1982; 60: 864–71.Google ScholarPubMed
Look, A. T., Roberson, P. K., Williams, D. L., et al.Prognostic importance of blast cell DNA content in childhood acute lymphoblastic leukemia. Blood, 1985; 65: 1079–86.Google ScholarPubMed
Trueworthy, R., Shuster, J., Look, T., et al.Ploidy of lymphoblasts is the strongest predictor of treatment outcome in B-progenitor cell acute lymphoblastic leukemia of childhood: a Pediatric Oncology Group study. J Clin Oncol, 1992; 10: 606–13.CrossRefGoogle ScholarPubMed
Martin, P. L., Look, A. T., Schnell, S., et al.Comparison of fluorescence in situ hybridization, cytogenetic analysis, and DNA index analysis to detect chromosomes 4 and 10 aneuploidy in pediatric acute lymphoblastic leukemia: a Pediatric Oncology Group study. J Pediatr Hematol Oncol, 1996; 18: 113–21.CrossRefGoogle Scholar
Heerema, N. A., Sather, H. N., Sensel, M. G., et al.Prognostic impact of trisomies of chromosomes 10, 17, and 5 among children with acute lymphoblastic leukemia and high hyperdiploidy (>50 chromosomes). J Clin Oncol, 2000; 18: 1876–87.CrossRefGoogle Scholar
Raimondi, S. C., Pui, C.-H., Hancock, M. L., et al.Heterogeneity of hyperdiploid (51–67) childhood acute lymphoblastic leukemia. Leukemia, 1996; 10: 213–24.Google ScholarPubMed
Moorman, A. V., Hawkins, J. M., Clark, R., Martineau, M., & Secker-Walker, L. M.Duplication of the long arm of chromosome 1 in acute lymphoblastic leukaemia in the LRF UKCCG karyotype database. Br J Haematol, 1997; 97(Suppl. 1): 51, abstract 193.Google Scholar
Whitehead, V. M., Vuchich, M. J., Carroll, A. J., et al.Accumulation of methotrexate polyglutamates (MTX PGS) in lymphoblastic ploidy and trisomy of both chromosomes 4 and 10 in childhood B-progenitor cell acute lymphoblastic leukemia (ALL): a Pediatric Oncology Group Study. Blood, 1994; 84 (Suppl. 1): 515a, abstract 2046.Google Scholar
Moorman, A. V., Clark, R., Farrell, D. M., et al.Probes for hidden hyperdiploidy in ALL. Genes Chromosomes Cancer, 1996; 16: 40–5.3.0.CO;2-3>CrossRefGoogle Scholar
Panzer-Grumayer, E. R., Fasching, K., Panzer, S., et al.Nondisjunction of chromosomes leading to hyperdiploid childhood B-cell precursor acute lymphoblastic leukemia is an early event during leukemogenesis. Blood, 2002; 100: 347–9.CrossRefGoogle ScholarPubMed
Gale, K. B., Ford, A. M., Repp, R., et al.Backtracking leukemia to birth: identification of clonotypic gene fusion sequences in neonatal blood spots. Proc Natl Acad Sci U S A, 1997; 94: 13 950–4.CrossRefGoogle ScholarPubMed
Ford, A. M., Bennett, C. A., Price, C. M., et al.Fetal origins of the TEL-AML1 fusion gene in identical twins with leukemia. Proc Natl Acad Sci U S A, 1998; 95: 4584–8.CrossRefGoogle ScholarPubMed
Wiemels, J. L., Cazzaniga, G., Daniotti, M., et al.Prenatal origin of acute lymphoblastic leukaemia in children. Lancet, 1999; 354: 1499–503.CrossRefGoogle ScholarPubMed
Wiemels, J. L., Ford, A. M., Wering, E. R., Postma, A., & Greaves, M.Protracted and variable latency of acute lymphoblastic leukemia after TEL-AML1 gene fusion in utero. Blood, 1999; 94: 1057–62.Google ScholarPubMed
Mitelman, F., Johansson, B., & Mertens, F. Mitelman database of chromosome aberrations in cancer. (http://cgap.nci.nih.gov/Chromosomes/Mitelman).
Raimondi, S. C., Roberson, P. K., Pui, C. H., Behm, F. G., & Rivera, G. K.Hyperdiploid (47–50) acute lymphoblastic leukemia in children. Blood, 1992; 79: 3245–52.Google ScholarPubMed
Raimondi, S. C., Pui, C. H., Head, D., et al.Trisomy 21 as the sole acquired chromosomal abnormality in children with acute lymphoblastic leukemia. Leukemia, 1992; 6: 171–5.Google ScholarPubMed
Watson, M. S., Carroll, A. J., Shuster, J. J., et al.Trisomy 21 in childhood acute lymphoblastic leukemia: a Pediatric Oncology Group study (8602). Blood, 1993; 82: 3098–102.Google Scholar
Raimondi, S. C.Current status of cytogenetic research in childhood acute lymphoblastic leukemia. Blood, 1993; 81: 2237–51.Google ScholarPubMed
Rivera, G. K., Raimondi, S. C., Hancock, M. L., et al.Improved outcome in childhood acute lymphoblastic leukemia with reinforced early treatment and rotational combination chemotherapy. Lancet, 1991; 337: 61–6.CrossRefGoogle ScholarPubMed
Romana, S. P., Manuchauffe, M., Le Coniat, M., et al.The t(12;21) of acute lymphoblastic leukemia results in a TEL-AML1 gene fusion. Blood, 1995; 85: 3662–70.Google Scholar
Shurtleff, S. A., Buijs, A., Behm, F. G., et al.TEL/AML1 fusion resulting from a cryptic t(12;21) is the most common genetic lesion in pediatric ALL and defines a subgroup of patients with an excellent prognosis. Leukemia, 1995; 9: 1985–9.Google Scholar
Raimondi, S. C., Behm, F. G., Roberson, P. K., et al.Cytogenetics of childhood T-cell leukemia. Blood, 1988; 72: 1560–6.Google ScholarPubMed
Pui, C. H., Carroll, A. J., Raimondi, S. C., et al.Clinical presentation, karyotypic characterization, and treatment outcome of childhood acute lymphoblastic leukemia with a near-haploid or hypodiploid less than 45 line. Blood, 1990; 75: 1170–7.Google ScholarPubMed
Heerema, N. A., Nachman, J. B., Sather, H. N., et al.Hypodiploidy with less than 45 chromosomes confers adverse risk in childhood acute lymphoblastic leukemia: a report from the Children's Cancer Group. Blood, 1999; 94: 4036–45.Google ScholarPubMed
Raimondi, S. C., Zhou, Y., Mathew, S., et al.Reassessment of the prognostic significance of hypodiploidy in pediatric patients with acute lymphoblastic leukemia. Cancer, 2003; 98: 2715–22.CrossRefGoogle ScholarPubMed
Paietta, E., Gucalp, R., & Wiernik, P. H.Monosomy 7 in multilineage and acute lymphoblastic leukemia. Br J Haematol, 1991; 79: 152–5.CrossRefGoogle Scholar
Williams, D. L., Look, A. T., Melvin, S. L., et al.New chromosomal translocations correlate with specific immunophenotypes of childhood acute lymphoblastic leukemia. Cell, 1984; 36: 101–9.CrossRefGoogle ScholarPubMed
Carroll, A. J., Crist, W. M., Parmley, R. T., et al.Pre-B cell leukemia associated with chromosome translocation 1;19. Blood, 1984; 63: 721–4.Google ScholarPubMed
Pui, C. H., Raimondi, S. C., Hancock, M. L., et al.Immunologic, cytogenetic, and clinical characterization of childhood acute lymphoblastic leukemia with the t(1;19)(q23;p13) or its derivative. J Clin Oncol, 1994; 12: 2601–6.CrossRefGoogle ScholarPubMed
Wiemels, J. L., Leonard, B. C., Wang, Y., et al.Site-specific translocation and evidence of postnatal origin of the t(1;19) E2A-PBX1 fusion in childhood acute lymphoblastic leukemia. Proc Natl Acad Sci U S A, 2002; 99: 15101–6.CrossRefGoogle Scholar
Raimondi, S. C., Behm, F. G., Roberson, P. K., et al.Cytogenetics of pre-B-cell acute lymphoblastic leukemia with emphasis on prognostic implications of the t(1;19). J Clin Oncol, 1990; 8: 1380–8.CrossRefGoogle Scholar
Privitera, E., Kamps, M. P., Hayashi, Y., et al.Different molecular consequences of the 1;19 chromosomal translocation in childhood B-cell precursor acute lymphoblastic leukemia. Blood, 1992; 79: 1781–8.Google ScholarPubMed
Hunger, S. P., Sun, T., Boswell, A. F., Carroll, A. J., & McGavran, L.Hyperdiploidy and E2A-PBX1 fusion in an adult with t(1;19)+ acute lymphoblastic leukemia: case report and review of the literature. Genes Chromosomes Cancer, 1997; 20: 392–8.3.0.CO;2-P>CrossRefGoogle Scholar
Uckun, F. M., Sensel, M. G., Sather, H. N., et al.Clinical significance of translocation t(1;19) in childhood acute lymphoblastic leukemia in the context of contemporary therapies: a report from the Children's Cancer Group. J Clin Oncol, 1998; 16: 527–35.CrossRefGoogle Scholar
Secker-Walker, L. M., Berger, R., Fenaux, P., et al.Prognostic significance of the balanced t(1;19) and unbalanced der(19)t(1;19) translocations in acute lymphoblastic leukemia. Leukemia, 1992; 6: 363–9.Google Scholar
Mellentin, J. D., Murre, C., Donlon, T. A., et al.The gene for enhancer binding proteins E12/E47 lies at the t(1;19) breakpoint in acute leukemias. Science, 1989; 246: 379–82.CrossRefGoogle Scholar
Kamps, M. P., Murre, C., Sun, X. H., & Baltimore, D.A new homeobox gene contributes the DNA binding domain of the t(1;19) translocation protein in pre-B ALL. Cell, 1990; 60: 547–55.CrossRefGoogle Scholar
Hunger, S. P.Chromosomal translocations involving the E2A gene in acute lymphoblastic leukemia: clinical features and molecular pathogenesis. Blood, 1996; 87: 1211–24.Google ScholarPubMed
Izraeli, S., Kovar, H., Gadner, H., & Lion, T.Unexpected heterogeneity in E2A/PBX1 fusion messenger RNA detected by the polymerase chain reaction in pediatric patients with acute lymphoblastic leukemia. Blood, 1992; 80: 1413–17.Google ScholarPubMed
Privitera, E., Luciano, A., Ronchetti, D., et al.Molecular variants of the 1;19 chromosomal translocation in pediatric acute lymphoblastic leukemia (ALL). Leukemia, 1994; 8: 554–9.Google Scholar
Filatov, L. V., Behm, F. G., Pui, C.-H., et al.Childhood acute lymphoblastic leukemia with equivocal chromosome markers of the t(1;19) translocation. Genes Chromosomes Cancer, 1995; 13: 99–103.CrossRefGoogle Scholar
Boomer, T., Varella-Garcia, M., McGavran, L., et al.Detection of E2A translocations in leukemias via fluorescence in situ hybridization. Leukemia, 2001; 15: 95–102.CrossRefGoogle ScholarPubMed
Raimondi, S. C., Privitera, E., Williams, D. L., et al.New recurring chromosomal translocations in childhood acute lymphoblastic leukemia. Blood, 1991; 77: 2016–22.Google ScholarPubMed
Inaba, T., Roberts, W. M., Shapiro, L. H., et al.Fusion of the leucine zipper gene HLF to the E2A gene in human acute B-lineage leukemia. Science, 1992; 257: 531–4.CrossRefGoogle ScholarPubMed
Inukai, T., Inaba, T., Ikushima, S., & Look, A. T.The AD1 and AD2 transactivation domains of E2A are essential for the antiapoptotic activity of the chimeric oncoprotein E2A-HLF. Mol Cell Biol, 1998; 18: 6035–43.CrossRefGoogle ScholarPubMed
Brambillasca, F., Mosna, G., Colombo, M., et al.Identification of a novel molecular partner of the E2A gene in childhood leukemia. Leukemia, 1999; 13: 369–75.CrossRefGoogle ScholarPubMed
Ribeiro, R. C., Broniscer, A., Rivera, G. K., et al.Philadelphia chromosome-positive acute lymphoblastic leukemia in children: durable responses to chemotherapy associated with low initial white blood cell counts. Leukemia, 1997; 11: 1493–6.CrossRefGoogle ScholarPubMed
Schrappe, M., Arico, M., Harbott, J., et al.Philadelphia chromosome-positive (Ph+) childhood acute lymphoblastic leukemia: good initial steroid response allows early prediction of a favorable treatment outcome. Blood, 1998; 92: 2730–41.Google ScholarPubMed
Chase, A., Huntly, B. J., & Cross, N. C.Cytogenetics of chronic myeloid leukaemia. Best Pract Res Clin Haematol, 2001; 14: 553–71.CrossRefGoogle ScholarPubMed
Honda, H., Oda, H., Suzuki, T., et al.Development of acute lymphoblastic leukemia and myeloproliferative disorder in transgenic mice expressing p210bcr/abl: a novel transgenic model for human Ph1-positive leukemias. Blood, 1998; 91: 2067–75.Google ScholarPubMed
Uckun, F. M., Nachman, J. B., Sather, H. N., et al.Clinical significance of Philadelphia chromosome positive pediatric acute lymphoblastic leukemia in the context of contemporary intensive therapies: a report from the Children's Cancer Group. Cancer, 1998; 83: 2030–9.3.0.CO;2-Q>CrossRefGoogle ScholarPubMed
Arico, M., Valsecchi, M. G., Camitta, B., et al.Outcome of treatment in children with Philadelphia chromosome-positive acute lymphoblastic leukemia. N Engl J Med, 2000; 342: 998–1006.CrossRefGoogle ScholarPubMed
Russo, C., Carroll, A., Kohler, S., et al.Philadelphia chromosome and monosomy 7 in childhood acute lymphoblastic leukemia: a Pediatric Oncology Group study. Blood, 1991; 77: 1050–6.Google ScholarPubMed
Morris, C. M., Heisterkamp, N., Kennedy, M. A., Fitzgerald, P. H., & Groffen, J.Ph-negative chronic myeloid leukemia: molecular analysis of ABL insertion into M-BCR on chromosome 22. Blood, 1990; 76: 1812–18.Google ScholarPubMed
Storlazzi, C. T., Specchia, G., Anelli, L., et al.Breakpoint characterization of der(9) deletions in chronic myeloid leukemia patients. Genes Chromosomes Cancer, 2002; 35: 271–6.CrossRefGoogle ScholarPubMed
Huntly, B. J., Reid, A. G., Bench, A. J., et al.Deletions of the derivative chromosome 9 occur at the time of the Philadelphia translocation and provide a powerful and independent prognostic indicator in chronic myeloid leukemia. Blood, 2001; 98: 1732–8.CrossRefGoogle ScholarPubMed
Huntly, B. J., Bench, A. J., Delabesse, E., et al.Derivative chromosome 9 deletions in chronic myeloid leukemia: poor prognosis is not associated with loss of ABL-BCR expression, elevated BCR-ABL levels, or karyotypic instability. Blood, 2002; 99: 4547–53.CrossRefGoogle ScholarPubMed
Reid, A. G., Huntly, B. J., Hennig, E., et al.Deletions of the derivative chromosome 9 do not account for the poor prognosis associated with Philadelphia-positive acute lymphoblastic leukemia. Blood, 2002; 99: 2274–5.CrossRefGoogle Scholar
Gorre, M. E., Mohammed, M., Ellwood, K., et al.Clinical resistance to STI-571 cancer therapy caused by BCR-ABL gene mutation or amplification. Science, 2001; 293: 876–80.CrossRefGoogle ScholarPubMed
Hofmann, W. K., Jones, L. C., Lemp, N. A., et al.Ph(+) acute lymphoblastic leukemia resistant to the tyrosine kinase inhibitor STI571 has a unique BCR-ABL gene mutation. Blood, 2002; 99: 1860–2.CrossRefGoogle Scholar
Branford, S., Rudzki, Z., Walsh, S., et al.High frequency of point mutations clustered within the adenosine triphosphate-binding region of BCR/ABL in patients with chronic myeloid leukemia or Ph-positive acute lymphoblastic leukemia who develop imatinib (STI571) resistance. Blood, 2002; 99: 3472–5.CrossRefGoogle ScholarPubMed
Selle, B., Bar, C., Hecker, S., et al.ABL-specific tyrosine kinase inhibitor imatinib as salvage therapy in a child with Philadelphia chromosome-positive acute mixed lineage leukemia (AMLL). Leukemia, 2002; 16: 1393–5.CrossRefGoogle Scholar
Hofmann, W. K., de Vos, S., Elashoff, D., et al.Relation between resistance of Philadelphia-chromosome-positive acute lymphoblastic leukaemia to the tyrosine kinase inhibitor STI571 and gene-expression profiles: a gene-expression study. Lancet, 2002; 359: 481–6.CrossRefGoogle ScholarPubMed
Chen, C.-S., Sorensen, P. H., Domer, P. H., et al.Molecular rearrangements on chromosome 11q23 predominate in infant acute lymphoblastic leukemia and are associated with specific biological variables and poor outcome. Blood, 1993; 81: 2386–93.Google Scholar
Behm, F. G., Raimondi, S. C., Frestedt, J. L., et al.Rearrangement of the MLL gene confers a poor prognosis in childhood acute lymphoblastic leukemia, regardless of presenting age. Blood, 1996; 87: 2870–7.Google ScholarPubMed
Raimondi, S. C., Frestedt, J. L., Pui, C. H., et al.Acute lymphoblastic leukemias with deletion of 11q23 or a novel inversion (11)(p13q23) lack MLL gene rearrangements and have favorable clinical features. Blood, 1995; 86: 1881–6.Google ScholarPubMed
Johansson, B., Moorman, A. V., Haas, O. A., et al.Hematologic malignancies with t(4;11)(q21;q23) – a cytogenetic, morphologic, immunophenotypic and clinical study of 183 cases. EU Concerted Action 11q23 Workshop participants. Leukemia, 1998; 12: 779–87.CrossRefGoogle Scholar
Rubnitz, J. E., Camitta, B. M., Mahmoud, H., et al.Childhood acute lymphoblastic leukemia with the MLL-ENL fusion and t(11;19)(q23;p13.3) translocation. J Clin Oncol, 1999; 17: 191–6.CrossRefGoogle Scholar
Harrison, C. J., Cuneo, A., Clark, R., et al.Ten novel 11q23 chromosomal partner sites. EU Concerted Action 11q23 Workshop participants. Leukemia, 1998; 12: 811–22.CrossRefGoogle ScholarPubMed
Raimondi, S. C., Chang, M. N., Ravindranath, Y., et al.Chromosomal abnormalities in 478 children with acute myeloid leukemia: clinical characteristics and treatment outcome in a cooperative pediatric oncology group study-POG 8821. Blood, 1999; 94: 3707–16.Google Scholar
Carlson, K. M., Vignon, C., Bohlander, S., et al.Identification and molecular characterization of CALM/AF10 fusion products in T cell acute lymphoblastic leukemia and acute myeloid leukemia. Leukemia, 2000; 14: 100–4.CrossRefGoogle Scholar
Swansbury, G. J., Slater, R., Bain, B. J., Moorman, A. V., & Secker-Walker, L. M.Hematological malignancies with t(9;11)(p21–22;q23) – a laboratory and clinical study of 125 cases. EU Concerted Action 11q23 Workshop participants. Leukemia, 1998; 12: 792–800.CrossRefGoogle Scholar
Zieman-van der Poel, S., McCabe, N. R., Gill, H. J., et al.Identification of a gene, MLL, that spans the breakpoint in 11q23 translocations associated with human leukemias. Proc Natl Acad Sci U S A, 1991; 88: 10 735–9.CrossRefGoogle Scholar
Cimino, G., Moir, D. T., Canaani, O., et al.Cloning of ALL-1, the locus involved in leukemias with the t(4;11)(q21;q23), t(9;11)(p22;q23), and t(11;19)(q23;p13) chromosome translocations. Cancer Res, 1991; 51: 6712–14.Google Scholar
Ayton, P. M. & Cleary, M. L.Molecular mechanisms of leukemogenesis mediated by MLL fusion proteins. Oncogene, 2001; 20: 5695–707.CrossRefGoogle ScholarPubMed
Huret, J. L., Dessen, P., & Bernheim, A.An atlas of chromosomes in hematological malignancies. Example: 11q23 and MLL partners. Leukemia, 2001; 15: 987–9.CrossRefGoogle ScholarPubMed
Dupont, M.Rapid identification of frequent MLL rearrangements in hematologic malignancies by multiplex RT-PCR in a single assay. Leukemia, 2002; 16: 1574–6.CrossRefGoogle Scholar
Armstrong, S. A., Staunton, J. E., Silverman, L. B., et al.MLL translocations specify a distinct gene expression profile that distinguishes a unique leukemia. Nat Genet, 2002; 30: 41–7.CrossRefGoogle ScholarPubMed
Mathew, S., Behm, F., Dalton, J., & Raimondi, S.Comparison of cytogenetics, Southern blotting, and fluorescence in situ hybridization as methods for detecting MLL gene rearrangements in children with acute leukemia and with 11q23 abnormalities. Leukemia, 1999; 13: 1713–20.CrossRefGoogle ScholarPubMed
Harbott, J., Mancini, M., Verellen-Dumoulin, C., Moorman, A. V., & Secker-Walker, L. M.Hematological malignancies with a deletion of 11q23: cytogenetic and clinical aspects. European 11q23 Workshop participants. Leukemia, 1998; 12: 823–7.CrossRefGoogle ScholarPubMed
Tanaka, K., Eguchi, M., Eguchi-Ishimae, M., et al.Restricted chromosome breakpoint sites on 11q22–q23.1 and 11q25 in various hematological malignancies without MLL/ALL-1 gene rearrangement. Cancer Genet Cytogenet, 2001; 124: 27–35.CrossRefGoogle ScholarPubMed
Giugliano, E., Rege-Cambrin, G., Scaravaglio, P., et al.Two new translocations involving the 11q23 region map outside the MLL locus in myeloid leukemias. Haematologica, 2002; 87: 1014–20.Google ScholarPubMed
Pui, C. H., Gaynon, P. S., Boyett, J. M., et al.Outcome of treatment in childhood acute lymphoblastic leukaemia with rearrangements of the 11q23 chromosomal region. Lancet, 2002; 359: 1909–15.CrossRefGoogle ScholarPubMed
Levis, M., Allebach, J., Tse, K. F., et al.A FLT3-targeted tyrosine kinase inhibitor is cytotoxic to leukemia cells in vitro and in vivo. Blood, 2002; 99: 3885–91.CrossRefGoogle ScholarPubMed
Heerema, N. A., Sather, H. N., Ge, J., et al.Cytogenetic studies of infant acute lymphoblastic leukemia: poor prognosis of infants with t(4;11) – a report of the Children's Cancer Group. Leukemia, 1999; 13: 679–86.CrossRefGoogle Scholar
Biondi, A., Cimino, G., Pieters, R., & Pui, C. H.Biological and therapeutic aspects of infant leukemia. Blood, 2000; 96: 24–33.Google ScholarPubMed
Nilson, I., Reichel, M., Ennas, M. G., et al.Exon/intron structure of the human AF-4 gene, a member of the AF-4/LAF- 4/FMR-2 gene family coding for a nuclear protein with structural alterations in acute leukaemia. Br J Haematol, 1997; 98: 157–69.CrossRefGoogle ScholarPubMed
Chami, I., Perot, C., Portnoi, M. F., et al.Molecular analysis of an unusual rearrangement between chromosomes 4 and 11 in adult pre-B-cell acute lymphoblastic leukemia. Cancer Genet Cytogenet, 2002; 133: 129–33.CrossRefGoogle ScholarPubMed
Raimondi, S. C., Williams, D. L., Callihan, T., et al.Nonrandom involvement of the 12p12 breakpoint in chromosome abnormalities of childhood acute lymphoblastic leukemia. Blood, 1986; 68: 69–75.Google ScholarPubMed
Behrendt, H., Charrin, C., Gibbons, B., et al.Dicentric (9;12) in acute lymphocytic leukemia and other hematological malignancies: report from a dic(9;12) study group. Leukemia, 1995; 9: 102–6.Google ScholarPubMed
United Kingdom Cancer Cytogenetics Group. Translocation involving 9p and/or 12p in acute lymphoblastic leukemia. Genes Chromosomes Cancer, 1992; 5: 255–9.CrossRef
Tosi, S., Harbott, J., Teigler-Schlegel, A., et al.t(7;12)(q36;p13), a new recurrent translocation involving ETV6 in infant leukemia. Genes Chromosomes Cancer, 2000; 29: 325–32.3.0.CO;2-9>CrossRefGoogle Scholar
Krance, R. A., Raimondi, S. C., Dubowy, R., et al.t(12;17)(p13;q21) in early pre-B acute lymphoid leukemia. Leukemia, 1992; 6: 251–5.Google Scholar
Raimondi, S. C., Shurtleff, S. A., Downing, J. R., et al.12p abnormalities and the TEL gene (ETV6) in childhood acute lymphoblastic leukemia. Blood, 1997; 90: 4559–66.Google Scholar
Golub, T. R., Barker, G. F., Lovett, M., & Gilliland, D. G.Fusion of PDGF receptor beta to a novel ets-like gene, tel, in chronic myelomonocytic leukemia with t(5;12) chromosomal translocation. Cell, 1994; 77: 307–16.CrossRefGoogle Scholar
Odero, M. D., Carlson, K., Calasanz, M. J., et al.Identification of new translocations involving ETV6 in hematologic malignancies by fluorescence in situ hybridization and spectral karyotyping. Genes Chromosomes Cancer, 2001; 31: 134–42.CrossRefGoogle ScholarPubMed
Cools, J., Mentens, N., Odero, M. D., et al.Evidence for position effects as a variant ETV6-mediated leukemogenic mechanism in myeloid leukemias with a t(4;12)(q11–q12;p13) or t(5;12)(q31;p13). Blood, 2002; 99: 1776–84.CrossRefGoogle Scholar
Golub, T. R., Barker, G. F., Bohlander, S. K., et al.Fusion of the TEL gene on 12p13 to the AML1 gene on 21q22 in acute lymphoblastic leukemia. Proc Natl Acad Sci U S A, 1995; 92: 4917–21.CrossRefGoogle ScholarPubMed
Raynaud, S., Mauvieux, L., Cayuela, J. M., et al.TEL/AML1 fusion gene is a rare event in adult acute lymphoblastic leukemia. Leukemia, 1996; 10: 1529–30.Google ScholarPubMed
Borowitz, M. J., Rubnitz, J., Nash, M., Pullen, D. J., & Camitta, B.Surface antigen phenotype can predict TEL-AML1 rearrangement in childhood B-precursor ALL: a Pediatric Oncology Group study. Leukemia, 1998; 12: 1764–70.CrossRefGoogle ScholarPubMed
Loncarevic, I. F., Roitzheim, B., Ritterbach, J., et al.Trisomy 21 is a recurrent secondary aberration in childhood acute lymphoblastic leukemia with TEL/AML1 gene fusion. Genes Chromosomes Cancer, 1999; 24: 272–7.3.0.CO;2-U>CrossRefGoogle ScholarPubMed
Harbott, J., Viehmann, S., Borkhardt, A., Henze, G., & Lampert, F.Incidence of TEL/AML1 fusion gene analyzed consecutively in children with acute lymphoblastic leukemia in relapse. Blood, 1997; 90: 4933–7.Google ScholarPubMed
Kempski, H., Chalker, J., Chessells, J., et al.An investigation of the t(12;21) rearrangement in children with B-precursor acute lymphoblastic leukaemia using cytogenetic and molecular methods. Br J Haematol, 1999; 105: 684–9.CrossRefGoogle Scholar
Mathew, S., Shurtleff, S. A., & Raimondi, S. C.Novel cryptic, complex rearrangements involving ETV6-CBFA2 (TEL-AML1) genes identified by fluorescence in situ hybridization in pediatric patients with acute lymphoblastic leukemia. Genes Chromosomes Cancer, 2001; 32: 188–93.CrossRefGoogle ScholarPubMed
Andreasson, P., Johansson, B., Strombeck, B., et al.Childhood acute lymphoblastic leukaemia with ider(21) (q10)t(12;21)(p12;q22): a new recurrent abnormality showing ETV6/CBFA2 fusion. Br J Haematol, 1997; 98: 216–18.CrossRefGoogle Scholar
Jarosova, M., Holzerova, M., Mihal, V., et al.Additional evidence of genetic changes in children with ALL and TEL/AML1 fusion gene. Leukemia, 2002; 16: 1873–5.CrossRefGoogle ScholarPubMed
Dal Cin, P., Atkins, L., Ford, C., et al.Amplification of AML1 in childhood acute lymphoblastic leukemias. Genes Chromosomes Cancer, 2001; 30: 407–9.3.0.CO;2-C>CrossRefGoogle ScholarPubMed
Martini, A., La Starza, R., Janssen, H., et al.Recurrent rearrangement of the Ewing's sarcoma gene, EWSR1, or its homologue, TAF15, with the transcription factor CIZ/NMP4 in acute leukemia. Cancer Res, 2002; 62: 5408–12.Google ScholarPubMed
Pietenpol, J. A., Bohlander, S. K., Sato, Y., et al.Assignment of the human p27Kip1 gene to 12p13 and its analysis in leukemias. Cancer Res, 1995; 55: 1206–10.Google ScholarPubMed
Ponce-Castaneda, M. V., Lee, M. H., Latres, E., et al.p27Kip1: chromosomal mapping to 12p12–12p13.1 and absence of mutations in human tumors. Cancer Res, 1995; 55: 1211– 14.Google ScholarPubMed
Fero, M. L., Rivkin, M., Tasch, M., et al.A syndrome of multiorgan hyperplasia with features of gigantism, tumorigenesis, and female sterility in p27(Kip1)-deficient mice. Cell, 1996; 85: 733–44.CrossRefGoogle ScholarPubMed
Aissani, B., Bonan, C., Baccichet, A., & Sinnett, D.Childhood acute lymphoblastic leukemia: is there a tumor suppressor gene in chromosome 12p12.3 ?Leuk Lymphoma, 1999; 34: 231–9.CrossRefGoogle Scholar
Rieder, H., Schnittger, S., Bodenstein, H., et al.dic(9;20): a new recurrent chromosome abnormality in adult acute lymphoblastic leukemia. Genes Chromosomes Cancer, 1995; 13: 54–61.CrossRefGoogle ScholarPubMed
Clark, R., Byatt, S. A., Bennett, C. F., et al.Monosomy 20 as a pointer to dicentric (9;20) in acute lymphoblastic leukemia. Leukemia, 2000; 14: 241–6.CrossRefGoogle Scholar
Hayashi, Y., Raimondi, S. C., Look, A. T., et al.Abnormalities of the long arm of chromosome 6 in childhood acute lymphoblastic leukemia. Blood, 1990; 76: 1626–30.Google Scholar
Takeuchi, S., Koike, M., Seriu, T., et al.Frequent loss of heterozygosity on the long arm of chromosome 6: identification of two distinct regions of deletion in childhood acute lymphoblastic leukemia. Cancer Res, 1998; 58: 2618–23.Google Scholar
Li, H., Lahti, J. M., Valentine, M., et al.Molecular cloning and chromosomal localization of the human cyclin C (CCNC) and cyclin E (CCNE) genes: deletion of the CCNC gene in human tumors. Genomics, 1996; 32: 253–9.CrossRefGoogle ScholarPubMed
Jackson, A., Carrara, P., Duke, V., et al.Deletion of 6q16–q21 in human lymphoid malignancies: a mapping and deletion analysis. Cancer Res, 2000; 60: 2775–9.Google ScholarPubMed
Lai, J. L., Fenaux, P., Zandecki, M., et al.Cytogenetic studies in 30 patients with Burkitt's lymphoma or L3 acute lymphoblastic leukemia with special reference to additional chromosome abnormalities. Ann Genet, 1989; 32: 26–32.Google ScholarPubMed
Ueda, Y., Matsuda, F., Misawa, S., & Taniwaki, M.Tumor-specific rearrangements of the immunoglobulin heavy-chain gene in B-cell non-Hodgkin's lymphoma detected by in situ hybridization. Blood, 1996; 87: 292–8.Google ScholarPubMed
Martin-Subero, J. I., Harder, L., Gesk, S., et al.Interphase FISH assays for the detection of translocations with breakpoints in immunoglobulin light chain loci. Int J Cancer, 2002; 98: 470–4.CrossRefGoogle ScholarPubMed
Patte, C., Auperin, A., Michon, J., et al.The Société Française d'Oncologie Pédiatrique LMB89 protocol: highly effective multiagent chemotherapy tailored to the tumor burden and initial response in 561 unselected children with B-cell lymphomas and L3 leukemia. Blood, 2001; 97: 3370–9.CrossRefGoogle ScholarPubMed
Navid, F., Mosijczuk, A. D., Head, D. R., et al.Acute lymphoblastic leukemia with the (8;14)(q24;q32) translocation and FAB L3 morphology associated with a B-precursor immunophenotype: the Pediatric Oncology Group experience. Leukemia, 1999; 13: 135–41.CrossRefGoogle ScholarPubMed
Croce, C. M. & Nowell, P. C.Molecular basis of human B cell neoplasia. Blood, 1985; 65: 1–7.Google ScholarPubMed
Secker-Walker, L. M., Hawkins, J. M., Prentice, H. G., et al.Two Down syndrome patients with an acquired translocation, t(8;14)(q11;q32), in early B-lineage acute lymphoblastic leukemia. Cancer Genet Cytogenet, 1993; 70: 148–50.CrossRefGoogle Scholar
Kaleem, Z., Shuster, J. J., Carroll, A. J., et al.Acute lymphoblastic leukemia with an unusual t(8;14)(q11.2;q32): a Pediatric Oncology Group Study. Leukemia, 2000; 14: 238–40.CrossRefGoogle Scholar
Pullen, J., Shuster, J. J., Link, M., et al.Significance of commonly used prognostic factors differs for children with T cell acute lymphocytic leukemia (ALL), as compared to those with B-precursor ALL. A Pediatric Oncology Group (POG) study. Leukemia, 1999; 13: 1696–707.CrossRefGoogle Scholar
Uckun, F. M., Sensel, M. G., Sun, L., et al.Biology and treatment of childhood T-lineage acute lymphoblastic leukemia. Blood, 1998; 91: 735–46.Google ScholarPubMed
Schneider, N. R., Carroll, A. J., Shuster, J. J., et al.New recurring cytogenetic abnormalities and association of blast cell karyotypes with prognosis in childhood T-cell acute lymphoblastic leukemia: a pediatric oncology group report of 343 cases. Blood, 2000; 96: 2543–9.Google ScholarPubMed
Heerema, N. A., Sather, H. N., Sensel, M. G., et al.Frequency and clinical significance of cytogenetic abnormalities in pediatric T-lineage acute lymphoblastic leukemia: a report from the Children's Cancer Group. J Clin Oncol, 1998; 16: 1270–8.CrossRefGoogle ScholarPubMed
Okuda, T., Shurtleff, S. A., Valentine, M. B., et al.Frequent deletion of p16INK4a/MTS1 and p15INK4b/MTS2 in pediatric acute lymphoblastic leukemia. Blood, 1995; 85: 2321–30.Google ScholarPubMed
Rubnitz, J. E., Behm, F. G., Pui, C. H., et al.Genetic studies of childhood acute lymphoblastic leukemia with emphasis on p16, MLL, and ETV6 gene abnormalities: results of St Jude Total Therapy Study Ⅻ. Leukemia, 1997; 11: 1201–6.CrossRefGoogle ScholarPubMed
Moorman, A. V., Richards, S., & Harrison, C. J.Involvement of the MLL gene in T-lineage acute lymphoblastic leukemia. Blood, 2002; 100: 2273–4.CrossRefGoogle ScholarPubMed
Hayette, S., Tigaud, I., Maguer-Satta, V., et al.Recurrent involvement of the MLL gene in adult T-lineage acute lymphoblastic leukemia. Blood, 2002; 99: 4647–9.CrossRefGoogle ScholarPubMed
Finger, L. R., Kagan, J., Christopher, G., et al.Involvement of the TCL5 gene on human chromosome 1 in T-cell leukemia and melanoma. Proc Natl Acad Sci U S A, 1989; 86: 5039–43.CrossRefGoogle ScholarPubMed
Fitzgerald, T. J., Neale, G. A., Raimondi, S. C., & Goorha, R. M.c-tal, a helix-loop-helix protein, is juxtaposed to the T-cell receptor-beta chain gene by a reciprocal chromosomal translocation: t(1;7)(p32;q35). Blood, 1991; 78: 2686–95.Google Scholar
Aplan, P. D., Johnson, B. E., Russell, E., Chervinsky, D. S., & Kirsch, I. R.Cloning and characterization of TCTA, a gene located at the site of a t(1;3) translocation. Cancer Res, 1995; 55: 1917–21.Google Scholar
Francois, S., Delabesse, E., Baranger, L., et al.Deregulated expression of the TAL1 gene by t(1;5)(p32;31) in patient with T-cell acute lymphoblastic leukemia. Genes Chromosomes Cancer, 1998; 23: 36–43.3.0.CO;2-7>CrossRefGoogle Scholar
Brown, L., Cheng, J. T., Chen, Q., et al.Site-specific recombination of the tal-1 gene is a common occurrence in human T cell leukemia. EMBO J, 1990; 9: 3343–51.Google ScholarPubMed
Burg, M., Smit, B., Brinkhof, B., et al.A single split-signal FISH probe set allows detection of TAL1 translocations as well as SIL-TAL1 fusion genes in a single test. Leukemia, 2002; 16: 755–61.CrossRefGoogle Scholar
Delabesse, E., Bernard, M., Meyer, V., et al.TAL1 expression does not occur in the majority of T-ALL blasts. Br J Haematol, 1998; 102: 449–57.CrossRefGoogle Scholar
Bash, R. O., Hall, S., Timmons, C. F., et al.Does activation of the TAL1 gene occur in a majority of patients with T-cell acute lymphoblastic leukemia ? A pediatric oncology group study. Blood, 1995; 86: 666–76.Google Scholar
Ballerini, P., Blaise, A., Busson-Le Coniat, M., et al.HOX11L2 expression defines a clinical subtype of pediatric T-ALL associated with poor prognosis. Blood, 2002; 100: 991–7.CrossRefGoogle ScholarPubMed
Cave, H., Suciu, S., Preudhomme, C., et al.Expression linked to t(5;14)(q35;q32) is not associated with poor prognosis in childhood T-ALL treated in EORTC trials 58 881 and 58 951. Blood, 2002; 100: 153a, abstract 576.Google Scholar
Xia, Y., Brown, L., Yang, C. Y., et al.TAL2, a helix-loop-helix gene activated by the (7;9)(q34;q32) translocation in human T-cell leukemia. Proc Natl Acad Sci U S A, 1991; 88: 11 416–20.CrossRefGoogle ScholarPubMed
Mellentin, J. D., Smith, S. D., & Cleary, M. L.lyl-1, a novel gene altered by chromosomal translocation in T cell leukemia, codes for a protein with a helix-loop-helix DNA binding motif. Cell, 1989; 58: 77–83.CrossRefGoogle Scholar
Carroll, A. J., Castleberry, R. R., & Crist, W. M.Lack of association between abnormalities of the chromosome 9 short arm and either “lymphomatous” features or T cell phenotype in childhood acute lymphocytic leukemia. Blood, 1987; 69: 735–8.Google ScholarPubMed
Murphy, S. B., Raimondi, S. C., Rivera, G. K., et al.Nonrandom abnormalities of chromosome 9p in childhood acute lymphoblastic leukemia: association with high-risk clinical features. Blood, 1989; 74: 409–15.Google ScholarPubMed
Heerema, N. A., Sather, H. N., Sensel, M. G., et al.Association of chromosome arm 9p abnormalities with adverse risk in childhood acute lymphoblastic leukemia: a report from the Children's Cancer Group. Blood, 1999; 94: 1537–44.Google ScholarPubMed
Diaz, M. O., Rubin, C. M., Harden, A., et al.Deletions of interferon genes in acute lymphoblastic leukemia. N Engl J Med, 1990; 322: 77–82.CrossRefGoogle ScholarPubMed
Gardie, B., Cayuela, J. M., Martini, S., & Sigaux, F.Genomic alterations of the p19ARF encoding exons in T-cell acute lymphoblastic leukemia. Blood, 1998; 91: 1016–20.Google ScholarPubMed
Ramakers-van Woerden, N. L., Pieters, R., Slater, R. M., et al.In vitro drug resistance and prognostic impact of p16INK4A/p15INK4B deletions in childhood T-cell acute lymphoblastic leukaemia. Br J Haematol, 2001; 112: 680–90.CrossRefGoogle ScholarPubMed
Tutor, O., Diaz, M. A., Ramirez, M., et al.Loss of heterozygosity of p16 correlates with minimal residual disease at the end of the induction therapy in non-high risk childhood B-cell precursor acute lymphoblastic leukemia. Leuk Res, 2002; 26: 817–20.CrossRefGoogle ScholarPubMed
Graf, E. H., Taube, T., Hartmann, R., et al.Deletion analysis of p16(INKa) and p15(INKb) in relapsed childhood acute lymphoblastic leukemia. Blood, 2002; 99: 4629–31.CrossRefGoogle Scholar
Cazzaniga, G., Daniotti, M., Tosi, S., et al.The paired box domain gene PAX5 is fused to ETV6/TEL in an acute lymphoblastic leukemia case. Cancer Res, 2001; 61: 4666–70.Google Scholar
Rack, K. A., Cornelis, F., Radford-Weiss, I., et al.A chromosome 14q11/TCR alpha/delta specific yeast artificial chromosome improves the detection rate and characterization of chromosome abnormalities in T-lymphoproliferative disorders. Blood, 1997; 90: 1233–40.Google ScholarPubMed
Yoffe, G., Schneider, N., Dyk, L., et al.The chromosome translocation (11;14)(p13;q11) associated with T-cell acute lymphocytic leukemia: an 11p13 breakpoint cluster region. Blood, 1989; 74: 374–9.Google ScholarPubMed
McGuire, E. A., Hockett, R. D., Pollock, K. M., et al.The t(11;14)(p15;q11) in a T-cell acute lymphoblastic leukemia cell line activates multiple transcripts, including Ttg-1, a gene encoding a potential zinc finger protein. Mol Cell Biol, 1989; 9: 2124–32.CrossRefGoogle Scholar
Dube, I. D., Raimondi, S. C., Pi, D., & Kalousek, D. K.A new translocation, t(10;14)(q24;q11), in T cell neoplasia. Blood, 1986; 67: 1181–4.Google Scholar
Dube, I. D., Kamel-Reid, S., Yuan, C. C., et al.A novel human homeobox gene lies at the chromosome 10 breakpoint in lymphoid neoplasias with chromosomal translocation t(10;14). Blood, 1991; 78: 2996–3003.Google Scholar
Kahl, C., Gesk, S., Harder, L., et al.Detection of translocations involving the HOX11/TCL3-locus in 10q24 by interphase fluorescence in situ hybridization. Cancer Genet Cytogenet, 2001; 129: 80–4.CrossRefGoogle ScholarPubMed
Dear, T. N., Colledge, W. H., Carlton, M. B., et al.The Hox11 gene is essential for cell survival during spleen development. Development, 1995; 121: 2909–15.Google ScholarPubMed
Erikson, J., Finger, L., Sun, L., et al.Deregulation of c-myc by translocation of the alpha-locus of the T-cell receptor in T-cell leukemias. Science, 1986; 232: 884–6.CrossRefGoogle ScholarPubMed
Byrd, J. C., Mrozek, K., Dodge, R. K., et al.Pretreatment cytogenetic abnormalities are predictive of induction success, cumulative incidence of relapse, and overall survival in adult patients with de novo acute myeloid leukemia: results from Cancer and Leukemia Group B (CALGB 8461). Blood, 2002; 100: 4325–36.CrossRefGoogle Scholar
Creutzig, U. & Reinhardt, D.Current controversies: which patients with acute myeloid leukaemia should receive a bone marrow transplantation ? – a European view. Br J Haematol, 2002; 118: 365–77.CrossRefGoogle ScholarPubMed
Luna-Fienman, S., Shannon, K. M., & Lange, B.Childhood monosomy 7: epidemiology, biology, and mechanistic implications. Blood, 1995; 85: 1985–99.Google Scholar
Hasle, H., Arico, M., Basso, G., et al.Myelodysplastic syndrome, juvenile myelomonocytic leukemia, and acute myeloid leukemia associated with complete or partial monosomy 7. European Working Group on MDS in Childhood (EWOG-MDS). Leukemia, 1999; 13: 376–85.CrossRefGoogle Scholar
Renneboog, B., Hansen, V., Heimann, P., et al.Spontaneous remission in a patient with therapy-related myelodysplastic syndrome (t-MDS) with monosomy 7. Br J Haematol, 1996; 92: 696–8.CrossRefGoogle Scholar
Schoch, C., Haase, D., Fonatsch, C., et al.The significance of trisomy 8 in de novo acute myeloid leukaemia: the accompanying chromosome aberrations determine the prognosis. Br J Haematol, 1997; 99: 605–11.CrossRefGoogle ScholarPubMed
Wolman, S. R., Gundacker, H., Appelbaum, F. R., & Slovak, M. L.Impact of trisomy 8 (+8) on clinical presentation, treatment response, and survival in acute myeloid leukemia: a Southwest Oncology Group study. Blood, 2002; 100: 29–35.CrossRefGoogle ScholarPubMed
Virtaneva, K., Wright, F. A., Tanner, S. M., et al.Expression profiling reveals fundamental biological differences in acute myeloid leukemia with isolated trisomy 8 and normal cytogenetics. Proc Natl Acad Sci U S A, 2001; 98: 1124–9.CrossRefGoogle ScholarPubMed
Ohsaka, A., Hisa, T., Watanabe, N., Kojima, H., & Nagasawa, T.Tetrasomy 21 as a sole chromosome abnormality in acute myeloid leukemia: fluorescence in situ hybridization and spectral karyotyping analyses. Cancer Genet Cytogenet, 2002; 134: 60–4.CrossRefGoogle ScholarPubMed
Preudhomme, C., Warot-Loze, D., Roumier, C., et al.High incidence of biallelic point mutations in the Runt domain of the AML1/PEBP2 alpha B gene in Mo acute myeloid leukemia and in myeloid malignancies with acquired trisomy 21. Blood, 2000; 96: 2862–9.Google Scholar
Lange, B.The management of neoplastic disorders of haematopoiesis in children with Down's syndrome. Br J Haematol, 2000; 110: 512–24.CrossRefGoogle ScholarPubMed
Wu, S. Q., Loh, K. T., Chen, X. R., Joo, W. J., & Mascarenhas, L.Transient myeloproliferative disorder in a phenotypically normal infant with i(21q) mosaicism. Cancer Genet Cytogenet, 2002; 136: 138–40.CrossRefGoogle Scholar
Taketani, T., Taki, T., Takita, J., et al.Mutation of the AML1/RUNX1 gene in a transient myeloproliferative disorder patient with Down syndrome. Leukemia, 2002; 16: 1866–7.CrossRefGoogle Scholar
Wechsler, J., Greene, M., McDevitt, M. A., et al.Acquired mutations in GATA1 in the megakaryoblastic leukemia of Down syndrome. Nat Genet, 2002; 32: 148–52.CrossRefGoogle ScholarPubMed
Schichman, S. A., Caligiuri, M. A., Gu, Y., et al.ALL-1 partial duplication in acute leukemia. Proc Natl Acad Sci U S A, 1994; 91: 6236–9.CrossRefGoogle ScholarPubMed
McGrattan, P., Alexander, H. D., Humphreys, M. W., & Kettle, P. J.Tetrasomy 13 as the sole cytogenetic abnormality in acute myeloid leukemia M1 without maturation. Cancer Genet Cytogenet, 2002; 135: 192–5.CrossRefGoogle ScholarPubMed
Slater, R. M., Drunen, E. von, Kroes, W. G., et al.t(7;12)(q36;p13) and t(7;12)(q32;p13) – translocations involving ETV6 in children 18 months of age or younger with myeloid disorders. Leukemia, 2001; 15: 915–20.CrossRefGoogle ScholarPubMed
Gad, S. G., Callen, D. F., Kuss, B., et al.Identification of an inversion 16 coexisting with an isochromosome 22q by in situ hybridization in a case of childhood AML M4e. Leukemia, 1993; 7: 1658–62.Google Scholar
Ferrara, F. & Del Vecchio, L.Acute myeloid leukemia with t(8;21)/AML1/ETO: a distinct biological and clinical entity. Haematologica, 2002; 87: 306–19.Google Scholar
Kalwinsky, D. K., Raimondi, S. C., Schell, M. J., et al.Prognostic importance of cytogenetic subgroups in de novo pediatric acute nonlymphocytic leukemia. J Clin Oncol, 1990; 8: 75–83.CrossRefGoogle ScholarPubMed
Gallego, M., Carroll, A. J., Gad, G. S., et al.Variant t(8;21) rearrangements in acute myeloblastic leukemia of childhood. Cancer Genet Cytogenet, 1994; 75: 139–44.CrossRefGoogle Scholar
Downing, J. R.The AML1-ETO chimaeric transcription factor in acute myeloid leukaemia: biology and clinical significance. Br J Haematol, 1999; 106: 296–308.CrossRefGoogle ScholarPubMed
Krauter, J., Peter, W., Pascheberg, U., et al.Detection of karyotypic aberrations in acute myeloblastic leukaemia: a prospective comparison between PCR/FISH and standard cytogenetics in 140 patients with de novo AML. Br J Haematol, 1998; 103: 72–8.CrossRefGoogle ScholarPubMed
Andrieu, V., Radford-Weiss, I., Troussard, X., et al.Molecular detection of t(8;21)/AML1-ETO in AML M1/M2: correlation with cytogenetics, morphology and immunophenotype. Br J Haematol, 1996; 92: 855–65.CrossRefGoogle Scholar
Rowe, D., Cotterill, S. J., Ross, F. M., et al.Cytogenetically cryptic AML1-ETO and CBF beta-MYH11 gene rearrangements: incidence in 412 cases of acute myeloid leukaemia. Br J Haematol, 2000; 111: 1051–6.CrossRefGoogle ScholarPubMed
Urioste, M., Martinez-Ramirez, A., Cigudosa, J. C., et al.Identification of ins(8;21) with AML1/ETO fusion in acute myelogenous leukemia M2 by molecular cytogenetics. Cancer Genet Cytogenet, 2002; 133: 83–6.CrossRefGoogle ScholarPubMed
Marcucci, G., Livak, K. J., Wi, B., et al.Detection of minimal residual disease in patients with AML1/ETO-associated acute myeloid leukemia using a novel quantitative reverse transcription polymerase chain reaction assay. Leukemia, 1998; 12: 1482–9.CrossRefGoogle ScholarPubMed
Basecke, J., Cepek, L., Mannhalter, C., et al.Transcription of AML1/ETO in bone marrow and cord blood of individuals without acute myelogenous leukemia. Blood, 2002; 100: 2267–8.CrossRefGoogle ScholarPubMed
Wiemels, J. L., Xiao, Z., Buffler, P. A., et al.In utero origin of t(8;21) AML1-ETO translocations in childhood acute myeloid leukemia. Blood, 2002; 99: 3801–5.CrossRefGoogle Scholar
Tallman, M. S., Andersen, J. W., Schiffer, C. A., et al.All-trans retinoic acid in acute promyelocytic leukemia: long-term outcome and prognostic factor analysis from the North American Intergroup protocol. Blood, 2002; 100: 4298–302.CrossRefGoogle ScholarPubMed
Soignet, S. L., Maslak, P., Wang, Z. G., et al.Complete remission after treatment of acute promyelocytic leukemia with arsenic trioxide. N Engl J Med, 1998; 339: 1341–8.CrossRefGoogle ScholarPubMed
Kogan, S. C., Hong, S. H., Shultz, D. B., Privalsky, M. L., & Bishop, J. M.Leukemia initiated by PML-RARɑ: the PML domain plays a critical role while retinoic acid-mediated transactivation is dispensable. Blood, 2000; 95: 1541–50.Google Scholar
Rolston, R., Weck, K. E., Tersak, J. M., et al.New cytogenetic variant, insertion (15;17)(q22;q12q21), in an adolescent with acute promyelocytic leukemia. Cancer Genet Cytogenet, 2002; 134: 55–9.CrossRefGoogle Scholar
Mozziconacci, M. J., Liberatore, C., Brunel, V., et al.In vitro response to all-trans retinoic acid of acute promyelocytic leukemias with nonreciprocal PML/RARA or RARA/PML fusion genes. Genes Chromosomes Cancer, 1998; 22: 241–50.3.0.CO;2-R>CrossRefGoogle ScholarPubMed
Grimwade, D., Gorman, P., Duprez, E., et al.Characterization of cryptic rearrangements and variant translocations in acute promyelocytic leukemia. Blood, 1997; 90: 4876–85.Google ScholarPubMed
Redner, R. L., Rush, E. A., Faas, S., Rudert, W. A., & Corey, S. J.The t(5;17) variant of acute promyelocytic leukemia expresses a nucleophosmin-retinoic acid receptor fusion. Blood, 1996; 87: 882–6.Google Scholar
Wells, R. A. & Kamel-Reid, S.NuMA-RARA, a new gene fusion in acute promyelocytic leukaemia. Blood, 1996(Supp1.1); 88: 365a, abstract 1449.Google Scholar
Chen, Z., Brand, N. J., Chen, A., et al.Fusion between a novel Kruppel-like zinc finger gene and the retinoic acid receptor-alpha locus due to a variant t(11;17) translocation associated with acute promyelocytic leukaemia. EMBO J, 1993; 12: 1161–7.Google Scholar
Arnould, C., Philippe, C., Bourdon, V., et al.The signal transducer and activator of transcription STAT5b gene is a new partner of retinoic acid receptor alpha in acute promyelocytic-like leukaemia. Hum Mol Genet, 1999; 8: 1741–9.CrossRefGoogle ScholarPubMed
Wells, R. A., Catzavelos, C., & Kamel-Reid, S.Fusion of retinoic acid receptor alpha to NuMA, the nuclear mitotic apparatus protein, by a variant translocation in acute promyelocytic leukaemia. Nat Genet, 1997; 17: 109–13.CrossRefGoogle ScholarPubMed
Redner, R. L., Corey, S. J., & Rush, E. A.Differentiation of t(5;17) variant acute promyelocytic leukemic blasts by all-trans retinoic acid. Leukemia, 1997; 11: 1014–16.CrossRefGoogle Scholar
Licht, J. D., Chomienne, C., Goy, A., et al.Clinical and molecular characterization of a rare syndrome of acute promyelocytic leukemia associated with translocation (11;17). Blood, 1995; 85: 1083–94.Google Scholar
He, L. Z., Bhaumik, M., Tribioli, C., et al.Two critical hits for promyelocytic leukemia. Mol Cell, 2000; 6: 1131–41.CrossRefGoogle ScholarPubMed
Schoch, C., Kohlmann, A., Schnittger, S., et al.Acute myeloid leukemias with reciprocal rearrangements can be distinguished by specific gene expression profiles. Proc Natl Acad Sci U S A, 2002; 99: 10 008–13.CrossRefGoogle ScholarPubMed
Schnittger, S., Schoch, C., Dugas, M., et al.Analysis of FLT3 length mutations in 1003 patients with acute myeloid leukemia: correlation to cytogenetics, FAB subtype, and prognosis in the AMLCG study and usefulness as a marker for the detection of minimal residual disease. Blood, 2002; 100: 59–66.CrossRefGoogle ScholarPubMed
Razzouk, B. I., Raimondi, S. C., Srivastava, D. K., et al.Impact of treatment on the outcome of acute myeloid leukemia with inversion 16: a single institution's experience. Leukemia, 2001; 15: 1326–30.CrossRefGoogle ScholarPubMed
Liu, P. P., Hajra, A., Wijmenga, C., & Collins, F. S.Molecular pathogenesis of the chromosome 16 inversion in the M4Eo subtype of AML. Blood, 1995; 85: 2289–302.Google Scholar
Lutterbach, B. & Hiebert, S. W.Role of the transcription factor AML-1 in acute leukemia and hematopoietic differentiation. Gene, 2000; 245: 223–35.CrossRefGoogle ScholarPubMed
Adya, N., Stacy, T., Speck, N. A., & Liu, P. P.The leukemic protein core binding factor beta (CBFbeta)-smooth-muscle myosin heavy chain sequesters CBFalpha2 into cytoskeletal filaments and aggregates. Mol Cell Biol, 1998; 18: 7432–43.CrossRefGoogle ScholarPubMed
Batanian, J. R., Huang, Y., & Fallon, R.Deletion of 3′-CBFB gene in association with an inversion (16)(p13q22) and a loss of the Y chromosome in a 2-year-old child with acute myelogenous leukemia-M4. Cancer Genet Cytogenet, 2000; 121: 216–19.CrossRefGoogle Scholar
Aventin, A., La Starza, R., Nomdedeu, J., et al.Typical CBFbeta/MYH11 fusion due to insertion of the 3′-MYH11 gene into 16q22 in acute monocytic leukemia with normal chromosomes 16 and trisomies 8 and 22. Cancer Genet Cytogenet, 2000; 123: 137–9.CrossRefGoogle ScholarPubMed
Laczika, K., Mitterbauer, G., Mitterbauer, M., et al.Prospective monitoring of minimal residual disease in acute myeloid leukemia with inversion(16) by CBFbeta/MYH11 RT-PCR: implications for a monitoring schedule and for treatment decisions. Leuk Lymphoma, 2001; 42: 923–31.CrossRefGoogle ScholarPubMed
Pui, C.-H., Behm, F., Raimondi, S. C., et al.Secondary acute myeloid leukemia in children treated for acute lymphoid leukemia. N Engl J Med, 1989; 321: 136–42.CrossRefGoogle ScholarPubMed
Martinez-Climent, J., Espinosa, R. III, Thirman, M. J., Le Beau, M. M., & Rowley, J. D.Abnormalities of chromosome band 11q23 and the MLL gene in pediatric myelomonocytic and monoblastic leukemias: identification of the t(9;11) as an indicator of long survival. J Ped Hematol Oncol, 1995; 17: 277–83.CrossRefGoogle Scholar
Rubnitz, J. E., Raimondi, S. C., Tong, X., et al.Favorable impact of the t(9;11) in childhood acute myeloid leukemia. J Clin Oncol, 2002; 20: 2302–9.CrossRefGoogle Scholar
Pui, C.-H., Ribeiro, R. C., Campana, D., et al.Prognostic factors in the acute lymphoid and myeloid leukemias of infants. Leukemia, 1996; 10: 952–6.Google ScholarPubMed
Satake, N., Maseki, N., Nishiyama, M., et al.Chromosome abnormalities and MLL rearrangements in acute myeloid leukemia of infants. Leukemia, 1999; 13: 1013–17.CrossRefGoogle ScholarPubMed
Pui, C. H., Raimondi, S. C., Srivastava, D. K., et al.Prognostic factors in infants with acute myeloid leukemia. Leukemia, 2000; 14: 684–7.CrossRefGoogle ScholarPubMed
Bloomfield, C. D., Archer, K. J., Mrozek, K., et al.11q23 balanced chromosome aberrations in treatment-related myelodysplastic syndromes and acute leukemia: report from an international workshop. Genes Chromosomes Cancer, 2002; 33: 362–78.CrossRefGoogle ScholarPubMed
Domer, P. H., Head, D. R., Renganathan, N., et al.Molecular analysis of thirteen cases of MLL/11q23 secondary acute leukemia and identification of topoisomerase II consensus binding sequences near the chromosomal breakpoint of a secondary leukemia with the t(4;11). Leukemia, 1995; 8: 1305–12.Google Scholar
Rowley, J. D., Reshmi, S., Sobulo, O., et al.All patients with the t(11;16)(q23;p13.3) that involves MLL and CBP have treatment-related hematologic disorders. Blood, 1997; 90: 535–41.Google Scholar
Ida, K., Kitabayashi, I., Taki, T., et al.Adenoviral E1A-associated protein p300 is involved in acute myeloid leukemia with t(11;22)(q23;p13). Blood, 1997; 90: 4699–704.Google Scholar
Gamou, T., Kitamura, E., Hosoda, F., et al.The partner gene of AML1 in t(16;21) myeloid malignancies is a novel member of the MTG9(ETO) family. Blood, 1998; 91: 4028–37.Google Scholar
Caligiuri, M. A., Strout, M. P., Lawrence, D., et al.Rearrangement of ALL1 (MLL) in acute myeloid leukemia with normal cytogenetics. Cancer Res, 1998; 58: 55–9.Google ScholarPubMed
Schnittger, S., Kinkelin, U., Schoch, C., et al.Screening for MLL tandem duplication in 387 unselected patients with AML identify a prognostically unfavorable subset of AML. Leukemia, 2000; 14: 796–804.CrossRefGoogle ScholarPubMed
Cuthbert, G., Thompson, K., McCullough, S., et al.MLL amplification in acute leukaemia: a United Kingdom Cancer Cytogenetics Group (UKCCG) study. Leukemia, 2000; 14: 1885–91.CrossRefGoogle ScholarPubMed
Kobayashi, H., Espinosa, R. III, Fernald, A. A., et al.Analysis of deletions of the long arm of chromosome 11 in hematological malignancies with fluorescence in situ hybridization. Genes Chromosomes Cancer, 1993; 8: 246–52.CrossRefGoogle Scholar
Kobayashi, H., Espinosa, R. III, Thirman, M. J., et al.Do terminal deletions of 11q23 exist ? Identification of undetected translocations with fluorescence in situ hybridization. Genes Chromosomes Cancer, 1993; 7: 204–8.CrossRefGoogle ScholarPubMed
Martineau, M., Berger, R., Lillington, D. M., Moorman, A. V., & Secker-Walker, L. M.The t(6;11)(q27;q23) translocation in acute leukemia: a laboratory and clinical study of 30 cases. EU Concerted Action 11q23 Workshop participants. Leukemia, 1998; 12: 788–91.CrossRefGoogle Scholar
Takatsuki, H., Yufu, Y., Tachikawa, Y., & Uike, N.Monitoring minimal residual disease in patients with MLL-AF6 fusion transcript-positive acute myeloid leukemia following allogeneic bone marrow transplantation. Int J Hematol, 2002; 75: 298–301.CrossRefGoogle ScholarPubMed
Taki, T., Shibuya, N., Taniwaki, M., et al.ABI-1, a human homolog to mouse ABI-interactor 1, fuses the MLL gene in acute myeloid leukemia with t(10;11)(p11.2;q23). Blood, 1998; 92: 1125–30.Google Scholar
Chaplin, T., Bernard, O., Beverloo, H. B., et al.The t(10;11) translocation in acute myeloid leukemia (M5) consistently fuses the leucine zipper motif of AF10 onto the HRX gene. Blood, 1995; 86: 2073–6.Google Scholar
Limbergen, H., Poppe, B., Janssens, A., et al.Molecular cytogenetic analysis of 10;11 rearrangements in acute myeloid leukemia. Leukemia, 2002; 16: 344–51.CrossRefGoogle ScholarPubMed
Dreyling, M. H., Schrader, K., Fonatsch, C., et al.MLL and CALM are fused to AF10 in morphologically distinct subsets of acute leukemia with translocation t(10;11): both rearrangements are associated with a poor prognosis. Blood, 1998; 91: 4662–7.Google Scholar
Bohlander, S. K., Muschinsky, V., Schrader, K., et al.Molecular analysis of the CALM/AF10 fusion: identical rearrangements in acute myeloid leukemia, acute lymphoblastic leukemia and malignant lymphoma patients. Leukemia, 2000; 14: 93–9.CrossRefGoogle ScholarPubMed
Carroll, A. J., Civin, S., Schneider, N. R., et al.The t(1;22) (p13;q13) is nonrandom and restricted to infants with acute megakaryoblastic leukemia: a Pediatric Oncology Group Study. Blood, 1991; 78: 748–52.Google Scholar
Mercher, T., Coniat, M. B., Monni, R., et al.Involvement of a human gene related to the Drosophila spen gene in the recurrent t(1;22) translocation of acute megakaryocytic leukemia. Proc Natl Acad Sci U S A, 2001; 98: 5776–9.CrossRefGoogle Scholar
Ma, Z., Morris, S. W., Valentine, V., et al.Fusion of two novel genes, RBM15 and MKL1, in the t(1;22)(p13;q13) of acute megakaryoblastic leukemia. Nat Genet, 2001; 28: 220–1.CrossRefGoogle Scholar
Testoni, N., Borsaru, G., Martinelli, G., et al.3q21 and 3q26 cytogenetic abnormalities in acute myeloblastic leukemia: biological and clinical features. Haematologica, 1999; 84: 690–4.Google ScholarPubMed
Keung, Y. K., Buss, D., Powell, B. L., & Pettenati, M.Central diabetes insipidus and inv(3)(q21q26) and monosomy 7 in acute myeloid leukemia. Cancer Genet Cytogenet, 2002; 136: 78–81.CrossRefGoogle ScholarPubMed
Morishita, K., Parganas, E., Willman, C. L., et al.Activation of EVI-1 gene expression in human acute myelogenous leukemias by translocation spanning 300–400 kilobases on chromosome band 3q26. Proc Natl Acad Sci U S A, 1992; 89: 3937–41.CrossRefGoogle ScholarPubMed
Levy, E. R., Parganas, E., Morishita, K., et al.EVI-1 DNA rearrangements proximal to the EVI-1 locus associated with rearrangements of the 3q21q26 syndrome. Blood, 1994; 83: 1348–53.Google Scholar
Jolkowska, J. & Witt, M.The EVI-1 gene – its role in pathogenesis of human leukemias. Leuk Res, 2000; 24: 553–8.CrossRefGoogle ScholarPubMed
Nucifora, G., Begy, C. R., Kobayashi, H., et al.Consistent intergenic splicing and production of multiple transcripts between AML1 at 21q22 and unrelated genes at 3q26 in (3;21) (q26;q22) translocations. Proc Natl Acad Sci U S A, 1994; 91: 4004–8.CrossRefGoogle ScholarPubMed
Raynaud, S. D., Baens, M., Grosgeorge, J., et al.Fluorescence in situ hybridization analysis of t(3;12)(q26;p13): a recurring chromosomal abnormality involving the TEL gene (ETV6) in myelodysplastic syndromes. Blood, 1996; 88: 682–9.Google Scholar
Raimondi, S. C., Dube, I. D., Valentine, M. B., et al.Clinicopathologic manifestations and breakpoints of the t(3;5) in patients with acute nonlymphocytic leukemia. Leukemia, 1989; 3: 42–7.Google Scholar
Yoneda-Kato, N., Look, A. T., Kirstein, M. N., et al.The t(3;5)(q25.1;q34) of myelodysplastic syndrome and acute myeloid leukemia produces a novel fusion gene, NPM-MLF1. Oncogene, 1996; 12: 265–75.Google Scholar
Jaju, R. J., Haas, O. A., Neat, M., et al.A new recurrent translocation, t(5;11)(q35;p15.5), associated with del(5q) in childhood acute myeloid leukemia. The UK Cancer Cytogenetics Group (UKCCG). Blood, 1999; 94: 773–80.Google Scholar
Jaju, R. J., Fidler, C., Haas, O. A., et al.A novel gene, NSD1, is fused to NUP98 in the t(5;11)(q35;p15.5) in de novo childhood acute myeloid leukemia. Blood, 2001; 98: 1264–7.CrossRefGoogle Scholar
Brown, J., Jawad, M., Twigg, S. R., et al.A cryptic t(5;11) (q35;p15.5) in 2 children with acute myeloid leukemia with apparently normal karyotypes, identified by a multiplex fluorescence in situ hybridization telomere assay. Blood, 2002; 99: 2526–31.CrossRefGoogle Scholar
Panarello, C., Rosanda, C., & Morerio, C.Cryptic translocation t(5;11)(q35;p15.5) with involvement of the NSD1 and NUP98 genes without 5q deletion in childhood acute myeloid leukemia. Genes Chromosomes Cancer, 2002; 35: 277–81.CrossRefGoogle Scholar
Lindern, M. von, Fornerod, M., Baal, S., et al.The translocation (6;9), associated with a specific subtype of acute myeloid leukemia, results in the fusion of two genes, dek and can, and the expression of a chimeric, leukemia-specific dek-can mRNA. Mol Cell Biol, 1992; 12: 1687–97.CrossRefGoogle Scholar
Fornerod, M., Boer, J., Baal, S., et al.Relocation of the carboxyterminal part of CAN from the nuclear envelope to the nucleus as a result of leukemia-specific chromosome rearrangements. Oncogene, 1995; 10: 1739–48.Google ScholarPubMed
Borrow, J., Stanton, V. P. Jr., Andresen, J. M., et al.The translocation t(8;16)(p11;q13) of acute myeloid leukaemia fuses a putative acetyltransferase to the CREB-binding protein. Nat Genet, 1996; 14: 33–41.CrossRefGoogle Scholar
Carapeti, M., Aguiar, R. C., Goldman, J. M., & Cross, N. C.A novel fusion between MOZ and the nuclear receptor coactivator TIF2 in acute myeloid leukemia. Blood, 1998; 91: 3127–33.Google ScholarPubMed
Tasaka, T., Nagai, M., Matsuhashi, Y., et al.Secondary acute monocytic leukemia with a translocation t(8;22)(p11;q13). Haematologica, 2002; 87: e-case report 19 (ECR19).Google Scholar
Champagne, N., Pelletier, N., & Yang, X. J.The monocytic leukemia zinc finger protein MOZ is a histone acetyltransferase. Oncogene, 2001; 20: 404–9.CrossRefGoogle ScholarPubMed
Lam, D. H. & Aplan, P. D.NUP98 gene fusions in hematologic malignancies. Leukemia, 2001; 15: 1689–95.CrossRefGoogle ScholarPubMed
Ahuja, H. G., Hong, J., Aplan, P. D., et al.t(9;11)(p22;p15) in acute myeloid leukemia results in a fusion between NUP98 and the gene encoding transcriptional coactivators p52 and p75-lens epithelium-derived growth factor (LEDGF). Cancer Res, 2000; 60: 6227–9.Google Scholar
Ahuja, H. G., Felix, C. A., & Aplan, P. D.Potential role for DNA topoisomerase II poisons in the generation of t(11;20)(p15;q11) translocations. Genes Chromosomes Cancer, 2000; 29: 96–105.3.0.CO;2-T>CrossRefGoogle Scholar
Beverloo, H. B., Panagopoulos, I., Isaksson, M., et al.Fusion of the homeobox gene HLXB9 and the ETV6 gene in infant acute myeloid leukemias with the t(7;12)(q36;p13). Cancer Res, 2001; 61: 5374–7.Google Scholar
Cross, N. C. & Reiter, A.Tyrosine kinase fusion genes in chronic myeloproliferative diseases. Leukemia, 2002; 16: 1207–12.CrossRefGoogle ScholarPubMed
Vieira, L., Marques, B., Ambrosio, A. P., et al.TEL and MN1 fusion in myelodysplastic syndrome: new evidence for a therapy-related event. Br J Haematol, 2000; 110: 238–9.CrossRefGoogle ScholarPubMed
Buijs, A., Sherr, S., Baal, S., et al.Translocation (12;22) (p13;q11) in myeloproliferative disorders results in fusion of the ETS-like TEL gene on 12p13 to the MN1 gene on 22q11. Oncogene, 1995; 10: 1511–19.Google ScholarPubMed
Cho, H., Orphanides, G., Sun, X., et al.A human RNA polymerase II complex containing factors that modify chromatin structure. Mol Cell Biol, 1998; 18: 5355–63.CrossRefGoogle ScholarPubMed
Blobel, G. A.CREB-binding protein and p300: molecular integrators of hematopoietic transcription. Blood, 2000; 95: 745–55.Google ScholarPubMed
Panagopoulos, I., Fioretos, T., Isaksson, M., et al.Fusion of the MORF and CBP genes in acute myeloid leukemia with the t(10;16)(q22;p13). Hum Mol Genet, 2001; 10: 395–404.CrossRefGoogle Scholar
Taki, T., Sako, M., Tsuchida, M., & Hayashi, Y.The t(11;16)(q23;p13) translocation in myelodysplastic syndrome fuses the MLL gene to the CBP gene. Blood, 1997; 89: 3945–50.Google Scholar
Morgan, R., Riske, C. B., Meloni, A., et al.t(16;21)(p11.2;q22): a recurrent primary rearrangement in ANLL. Cancer Genet Cytogenet, 1991; 53: 83–90.CrossRefGoogle Scholar
Ichikawa, H., Shimizu, K., Hayashi, Y., & Ohki, M.An RNA-binding protein gene, TLS/FUS, is fused in ERG in human myeloid leukemia with t(16;21) chromosomal translocation. Cancer Res, 1994; 54: 2865–8.Google Scholar
La Starza, R., Sambani, C., Crescenzi, B., et al.AML1/MTG16 fusion gene from a t(16;21)(q24;q22) translocation in treatment-induced leukemia after breast cancer. Haematologica, 2001; 86: 212–13.Google Scholar
Kondoh, K., Nakata, Y., Furuta, T., et al.A pediatric case of secondary leukemia associated with t(16;21)(q24;q22) exhibiting the chimeric AML1-MTG16 gene. Leuk Lymphoma, 2002; 43: 415–20.CrossRefGoogle Scholar
Friedman, A. D.Leukemogenesis by CBF oncoproteins. Leukemia, 1999; 13: 1932–42.CrossRefGoogle ScholarPubMed
Osato, M., Asou, N., Abdalla, E., et al.Biallelic and heterozygous point mutations in the runt domain of the AML1/PEBP2alphaB gene associated with myeloblastic leukemias. Blood, 1999; 93: 1817–24.Google ScholarPubMed
Michaud, J., Wu, F., Osato, M., et al.In vitro analyses of known and novel RUNX1/AML1 mutations in dominant familial platelet disorder with predisposition to acute myelogenous leukemia: implications for mechanisms of pathogenesis. Blood, 2002; 99: 1364–72.CrossRefGoogle ScholarPubMed
Song, W. J., Sullivan, M. G., Legare, R. D., et al.Haploinsufficiency of CBFA2 causes familial thrombocytopenia with propensity to develop acute myelogenous leukaemia. Nat Genet, 1999; 23: 166–75.CrossRefGoogle ScholarPubMed
Roulston, D., Nucifora, G., Dietz-Band, J., Le Beau, M. M., & Rowley, J.Detection of rare 21q22 translocation breakpoints within the AML1 gene in myeloid neoplasms by fluorescence in situ hybridization. Blood, 1993; 82(Supp1. 1): 532a, abstract 2114.Google Scholar
Bohlander, S. K.Fusion genes in leukemia: an emerging network. Cytogenet Cell Genet, 2000; 91: 52–6.CrossRefGoogle ScholarPubMed
Harris, N. L., Jaffe, E. S., Diebold, J., et al.World Health Organization classification of neoplastic diseases of the hematopoietic and lymphoid tissues: report of the Clinical Advisory Committee meeting – Airlie House, Virginia, November 1997. J Clin Oncol, 1999; 17: 3835–49.CrossRefGoogle Scholar
Jaffe, E. S., Harris, N. L., Stein, H., & Vardiman, J. W., eds. World Health Organization Classification of Tumours. Pathology and Genetics of Tumours of Hematopoietic and Lymphoid Tissues (Lyon, France: IARC Press, 2001).Google Scholar
Golub, T. R., Slonim, D. K., Tamayo, P., et al.Molecular classification of cancer: class discovery and class prediction by gene expression monitoring. Science, 1999; 286: 531–7.CrossRefGoogle ScholarPubMed
Ferrando, A. A., Neuberg, D. S., Staunton, J., et al.Gene expression signatures define novel oncogenic pathways in T cell acute lymphoblastic leukemia. Cancer Cell, 2002; 1: 75–87.CrossRefGoogle ScholarPubMed
Yeoh, E. J., Ross, M. E., Shurtleff, S. A., et al.Classification, subtype discovery, and prediction of outcome in pediatric acute lymphoblastic leukemia by gene expression profiling. Cancer Cell, 2002; 1: 133–43.CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×