Skip to main content Accessibility help
×
Hostname: page-component-77c89778f8-7drxs Total loading time: 0 Render date: 2024-07-18T19:31:18.076Z Has data issue: false hasContentIssue false

22 - Proofs of PCP theorems and the Fourier transform technique

from PART THREE - ADVANCED TOPICS

Published online by Cambridge University Press:  05 June 2012

Sanjeev Arora
Affiliation:
Princeton University, New Jersey
Boaz Barak
Affiliation:
Princeton University, New Jersey
Get access

Summary

The improvements in the constants has many times been obtained by extracting some important property from a previous protocol, using that protocol as a black box and then adding some conceptually new construction. This is more or less what we do in the current paper. … The long code is universal in that it contains every other binary code as a sub-code. Thus it never hurts to have this code available, but it is still surprising that it is beneficial to have such a wasteful code.

–Johan Håstad, 1997

We saw in Chapter 11 that the PCP Theorem implies that computing approximate solutions to many optimization problems is NP-hard. This chapter gives a complete proof of the PCP Theorem. In Chapter 11 we also mentioned that the PCP Theorem does not suffice for proving several other similar results, for which we need stronger (or simply different) “PCP Theorems.” In this chapter we survey some such results and their proofs. The two main results are Raz's Parallel Repetition Theorem (see Section 22.3) and Håstad's Three-Bit PCP Theorem (Theorem 22.16). Raz's theorem leads to strong hardness results for the 2CSP problem over large alphabets. Håstad's theorem shows that certificates for NP languages can be probabilistically checked by examining only three bits in them.

Type
Chapter
Information
Computational Complexity
A Modern Approach
, pp. 460 - 497
Publisher: Cambridge University Press
Print publication year: 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×