Skip to main content Accessibility help
×
Hostname: page-component-7479d7b7d-k7p5g Total loading time: 0 Render date: 2024-07-13T04:27:20.817Z Has data issue: false hasContentIssue false

13 - COMBUSTION IN TWO-PHASE FLOWS

Published online by Cambridge University Press:  06 July 2010

Chung K. Law
Affiliation:
Princeton University, New Jersey
Get access

Summary

In many combustion applications the fuel is originally present as either liquid or solid. In order to facilitate mixing and the overall burning rate, as pointed out in Section 6.4.1, the condensed fuel is frequently first atomized or pulverized, and then sprayed or dispersed in the combustion chamber. Consequently, in these devices combustion actually takes place in a two-phase medium, consisting of the dispersed fuel droplets or particles in a primarily oxidizing gas.

A description of two-phase combustion consists of three components, namely the gasification and dynamics of individual and groups of droplets (or particles); a statistical characterization of the spray; and the collective interaction of these droplets with the bulk gaseous medium through the description of the two-phase flow in terms of heat, mass, and momentum transfer. The first component was introduced in Section 6.4 through the d2-law of droplet vaporization and burning, and will be extensively studied in this chapter for both droplets and particles. Specifically, we shall first discuss the general phenomenology of droplet combustion with and without external convection, and the experimental methodologies commonly used in investigating droplet combustion. We shall then study the combustion of single-component droplets by relaxing the various assumptions associated with the d2-law, and hence examine effects of droplet heating, fuel vapor accumulation, and variable transport properties that were briefly mentioned in Section 6.4.4. We shall also relax the assumptions of gas-phase quasi-steadiness, stagnant environment, and solitary droplet by discussing effects due to gas-phase transient diffusion, external convection, and droplet interaction, respectively.

Type
Chapter
Information
Combustion Physics , pp. 559 - 633
Publisher: Cambridge University Press
Print publication year: 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×