Skip to main content Accessibility help
×
Hostname: page-component-84b7d79bbc-7nlkj Total loading time: 0 Render date: 2024-07-25T12:48:33.725Z Has data issue: false hasContentIssue false

7 - Evolutionary cooperative spectrum sensing games

from Part I - Cognitive radio communications and cooperation

Published online by Cambridge University Press:  06 December 2010

K. J. Ray Liu
Affiliation:
University of Maryland, College Park
Beibei Wang
Affiliation:
Qualcomm Incorporated
Get access

Summary

Cooperative spectrum sensing has been shown to be able to greatly improve the sensing performance in cognitive radio networks. However, if cognitive users belong to different service providers, they tend to contribute less to sensing in order to increase their own throughput. In this chapter, we discuss an evolutionary game framework to answer the question of “how to collaborate” in multiuser decentralized cooperative spectrum sensing, because evolutionary game theory provides an excellent means to address the strategic uncertainty that a user/player may face by exploring different actions, adaptively learning during the strategic interactions, and approaching the best response strategy under changing conditions and environments using replicator dynamics. We derive the behavior dynamics and the evolutionarily stable strategy (ESS) of the secondary users. We then prove that the dynamics converge to the ESS, which makes possible a decentralized implementation of the proposed sensing game. Employing the dynamics, we further develop a distributed learning algorithm so that the secondary users approach the ESS solely on the basis of their own payoff observations. Simulation results show that the average throughput achieved in the proposed cooperative sensing game is higher than that in the case in which secondary users sense the primary user individually without cooperation. The proposed game is demonstrated to converge to the ESS, and to achieve a higher system throughput than that of the fully cooperative scenario, in which all users contribute to sensing in every time slot.

Type
Chapter
Information
Cognitive Radio Networking and Security
A Game-Theoretic View
, pp. 177 - 199
Publisher: Cambridge University Press
Print publication year: 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×