Skip to main content Accessibility help
×
Hostname: page-component-78c5997874-mlc7c Total loading time: 0 Render date: 2024-11-17T19:48:01.009Z Has data issue: false hasContentIssue false

Chapter 17 - Hemodilution

from Section 3 - Techniques

Published online by Cambridge University Press:  05 June 2016

Robert G. Hahn
Affiliation:
Linköpings Universitet, Sweden
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2016

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Klövekorn, W.P., Laks, H., Pilon, R.N., et al. Effects of acute hemodilution in man. Eur Surg Res 1973; 5(Suppl 2): 27–8.Google Scholar
Jamnicki, M., Kocian, R., van der Linden, P., Zaugg, M., Spahn, D.R.. Acute normovolemic hemodilution: physiology, limitations, and clinical use. J Cardiothorac Vasc Anesth 2003; 17: 747–54.CrossRefGoogle ScholarPubMed
Van der Linden, P.. The physiology of acute isovolaemic anaemia. Acta Anaesthesiol Belg 2002; 53: 97103.Google ScholarPubMed
Hébert, P.C., Van der Linden, P., Biro, G.P., Qun, L.. Physiologic aspects of anemia. Crit Care Clin 2004; 20: 187212.CrossRefGoogle ScholarPubMed
Kreimeier, U., Messmer, K.. Perioperative hemodilution. Transfus Apher Sci 2002; 27: 5972.CrossRefGoogle ScholarPubMed
Tsui, A.K., Dattani, N.D., Marsden, P.A., et al. Reassessing the risk of hemodilutional anemia: Some new pieces to an old puzzle. Can J Anaesth 2010; 57: 779–91.CrossRefGoogle Scholar
Chapler, C.K., Cain, C.M.. The physiologic reserve in oxygen carrying capacity: studies in experimental hemodilution. Can J Physiol Pharmacol 1986, 64: 712.CrossRefGoogle ScholarPubMed
Fan, F.C., Chen, R.Y.Z., Schuessler, G.B., Chien, S.. Effects of hematocrit variations on regional hemodynamics and and oxygen transport in the dog. Am J Physiol 1980; 238: H545–52.Google ScholarPubMed
Lauscher, P., Kertscho, H., Schmidt, O., et al. Determina-tion of organ-specific anemia tolerance. Crit Care Med 2013; 41: 1037–45.CrossRefGoogle Scholar
Crystal, G.J.. Regional tolerance to acute normovo-lemic hemodilution: evidence that the kidney may be at greatest risk. J Cardiothorac Vasc Anesth 2015; 29: 320–7.CrossRefGoogle ScholarPubMed
Messmer, K., Gutierrez, G., Vincent, J.L.. Blood rheology factors and capillary blood flow. In: Tissue Oxygen Utilization. Berlin, Heidelberg, New-York: Springer-Verlag; 1991: 103–13.Google Scholar
Van der Linden, P., Gilbart, E., Paques, P., Simon, C., Vincent, J.L.. Influence of hematocrit on tissue O2 extraction capabilities during acute hemorrhage. Am J Physiol 1993; 264: H1942–7.Google ScholarPubMed
Rodman, T., Close, H.P., Purcell, M.K.. The oxyhemoglobin dissociation curve in anemia. Ann Intern Med 1960; 52: 295301.Google ScholarPubMed
Kungys, G., Rose, D.D., Fleming, N.W.. Stroke volume variation during acute normovolemic hemodilution. Anesth Analg 2009; 109: 1823–30.CrossRefGoogle ScholarPubMed
Ickx, B., Rigolet, M., Van der Linden, P.. Cardiovascular and metabolic response to acute normovolemic anemia: effects of anesthesia. Anesthesiology 2000; 93: 1011–16.CrossRefGoogle ScholarPubMed
Spahn, D.R., Leone, B.J., Reves, J.G., Pasch, T.. Cardiovascular and coronary physiology of acute isovolemic hemodilution: a review of nonoxygen-carrying and oxygen-carrying solutions. Anesth Analg 1994; 78: 1000–21.CrossRefGoogle ScholarPubMed
Räsänen, J.. Supply-dependent oxygen consumption and mixed venous oxyhemoglobin saturation during isovolemic hemodilution in pigs. Chest 1992; 101: 1121–4.CrossRefGoogle ScholarPubMed
Van der Linden, P., De Groote, F., Mathieu, N., et al. Critical haemoglobin concentration in anaesthetized dogs: comparison of two plasma substitutes. Br J Anaesth 1998; 81: 556–62.CrossRefGoogle ScholarPubMed
Van der Linden, P., De Hert, S., Mathieu, N., et al. Tolerance to acute isovolemic hemodilution: effect of anesthetic depth. Anesthesiology 2003; 99: 97104.CrossRefGoogle ScholarPubMed
Pape, A., Kutschker, S., Kertscho, H., et al. The choice of the intravenous fluid influences the tolerance of acute normovolemic anemia in anesthetized domestic pigs. Crit Care 2012; 16: R69.CrossRefGoogle ScholarPubMed
van Woerkens, E.C.S.M., Trouwborst, A., Van Lanschot, J.J.B.. Profound hemodilution: what is the critical level of hemodilution at which oxygen delivery-dependent oxygen consumption starts in an anesthetized human? Anesth Analg 1992; 75: 818–21.CrossRefGoogle Scholar
Richardson, T.Q., Guyton, A.C.. Effects of polycythemia and anemia on cardiac output and other circulatory factors. Am J Physiol 1959; 197: 1167–70.CrossRefGoogle Scholar
Otsuki, D.A., Fantoni, D.T., Margarido, C.B., et al. Hydroxyethyl starch is superior to lactated Ringer as a replacement fluid in a pig model of acute normovolaemic haemodilution. Br J Anaesth 2007; 98: 2937.CrossRefGoogle Scholar
Arya, V.K., Nagdeve, N.G., Kumar, A., Thingnam, S.K., Dhaliwal, R.S.. Comparison of hemodynamic changes after acute normovolemic hemodilution using Ringer's lactate versus 5% albumin in patients on beta-blockers undergoing coronary artery bypass surgery. J Cardiothorac Vasc Anesth 2006; 20: 812–18.CrossRefGoogle ScholarPubMed
Jacob, M., Chappell, D.. Reappraising Starling: the physiology of the microcirculation. Curr Opin Crit Care 2013; 19: 282–9.CrossRefGoogle ScholarPubMed
Konrad, F.M., Mik, E.G., Bodmer, S.I., et al. Acute normovolemic hemodilution in the pig is associated with renal tissue edema, impaired renal microvascular oxygenation, and functional loss. Anesthesiology 2013; 119: 256–69.CrossRefGoogle ScholarPubMed
Kahvegian, M., Aya Otsuki, D., Holms, C., et al. Modulation of inflammation during acute normovolemic anemia with different fluid replacement. Minerva Anestesiol 2013; 79: 1113–25.Google Scholar
Weiskopf, R.B., Feiner, J., Hopf, H., et al. Heart rate increases linearly in response to acute isovolemic anemia. Transfusion 2003; 43: 235–40.CrossRefGoogle ScholarPubMed
Carson, J.L., Carless, P.A., Hebert, P.C.. Transfusion thresholds and other strategies for guiding allogeneic red blood cell transfusion. Cochrane Database Syst Rev 2012; 4: CD002042.Google ScholarPubMed
Carson, J.L., Brooks, M.M., Abbott, J., et al. Liberal versus restrictive transfusion thresholds for patients with symptomatic coronary artery disease. Am Heart J 2013; 165: 964–71.CrossRefGoogle ScholarPubMed
Tircoveanu, R., Van der Linden, P.. Hemodilution and anemia in patients with cardiac disease: what is the safe limit? Curr Opin Anaesthesiol 2008; 21: 6670.CrossRefGoogle ScholarPubMed
Licker, M., Ellenberger, C., Sierra, J., et al. Cardioprotective effects of acute normovolemic hemodilution in patients undergoing coronary artery bypass surgery. Chest 2005; 128: 838–47.CrossRefGoogle ScholarPubMed
Cromheecke, S., Lorsomradee, S., Van der Linden, P.J., De Hert, S.G.. Moderate acute isovolemic hemodilution alters myocardial function in patients with coronary artery disease. Anesth Analg 2008; 107: 1145–52.CrossRefGoogle ScholarPubMed
De Hert, S.G., Cromheecke, S., Lorsomradee, S., Van der Linden, P.J.. Effects of moderate acute isovolaemic haemodilution on myocardial function in patients undergoing coronary surgery under volatile inhalational anaesthesia. Anaesthesia 2009; 64:239–45.CrossRefGoogle ScholarPubMed
Hogue, C.W., Goodnough, L.T., Monk, T.. Perioperative myocardial ischemic episodes are related to hematocrit level in patients undergoing radical prostatectomy. Transfusion 1998; 38: 1070–7.CrossRefGoogle ScholarPubMed
Ouakine-Orlando, B., Samama, C.M., de Moerloose, P., et al. Hématocrite et hémostase. In: Hémorragies et thromboses périopératoires: approche pratique. Paris: Masson; 2000: 113–19.Google Scholar
Van der Linden, P., Ickx, B.E.. The effects of colloid solutions on hemostasis. Can J Anaesth 2006; 53(Suppl): S30–9.Google ScholarPubMed
Westphal, M., James, M.F., Kozek-Langenecker, S., et al. Hydroxyethyl starches: different products–different effects. Anesthesiology 2009; 111: 187202.CrossRefGoogle ScholarPubMed
Jones, S.B., Whitten, C.W., Despotis, G.J., Monk, T.G.. The influence of crystalloid and colloid replacement solutions in acute normovolemic hemodilution: a preliminary survey of hemostatic markers. Anesth Analg 2003; 96: 363–8, table of contents.CrossRefGoogle ScholarPubMed
Thyes, C., Madjdpour, C., Frascarolo, P., et al. Effect of high- and low-molecular-weight low-substituted hydroxyethyl starch on blood coagulation during acute normovolemic hemodilution in pigs. Anesthesiology 2006; 105: 1228–37.CrossRefGoogle ScholarPubMed
Kangg, J.G., Ahn, H.J., Kim, G.S., et al. The hemostatic profiles of patients with Type O and non-O blood after acute normovolemic hemodilution with 6% hydroxyethyl starch (130/0.4). Anesth Analg 2006; 103: 1543–8.Google Scholar
Reyher, C., Bingold, T.M., Menzel, S., et al. Impact of acute normovolemic hemodilution on primary hemostasis. Anaesthesist 2014; 63: 496502.CrossRefGoogle ScholarPubMed
Lu, S.Y., Konig, G., Yazer, M.H., et al. Stationary versus agitated storage of whole blood during acute normovolemic hemodilution. Anesth Analg 2014; 118: 264–8.CrossRefGoogle ScholarPubMed
Bryson, G.L., Laupacis, A., Wells, G.A.. Does acute normovolemic hemodilution reduce perioperative allogeneic transfusion? A meta-analysis. Anesth Analg 1998; 86: 915.CrossRefGoogle ScholarPubMed
Segal, J.B., Blasco-Colmenares, E., Norris, E.J., Guallar, E.. Preoperative acute normovolemic hemodilution: a meta-analysis. Transfusion 2004; 44: 632–44.CrossRefGoogle ScholarPubMed
Guo, J.R., Jin, X.J., Yu, J., et al. Acute normovolemic hemodilution effects on perioperative coagulation in elderly patients undergoing hepatic carcinectomy. Asian Pacif J Cancer Prevent 2013; 14: 4529–32.Google ScholarPubMed
Weiskopf, R.B.. Efficacy of acute normovolemic hemodilution assessed as a function of fraction of blood volume lost. Anesthesiology 2001; 94: 439–46.CrossRefGoogle ScholarPubMed
Carless, P., Moxey, A., O'Connell, D., Henry, D.. Autologous transfusion techniques: a systematic review of their efficacy. Transfus Med 2004; 14: 123–44.CrossRefGoogle ScholarPubMed
Singbartl, G., Held, A.L., Singbartl, K.. Ranking the effectiveness of autologous blood conservation measures through validated modeling of independent clinical data. Transfusion 2013; 53: 3060–79.CrossRefGoogle ScholarPubMed
White, N., Bayliss, S., Moore, D.. Systematic review of interventions for minimizing perioperative blood transfusion for surgery for craniosynostosis. J Craniofac Surg 2015; 26: 2636.CrossRefGoogle ScholarPubMed
Voorn, V.M., Marang-van de Mheen, P.J., Wentink, M.M., et al. Frequent use of blood-saving measures in elective orthopaedic surgery: a 2012 Dutch blood management survey. BMC Musculoskel Dis 2013; 14: 230.CrossRefGoogle ScholarPubMed
Matot, I., Scheinin, O., Jurim, O., Eid, A.. Effectiveness of acute normovolemic hemodilution to minimize allogeneic blood transfusion in major liver resections. Anesthesiology 2002; 97: 794800.CrossRefGoogle ScholarPubMed
Jarnagin, W.R., Gonen, M., Maithel, S.K., et al. A prospective randomized trial of acute normovolemic hemodilution compared to standard intraoperative management in patients undergoing major hepatic resection. Ann Surg 2008; 248: 360–9.CrossRefGoogle ScholarPubMed
Spahn, D.R., Waschke, K.F., Standl, T., et al. Use of perflubron emulsion to decrease allogeneic blood transfusion in high-blood-loss non-cardiac surgery: results of a European phase 3 study. Anesthesiology 2002; 97: 1338–49.CrossRefGoogle ScholarPubMed
Frankel, T.L., Fischer, M., Grant, F., et al. Selecting patients for acute normovolemic hemodilution during hepatic resection: a prospective randomized evaluation of nomogram-based allocation. J Am Coll Surg 2013; 217: 210–20.CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×