Skip to main content Accessibility help
×
Hostname: page-component-84b7d79bbc-x5cpj Total loading time: 0 Render date: 2024-07-25T13:00:34.188Z Has data issue: false hasContentIssue false

2 - Game theory for cognitive radio networks

from Part I - Cognitive radio communications and cooperation

Published online by Cambridge University Press:  06 December 2010

K. J. Ray Liu
Affiliation:
University of Maryland, College Park
Beibei Wang
Affiliation:
Qualcomm Incorporated
Get access

Summary

Cognitive radio technology, a revolutionary communication paradigm that can utilize the existing wireless spectrum resources more efficiently, has been receiving growing attention in recent years. Now that network users need to adapt their operating parameters to the dynamic environment, and may pursue different goals, traditional spectrum-sharing approaches based on a fully cooperative, static, and centralized network environment are no longer applicable. Instead, game theory has been recognized as an important tool in studying, modeling, and analyzing the cognitive interaction process. In this chapter, we introduce the most fundamental concepts of game theory, and explain in detail how these concepts can be leveraged in designing spectrum-sharing protocols, with an emphasis on state-of-the-art research contributions in cognitive radio networking. This chapter provides a comprehensive treatment of game theory with important applications in cognitive radio networks, and will aid the design of efficient, self-enforcing, and distributed spectrum-sharing schemes in future wireless networks.

Introduction

Cognitive radio technology has emerged in recent years as a revolutionary communication paradigm, which can provide faster and more reliable wireless services by utilizing the existing spectrum band more efficiently. A notable difference of a cognitive radio network from traditional wireless networks is that users need to be aware of the dynamic environment and adaptively adjust their operating parameters on the basis of interactions with the environment and other users in the network. Traditional spectrum-sharing and management approaches, however, generally assume that all network users cooperate unconditionally in a static environment, and thus they are not applicable to a cognitive radio network.

Type
Chapter
Information
Cognitive Radio Networking and Security
A Game-Theoretic View
, pp. 46 - 86
Publisher: Cambridge University Press
Print publication year: 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×