Skip to main content Accessibility help
×
Hostname: page-component-5c6d5d7d68-vt8vv Total loading time: 0.001 Render date: 2024-08-07T04:30:42.326Z Has data issue: false hasContentIssue false

References

Published online by Cambridge University Press:  10 August 2023

Steve M. Easterbrook
Affiliation:
University of Toronto
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Computing the Climate
How We Know What We Know About Climate Change
, pp. 313 - 327
Publisher: Cambridge University Press
Print publication year: 2023

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abraham, R., & Ueda, Y. (2000). The Chaos Avant-Garde: Memories of the Early Days of Chaos Theory. Singapore: World Scientific.Google Scholar
Ackerley, D., Highwood, E. J., & Frame, D. J. (2009). Quantifying the Effects of Perturbing the Physics of an Interactive Sulfur Scheme Using an Ensemble of GCMs on the Climateprediction.net Platform. Journal of Geophysical Research Atmospheres, 114(1), 114.CrossRefGoogle Scholar
Ackerman, F., DeCanio, S. J., Howarth, R. B., & Sheeran, K. (2009). Limitations of Integrated Assessment Models of Climate Change. Climatic Change, 95(3–4), 297315.Google Scholar
Alexander, K., & Easterbrook, S. M. (2015). The Software Architecture of Climate Models: A Graphical Comparison of CMIP5 and EMICAR5 Configurations. Geoscientific Model Development, 8(4), 12211232.CrossRefGoogle Scholar
Allaho, M. Y., & Lee, W. (2015). Analyzing the Social Networks of Contributors in Open Source Software Community. In Kazienko, P. & Chawla, N. (Eds.), Applications of Social Media and Social Network Analysis (pp. 5775). Cham: Springer International Publishing.Google Scholar
Allen, M. R., Frame, D. J., Huntingford, C. et al. (2009). Warming Caused by Cumulative Carbon Emissions towards the Trillionth Tonne. Nature, 458(7242), 11631166.Google Scholar
Anonymous. (1963, January). The General Circulation: A Testing Ground. NCAR Quarterly.Google Scholar
Arakawa, A. (2000). A Personal Perspective on the Early Years of General Circulation Modeling at UCLA. In Randall, D. A. (Ed.), General Circulation Model Development: Past, Present, and Future (pp. 165). San Diego, CA: Academic Press.Google Scholar
Arakawa, A., & Lamb, V. R. (1977). Computational Design of the Basic Dynamical Processes of the UCLA General Circulation Model. Methods in Computational Physics: Advances in Research and Applications, 17(1), 173265.Google Scholar
Archer, D., & Pierrehumbert, R. T. (2011). The Warming Papers. Oxford: Wiley-Blackwell.Google Scholar
Armour, K. C., & Roe, G. H. (2011). Climate Commitment in an Uncertain World. Geophysical Research Letters, 38(1), 15.Google Scholar
Arnlond, J. R., & Anderson, E. C. (1957). The Distribution of Carbon-14 in Nature. Tellus, 9(1), 2832.Google Scholar
Arrhenius, S. (1896). On the Influence of Carbonic Acid in the Air upon the Temperature of the Ground. Philosophical Magazine and Journal of Science, 41(251), 237276.Google Scholar
Arrhenius, S. (1896). Über Den Einfluss Des Atmosphärischen Kohlensäuregehalts auf Die Temperatur Der Erdoberfläche. Appendix to the Papers of the Royal Swedish Academy of Sciences (Bihang till Konglig Svenska Vetenskaps-Akademiens Handlingar), 29(1), 1102.Google Scholar
Aspray, W. (1990). John von Neumann and the Origins of Modern Computing. Cambridge, MA: MIT Press.Google Scholar
Aumont, O., Ethé, C., Tagliabue, A., Bopp, L., & Gehlen, M. (2015). PISCES-v2: An Ocean Biogeochemical Model for Carbon and Ecosystem Studies. Geoscientific Model Development, 8(8), 24652513.Google Scholar
Baker, A. H., Hammerling, D. M., Levy, M. N. et al. (2015). A New Ensemble-Based Consistency Test for the Community Earth System Model (pyCECT v1.0). Geoscientific Model Development, 8(9), 28292840.CrossRefGoogle Scholar
Baker, E. (2007). Hadley Centre Review 2006 Final Report.Google Scholar
Bauer, P., Thorpe, A. J., & Brunet, G. (2015). The Quiet Revolution of Numerical Weather Prediction. Nature, 525(7567), 4755.CrossRefGoogle ScholarPubMed
Beck, K. (2002). Test-Driven Development by Example. Boston, MA: Addison-Wesley.Google Scholar
Bender, M. (2013). Paleoclimate. Princeton, NJ: Princeton University Press.CrossRefGoogle Scholar
Bjerknes, V. (1904). Das Problem der Wettervorhersage, betrachtet vom Standpunkte der Mechanik und der Physik (The Problem of Weather Prediction, Considered from the Viewpoints of Mechanics and Physics). Meteorologische Zeitschrift, 21(1–7), 663667.Google Scholar
Bolin, B., & Eriksson, E. (1958). Changes in the Carbon Dioxide Content of the Atmosphere and Sea Due to Fossil Fuel Combustion. In Bolin, B. (Ed.), The Atmosphere and the Sea in Motion: Scientific Contributions to the Rossby Memorial Volume 1 (pp. 130142). New York: Rockefeller Institute Press.Google Scholar
Bony, S., Stevens, B., Held, I. M. et al.(2013). Carbon Dioxide and Climate: Perspectives on a Scientific Assessment. In Ghassem R. Asrar & James W. Hurrell (Eds.), Climate Science for Serving Society (pp. 391–413). Dordrecht: Springer.Google Scholar
Braconnot, P., Marti, O., & Joussaume, S. (1997). Adjustment and Feedbacks in a Global Coupled Ocean-Atmosphere Model. Climate Dynamics, 13(7–8), 507519.Google Scholar
Brand, S. (1995). How Buildings Learn: What Happens after They’re Built. New York, NY: Viking Press.Google Scholar
Bretherton, F., Fulker, D., Gille, J. et al. (1975). Development and Use of the NCAR GCM. Technical Report No. NCAR-TN/STR-101, National Center for Atmospheric Research.Google Scholar
Broecker, W. S. (1987). Unpleasant Surprises in the Greenhouse? Nature, 328(6126), 123126.CrossRefGoogle Scholar
Brown, A., Milton, S., Cullen, M. et al. (2012). Unified Modeling and Prediction of Weather and Climate: A 25-Year Journey. Bulletin of the American Meteorological Society, 93(12), 18651877.Google Scholar
Brownsword, L., & Clements, P. C. (1996). A Case Study in Successful Product Line Development (No. CMU/SEI-96-TR-016). Pittsburgh: Software Engineering Institute, Carnegie Mellon University.Google Scholar
Bryan, K., Manabe, S., & Pacanowski, R. C. (1975). A Global Ocean-Atmosphere Climate Model. Part II. The Oceanic Circulation. Journal of Physical Oceanography, 5(1), 3046.Google Scholar
Caesar, L., Rahmstorf, S., Robinson, A., Feulner, G., & Saba, V. (2018). Observed Fingerprint of a Weakening Atlantic Ocean Overturning Circulation. Nature, 556(7700), 191196.Google Scholar
Callendar, G. S. (1938). The Artificial Production of Carbon Dioxide and Its Influence on Temperature. Quarterly Journal of the Royal Meteorological Society, 64(1909), 223240.CrossRefGoogle Scholar
Carrington, D. (2022, July 21). Revealed: Oil Sector’s ‘Staggering’ $3bn-a-day Profits for Last 50 years. The Guardian.Google Scholar
Cess, R. D., & Potter, G. L. (1988). A Methodology for Understanding and Intercomparing Atmospheric Climate Feedback Processes in General Circulation Models. Journal of Geophysical Research, 93(D7), 8305.Google Scholar
Cess, R. D., Potter, G. L., Blanchet, J. P. et al. (1989). Interpretation of Cloud-Climate Feedback as Produced by 14 Atmospheric General Circulation Models. Science, 245(4917), 513516.Google Scholar
Charney, J. G., Arakawa, A., Baker, J., Bolin, B., Dickinson, R. E., Goody, R. M., … Wunsch, C. I. (1979). Carbon Dioxide and Climate: A Scientific Assessment. Washington, DC: US National Academies.Google Scholar
Charney, J. G., & Eliassen, A. (1949). A Numerical Method for Predicting the Perturbations of the Middle Latitude Westerlies. Tellus A, 2, 3854.Google Scholar
Charney, J. G., Fjörtoft, R., & Neumann, J. Von. (1950). Numerical Integration of the Barotropic Vorticity Equation. Tellus, 2(4), 237254.Google Scholar
Chassignet, E. P., & Xu, X. (2017). Impact of Horizontal Resolution (1/12° to 1/50°) on Gulf Stream Separation, Penetration, and Variability. Journal of Physical Oceanography, 47(8), 19992021.CrossRefGoogle Scholar
Cinquini, L., Crichton, D., Mattmann, C. et al. (2014). The Earth System Grid Federation: An Open Infrastructure for Access to Distributed Geospatial Data. Future Generation Computer Systems, 36, 400417.Google Scholar
Connolley, W. M., & Bracegirdle, T. J. (2007). An Antarctic Assessment of IPCC AR4 Coupled Models. Geophysical Research Letters, 34(22), L22505.Google Scholar
Conway, M. E. (1968). How Do Committees Invent. Datamation, 14(4), 2831.Google Scholar
Craig, A., Valcke, S., & Coquart, L. (2017). Development and Performance of a New Version of the OASIS Coupler, OASIS3-MCT-3.0. Geoscientific Model Development, 10(9), 32973308.CrossRefGoogle Scholar
Craig, H. (1957). The Natural Distribution of Radiocarbon and the Exchange Time of Carbon Dioxide between Atmosphere and Sea. Tellus, 9(1), 117.Google Scholar
Crawford, E. (1996). Arrhenius: From Ionic Theory to the Greenhouse Effect. Canton, MA: Science History Publications.Google Scholar
Crutzen, P. J. (2006). Albedo Enhancement by Stratospheric Sulfur Injections: A Contribution to Resolve a Policy Dilemma? Climatic Change, 77(3–4), 211219.Google Scholar
Cubasch, U., & Cess., R. D. (1990). Processes and Modelling. In Houghton, J. T., Jenkins, G. J., & Ephraums, J. J. (Eds.), Climate Change: The IPCC Scientific Assessment: Report Prepared for Intergovernmental Panel on Climate Change by Working Group I (pp. 6991). Cambridge, UK: Cambridge University Press.Google Scholar
Dahan, A. (2010). Putting the Earth System in a Numerical Box? The Evolution from Climate Modeling toward Global Change. Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics, 41(3), 282292.Google Scholar
Davies, T., Cullen, M. J. P., Malcolm, A. J. et al. (2005). A New Dynamical Core of the Met Office’s Global and Regional Modelling of the Atmosphere. Quarterly Journal of the Royal Meteorological Society, 131(608), 17591782.CrossRefGoogle Scholar
Dennis, J. M., & Loft, R. D. (2011). Refactoring Scientific Applications for Massive Parallelism. In Lauritzen, P., Jablonowski, C., Taylor, M., & Nair, R. (Eds.), Numerical Techniques for Global Atmospheric Models (pp. 539556). Heidelberg, Germany: Springer-Verlag.CrossRefGoogle Scholar
Diacu, F. (1996). The Solution of the N-Body Problem. The Mathematical Intelligencer, 18(3), 6670.CrossRefGoogle Scholar
Doyle, J. (2011). Where Has All the Oil Gone? BP Branding and the Discursive Elimination of Climate Change Risk. In Heffernan, N. & Wragg, D. (Eds.), Culture, Environment and Ecopolitics (pp. 200225). Newcastle upon Tyne, UK: Cambridge Scholars Press.Google Scholar
Dufresne, J.-L. (2008). La détermination de la constante solaire par Claude Matthias Pouillet. La Météorologie, 8(60), 36.Google Scholar
Dufresne, J.-L. (2009). L’effet de serre: sa découverte, son analyse par la méthode des puissances nettes échangées et les effets de ses variations récentes et futures sur le climat terrestre. Université Pierre et Marie Curie, Paris.Google Scholar
Dyson, G. (2012). Turing’s Cathedral. New York, NY: Pantheon Books.Google Scholar
Easterbrook, S. M., & Johns, T. C. (2009). Engineering the Software for Understanding Climate Change. Computing in Science & Engineering, 11(6), 6574.Google Scholar
Edwards, P. N. (1997). Interview of Cecil Leith by Paul Edwards. Niels Bohr Library & Archives. American Institute of Physics, College Park, MD. www.aip.org/history-programs/niels-bohr-library/oral-histories/31392Google Scholar
Edwards, P. N. (1998). Interview of Akira Kasahara by Paul Edwards. Niels Bohr Library & Archives. American Institute of Physics, College Park, MD. www.aip.org/history-programs/niels-bohr-library/oral-histories/32440-1Google Scholar
Edwards, P. N. (2000). A Brief History of Atmospheric General Circulation Modeling. In Randall, D. A. (Ed.), General Circulation Model Development: Past, Present, and Future (Vol. 70, pp. 6790). San Diego, CA: Academic Press.Google Scholar
Edwards, P. N. (2010). A Vast Machine: Computer Models, Climate Data, and the Politics of Global Warming. Cambridge, Massachusetts: MIT Press.Google Scholar
Ekholm, N. (1901). On the Variations of the Climate of the Geological and Historical Past and Their Causes. Quarterly Journal of the Royal Meteorological Society, 27(117), 162.Google Scholar
England, M. H., Kajtar, J. B., & Maher, N. (2015). Robust Warming Projections Despite the Recent Hiatus. Nature Climate Change, 5(5), 394396.Google Scholar
Eyring, V., Bony, S., Meehl, G. A. et al. (2016). Overview of the Coupled Model Intercomparison Project Phase 6 (CMIP6) Experimental Design and Organization. Geoscientific Model Development, 9(5), 19371958.Google Scholar
Feldman, D. R., Collins, W. D., Gero, P. J. et al. (2015). Observational Determination of Surface Radiative Forcing by CO2 from 2000 to 2010. Nature, 519(7543), 339343.Google Scholar
Ferreira, D., Marshall, J., & Campin, J. M. (2010). Localization of Deep Water Formation: Role of Atmospheric Moisture Transport and Geometrical Constraints on Ocean Circulation. Journal of Climate, 23(6), 14561476.Google Scholar
Feyerabend, P. (1975). Against Method: Outline of an Anarchist Theory of Knowledge. London: New Left Books.Google Scholar
Finkbeiner, A. K. (2006). The Jasons: The Secret History of Science’s Postwar Elite. New York, NY: Viking Press.Google Scholar
Fisher, A. (1988). One Model to Fit All. Mosaic, 19(3).Google Scholar
Fishman, C. (1998). They Write the Wight Stuff. IEEE Engineering Management Review, 26(4), 2631.Google Scholar
Fleming, J. R. (1999). Joseph Fourier, the ‘Greenhouse Effect’, and the Quest for a Universal Theory of Terrestrial Temperatures. Endeavour, 23(2), 7275.Google Scholar
Foote, E. (1856). Circumstances Affecting the Heat of the Sun’s Rays. American Journal of Art and Science, 23(67), 382383.Google Scholar
Fourier, J. (1827). On the Temperatures of the Terrestrial Sphere and Interplanetary Space. Mémoires de l’Académie Royale Des Sciences, 7, 569604.Google Scholar
Frenzen, P. (1993). Interview of Dave Fultz. American Meteorological Society Oral History Project. https://opensky.ucar.edu/islandora/object/archives:7598/Google Scholar
Friedman, R. M. (1993). Appropriating the Weather: Vilhelm Bjerknes and the Construction of a Modern Meteorology. Ithaca, NY: Cornell University Press.Google Scholar
Frigg, R., & Reiss, J. (2009). The Philosophy of Simulation: Hot New Issues or Same Old Stew? Synthese, 169(3), 593613.Google Scholar
Frölicher, T. L., Sarmiento, J. L., Paynter, D. J. et al. (2015). Dominance of the Southern Ocean in Anthropogenic Carbon and Heat Uptake in CMIP5 Models. Journal of Climate, 28(2), 862886.Google Scholar
Fultz, D. (1949). A Preliminary Report on Experiments with Thermally Produced Lateral Mixing in a Rotating Hemispherical Shell of Liquid. Journal of Meteorology, 6(1), 1733.Google Scholar
Gao, Y., Gao, X., & Zhang, X. (2017). The 2 °C Global Temperature Target and the Evolution of the Long-Term Goal of Addressing Climate Change – From the United Nations Framework Convention on Climate Change to the Paris Agreement. Engineering, 3(2), 272278.Google Scholar
Garvey, J. (2008). The Ethics of Climate Change: Right and Wrong in a Warming World. London, UK: Continuum International Publishing.Google Scholar
Gates, W. L. (1992). AMIP: The Atmospheric Model Intercomparison Project. Bulletin of the American Meteorological Society, 73(12), 19621970.Google Scholar
Gleckler, P. J., Randall, D. A., Boer, G. et al. (1995). Cloud-Radiative Effects on Implied Oceanic Energy Transports as Simulated by Atmospheric General Circulation Models. Geophysical Research Letters, 22(7), 791794.Google Scholar
Gleick, J. (1987). Chaos: Making a New Science. New York, NY: Viking Books.Google Scholar
Grubb, M. (2016). Full Legal Compliance with the Kyoto Protocol’s First Commitment Period – Some Lessons. Climate Policy, 16(6), 673681.Google Scholar
Hanel, R. A., Conrath, B. J., Kunde, V. G. et al. (1972). The Nimbus 4 Infrared Spectroscopy Experiment: 1. Calibrated Thermal Emission Spectra. Journal of Geophysical Research, 77(15), 26292641.Google Scholar
Hansen, J. E., Sato, M., Kharecha, P. et al. (2008). Target Atmospheric CO2: Where Should Humanity Aim? Open Atmospheric Science Journal, 2(15), 217231.Google Scholar
Harper, K. C. (2008). Weather by the Numbers: The Genesis of Moden Meteorology. Cambridge, MA: MIT Press.Google Scholar
Harper, K. C., Doel, R., & Smagorinsky Thompson, T. (2006). Interview of Margaret Smagorinsky. American Meteorological Society Oral History Project. https://opensky.ucar.edu/islandora/object/archives%3A7644Google Scholar
Hausfather, Z., Drake, H. F., Abbott, T., & Schmidt, G. A. (2020). Evaluating the Performance of Past Climate Model Projections. Geophysical Research Letters, 47(1), 2019GL085378.Google Scholar
Hayhoe, K. (2021). Saving Us: A Climate Scientist’s Case for Hope and Healing in a Divided World. Atria/One Signal Publishers.Google Scholar
Hegerl, G. C., Zwiers, F. W., Braconnot, P. et al. (2007). Understanding and Attributing Climate Change. In Solomon, S., Qin, D., Manning, M., Chen, Z., Marquis, M., Averyt, K. B., … Miller, H. L. (Eds.), Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change (pp. 663745). Cambridge, UK: Cambridge University Press.Google Scholar
Held, I. M. (2005). The Gap between Simulation and Understanding in Climate Modeling. Bulletin of the American Meteorological Society, 86(11), 16091614.Google Scholar
Herraiz, I., Gonzalez-Barahona, J. M., & Robles, G. (2007). Towards a Theoretical Model for Software Growth. In Fourth International Workshop on Mining Software Repositories (MSR’07:ICSE Workshops 2007) (pp. 21–21). IEEE.Google Scholar
Högbom, A. (1894). Om sannolikheten för sekulära förändringar i atmosfärens kolsyrehalt (On the probability of global changes in the level of atmospheric carbon dioxide). Svensk Kemisk Tidskrift (Swedish Chemical Journal), 6, 169177.Google Scholar
Hourdin, F., Mauritsen, T., Gettelman, A. et al. (2017). The Art and Science of Climate Model Tuning. Bulletin of the American Meteorological Society, 98(3), 589602.Google Scholar
Hovy, C. (2020). Unittests für die Klimamodellentwicklung. PhD thesis, University of Hamburg.Google Scholar
Howard, P., & Sylvan, D. (2015). Expert Consensus on the Economics of Climate Change. Institute for Policy Integrity, New York, NY: New York University School of Law.Google Scholar
Hurrell, J., Meehl, G. A., Bader, D. et al. (2009). A Unified Modeling Approach to Climate System Prediction. Bulletin of the American Meteorological Society, 90(12), 18191832.Google Scholar
IPCC. (2021). Summary for Policymakers. In Masson-Delmotte, V., Zhai, P., Pirani, A., Connors, S. L., Péan, C., Berger, S., … Zhou, B. (Eds.), Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change (pp. 332). Cambridge, UK: Cambridge University Press.Google Scholar
IPCC. (2018). Global Warming of 1.5°C, Summary for Policymakers. Geneva.Google Scholar
IPCC. (1998). Principles Governing IPCC Work. Geneva.Google Scholar
Jackson, S. J., Arbor, A., Ribes, D., & Arbor, A. (2010). Exploring Collaborative Rhythm: Temporal Flow and Alignment in Collaborative Scientific Work. In iConference, 3–6 February, 2010 (245254). Urbana-Champaign, IL.Google Scholar
Jakob, C. (2010). Accelerating Progress in Global Atmospheric Model Development through Improved Parameterizations. Bulletin of the American Meteorological Society, 91(7), 869876.Google Scholar
Jouzel, J., Masson-Delmotte, V., Cattani, O. et al. (2007). Orbital and Mmillennial Antarctic Climate Variability Over the Past 800,000 Years. Science (New York, N.Y.), 317(5839), 793796.Google Scholar
Karl, T., Hassol, S. J., Miller, C. D., & Murray, W. (2006). Temperature Trends in the Lower Atmosphere: Steps for Understanding and Reconciling Differences. Washington, DC: US Climate Change Science Program.Google Scholar
Kasahara, A. (2015). Serendipity: Research Career of One Scientist. NCAR Technical Note NCAR/TN-507+PROC (Vol. 507).Google Scholar
Katzav, J., & Parker, W. S. (2015). The Future of Climate Modeling. Climatic Change, 132(4), 475487.Google Scholar
Keeling, R. F., Walker, S. J., Piper, S. C., & Bollenbacher, A. F. (2018). Scripps CO2 Program. Retrieved from http://scrippsco2.ucsd.eduGoogle Scholar
Kemp, L., Xu, C., Depledge, J. et al. (2022). Climate Endgame: Exploring Catastrophic Climate Change Scenarios. Proceedings of the National Academy of Sciences, 119(34).Google Scholar
Kikstra, J. S., Waidelich, P., Rising, J. et al. (2021). The Social Cost of Carbon Dioxide Under Climate-Economy Feedbacks and Temperature Variability. Environmental Research Letters, 16(9).Google Scholar
Klein, S. (2020). A Good War: Mobilizing Canada for the Climate Emergency. Toronto, Canada: ECW Press.Google Scholar
Knutti, R., & Rogelj, J. (2015). The Legacy of Our CO2 Emissions: A Clash of Scientific Facts, Politics and Ethics. Climatic Change, 133(3), 361373.Google Scholar
Knutti, R., Rugenstein, M. A. A., & Hegerl, G. C. (2017). Beyond Equilibrium Climate Sensitivity. Nature Geoscience, 10(10), 727736.Google Scholar
Knutti, R., & Sedláček, J. (2013). Robustness and Uncertainties in the New CMIP5 Climate Model Projections. Nature Climate Change, 3(4), 369373.Google Scholar
Lakatos, I. (1976). Falsification and the Methodology of Scientific Research Programmes. In Can Theories be Refuted? (pp. 205259). Dordrecht, Holland: Springer Netherlands.Google Scholar
Lamb, W. F., Mattioli, G., Levi, S. et al. (2020). Discourses of Climate Delay. Global Sustainability, 3, 15.Google Scholar
Latour, B., & Woolgar, S. (1979). Laboratory Life: The Social Construction of Scientific Facts. Beverly Hills: SAGE Publications Ltd.Google Scholar
Laurent, C., Le Treut, H., Fairhead, L., & Dufresne, J.-L. (1998). The Influence of Resolution in Simulating Inter-Annual and Inter-Decadal Variability in a Coupled Ocean-Atmosphere GCM, with Emphasis Over the North Atlantic. Paris: Université Pierre et Marie Curie.Google Scholar
Lawrence, B. N., Rezny, M., Budich, R. et al. (2018). Crossing the Chasm: How to Develop Weather and Climate Models for Next Generation Computers? Geoscientific Model Development, 11(5), 17991821.CrossRefGoogle Scholar
Lehner, F., Deser, C., Maher, N. et al. (2020). Partitioning Climate Projection Uncertainty with Multiple Large Ensembles and CMIP5/6. Earth System Dynamics, 11(2), 491508.Google Scholar
Lenhard, J., & Winsberg, E. (2010). Holism, Entrenchment, and the Future of Climate Model Pluralism. Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics, 41(3), 253262.Google Scholar
Lenton, T. M., Rockström, J., Gaffney, O. et al. (2019). Climate Tipping Points – Too Risky to Bet Against. Nature, 575(7784), 592595.Google Scholar
Leveson, N. G. (1995). Safeware: System Safety and Computers. Reading, MA: Addison-Wesley.Google Scholar
Lewandowsky, S. (2020). Climate Change Disinformation and How to Combat It. Annual Review of Public Health, 42, 121.Google Scholar
Lewandowsky, S., Cowtan, K., Risbey, J. S. et al. (2018). The ‘Pause’ in Global Warming in Historical Context: (II). Comparing Models to Observations. Environmental Research Letters, 13(12), 123007.Google Scholar
Lewandowsky, S., Oberauer, K., & Gignac, G. E. (2013). NASA Faked the Moon Landing – Therefore, (Climate) Science Is a Hoax: An Anatomy of the Motivated Rejection of Science. Psychological Science, 24(5), 622633.Google Scholar
Lewis, J. M. (1993). Meteorologists from the University of Tokyo: Their Exodus to the United States Following World War II. Bulletin of the American Meteorological Society, 74(7), 13511360.Google Scholar
Lewis, J. M. (1998). Clarifying the Dynamics of the General Circulation: Phillips’s 1956 Experiment. Bulletin of the American Meteorological Society, 79(1), 3960.Google Scholar
Li, X., & Peng, X. (2018). Long-Term Integration of a Global Non-Hydrostatic Atmospheric Model on an Aqua Planet. Journal of Meteorological Research, 32(4), 517533.Google Scholar
Lorenz, E. N. (1963). Deterministic Nonperiodic Flow. Journal of the Atmospheric Sciences, 20(2), 130141.Google Scholar
Lorenz, E. N. (1993). The Essence of Chaos. Seattle, WA: University of Washington Press.Google Scholar
Lorenz, E. N. (2006). Reflections on the Conception, Birth, and Childhood of Numerical Weather Prediction. Annual Review of Earth and Planetary Sciences, 34(1), 3745.Google Scholar
Lozier, M. S. (2010). Deconstructing the Conveyor Belt. Science, 328(5985), 15071511.Google Scholar
Lynch, P. (1993). Richardson’s Forecast Factory: the $64,000 Question. The Meteorological Magazine, 122, 6970.Google Scholar
Lynch, P. (2008). The Origins of Computer Weather Prediction and Climate Modeling. Journal of Computational Physics, 227(7), 34313444. https://doi.org/10.1016/j.jcp.2007.02.034CrossRefGoogle Scholar
Lynch, P. (2014). The Emergence of Numerical Weather Prediction: Richardson’s Dream. Cambridge, UK: Cambridge University Press.Google Scholar
Lynch, P. (2016). An Artist’s Impression of Richardson’s Fantastic Forecast Factory. Weather, 71(1), 1418.Google Scholar
Lynch, P., & Lynch, O. (2008). Forecasts by PHONIAC. Weather, 63(11), 324326. https://doi.org/10.1002/wea.241Google Scholar
MacDonald, G., Abarbanel, H., Carruthers, P. et al. (1979). The Long Term Impact of Atmospheric Carbon Dioxide on Climate. Technical Report No. JSR-78-07. SRI International.Google Scholar
Machiavelli, N. (1532). The Prince. Antonio Blado d’Asola.Google Scholar
Madec, G. (2008). NEMO Ocean Engine. IPSL Technical Report.Google Scholar
Madey, G., Freeh, V., & Tynan, R. (2002). The Open Source Software Development Phenomenon: An Analysis Based on Social Network Theory. In Americas Conference on Information Systems (AMCIS), Vol. 247, pp. 1806–1813.Google Scholar
Maher, N., Milinski, S., Suarez-Gutierrez, L. et al. (2019). The Max Planck Institute Grand Ensemble: Enabling the Exploration of Climate System Variability. Journal of Advances in Modeling Earth Systems, 11(7), 20502069.Google Scholar
Manabe, S., & Bryan, K. (1969). Climate Calculations with a Combined Ocean-Atmosphere Model. Journal of the Atmospheric Sciences, 26(4), 786789.Google Scholar
Manabe, S., & Wetherald, R. T. (1967). Thermal Equilibrium of the Atmosphere with a Given Distribution of Relative Humidity. Journal of the Atmospheric Sciences, 24(3), 241259.Google Scholar
Manabe, S., & Wetherald, R. T. (1975). The Effects of Doubling the CO2 Concentration on the Climate of a General Circulation Model. Journal of the Atmospheric Sciences, 32(1), 315.Google Scholar
Matthews, D., Wilson, G. V., & Easterbrook, S. M. (2008). Configuration Management for Large-Scale Scientific Computing at the UK Met Office. Computing in Science & Engineering, 10(6), 5664.Google Scholar
Matthews, H. D., & Caldeira, K. (2008). Stabilizing Climate Requires Near-Zero Emissions. Geophysical Research Letters, 35(4), 15.Google Scholar
Mauritsen, T., Bader, J., Becker, T. et al. (2019). Developments in the MPI‐M Earth System Model Version 1.2 (MPI‐ESM1.2) and Its Response to Increasing CO 2. Journal of Advances in Modeling Earth Systems, 11(4), 9981038.Google Scholar
Mauritsen, T., Stevens, B., Roeckner, E. et al. (2012). Tuning the Climate of a Global Model. Journal of Advances in Modeling Earth Systems, 4(3).Google Scholar
McCusker, K. E., Armour, K. C., Bitz, C. M., & Battisti, D. S. (2014). Rapid and Extensive Warming Following Cessation of Solar Radiation Management. Environmental Research Letters, 9(2).Google Scholar
McGuffie, K., & Henderson-Sellers, A. (2005). A Climate Modelling Primer. A Climate Modelling Primer (Vol. 1). Chichester, UK: John Wiley & Sons, Ltd.Google Scholar
Meehl, G. A., Boer, G. J., Covey, C., Latif, M., & Stouffer, R. J. (2000). The Coupled Model Intercomparison Project (CMIP). Bulletin of the American Meteorological Society, 81(2), 313318.Google Scholar
Meehl, G. A., Teng, H., & Arblaster, J. M. (2014). Climate Model Simulations of the Observed Early-2000s Hiatus of Global Warming. Nature Climate Change, 4(10), 898902.Google Scholar
Meinshausen, M., Meinshausen, N., Hare, W. et al. (2009). Greenhouse-Gas Emission Targets for Limiting Global Warming to 2 Degrees C. Nature, 458(7242), 11581162.Google Scholar
Mohr, S. E. (2018). First in Fly. Cambridge, MA: Harvard University Press.Google Scholar
Möller, F. (1963). On the Influence of Changes in the CO2 Concentration in Air on the Radiation Balance of the Earth’s Surface and on the Climate. Journal of Geophysical Research, 68(13), 38773886.Google Scholar
Monnin, E., Indermühle, A., Dällenbach, A. et al. (2001). Atmospheric CO2 Concentrations Over the Last Glacial Termination. Science (New York, N.Y.), 291(5501), 112114.Google Scholar
Moore, G. E. (2006). Moore’s Law at 40. In Brock, D. C. (Ed.), Understanding Moore’s Law: Four Decades of Innovation (pp. 6784), Philadelphia, PA.Google Scholar
Moss, R. H., Babiker, M., Brinkman, S. et al. (2008). Towards New Scenarios for Analysis of Emissions, Climate Change, Impacts, and Response Strategies: IPCC Expert Meeting Report. IPCC. Geneva.Google Scholar
Moss, R. H., Edmonds, J. A., Hibbard, K. A. et al. (2010). The Next Generation of Scenarios for Climate Change Research and Assessment. Nature, 463(7282), 747756.Google Scholar
NASA. (1986). Earth System Science. Washington, DC: National Academies Press.Google Scholar
National Academies. (2016). From Maps to Models. From Maps to Models: Augmenting the Nation’s Geospatial Intelligence Capabilities. Washington, DC: National Academies Press.Google Scholar
National Academies of Sciences Engineering and Medicine. (2017). Valuing Climate Changes: Updating Estimation of the Social Cost of Carbon Dioxide. Washington, DC: National Academies Press.Google Scholar
Nebeker, F. (1995). Calculating the Weather. International Geophysical Series (Vol. 60). Academic Press.Google Scholar
Olson, S. (2014). The National Academy of Sciences at 150. Proceedings of the National Academy of Sciences, 111(Supplement_2), 93279364.Google Scholar
Oreskes, N., & Conway, E. M. (2010). Merchants of Doubt: How a Handful of Scientists Obscured the Truth on Issues from Tobacco Smoke to Global Warming. New York, NY: Bloomsbury Press.Google Scholar
Oreskes, N., Shrader-Frechette, K., & Belitz, K. (1994). Verification, Validation, and Confirmation of Numerical Models in the Earth Sciences. Science, 263(5147), 641.Google Scholar
Ortiz, J. D., & Jackson, R. (2022). Understanding Eunice Foote’s 1856 Experiments: Heat Absorption by Atmospheric Gases. Notes and Records: The Royal Society Journal of the History of Science, 76(1), 6784.Google Scholar
Parnas, D. L. (1994). Software Aging. In Proceedings of 16th International Conference on Software Engineering (pp. 279–287). IEEE Comput. Soc. Press.Google Scholar
Perrow, C. (1984). Normal Accidents: Living with High Risk Technologies. Princeton, NJ: Princeton university press.Google Scholar
Persson, A. O. (2006). Hadley’s Principle: Understanding and Misunderstanding the Trade Winds. History of Meteorology, 3, 1742.Google Scholar
Peterson, T. C., Connolley, W. M., & Fleck, J. (2008). The Myth of the 1970s Global Cooling Scientific Consensus. Bulletin of the American Meteorological Society, 89(9), 13251337.Google Scholar
Petit, J. R., Basile, I., Leruyuet, A. et al. (1997). Four Climate Cycles in Vostok Ice Core. Nature, 387(6631), 359360.Google Scholar
Petrov, Y. (2012). Harmony: EEG/MEG Linear Inverse Source Reconstruction in the Anatomical Basis of Spherical Harmonics. PLoS ONE, 7(10).Google Scholar
Pfeffer, R. L., & Chiang, Y. (1967). Two Kinds of Vacillation in Rotating Laboratory Experiments. Monthly Weather Review, 95(2), 7582.Google Scholar
Phillips, N. A. (1956). The General Circulation of the Atmosphere: A Numerical Experiment. Quarterly Journal of the Royal Meteorological Society, 82(352), 123164.Google Scholar
Pierrehumbert, R. T. (2004). Warming the World. Nature, 432(December), 2004.Google Scholar
Pierrehumbert, R. T., & Archer, D. (2011). By the Light of the Silvery Moon. In The Warming Papers: The Scientific Foundation for the Climate Change Forecast (pp. 4555). Oxford, UK: Wiley-Blackwell.Google Scholar
Pindyck, R. S. (2013). Climate Change Policy: What Do the Models Tell Us? Journal of Economic Literature, 51(3), 123.CrossRefGoogle Scholar
Pipitone, J., & Easterbrook, S. M. (2012). Assessing Climate Model Software Quality: A Defect Density Analysis of Three Models. Geoscientific Model Development, 5(4), 10091022.Google Scholar
Plass, G. N. (1956). The Carbon Dioxide Theory of Climatic Change. Tellus A, 8, 140154. https://doi.org/10.3402/tellusa.v8i2.8969Google Scholar
Plass, G. N. (1956). The Influence of the 15μ Carbon-Dioxide Band on the Atmospheric Infra-Red Cooling Rate. Quarterly Journal of the Royal Meteorological Society, 82(353), 310324.Google Scholar
Plass, G. N. (1959). Carbon Dioxide and Climate. Scientific American, 201(1).Google Scholar
Platzman, G. W. (1979). The ENIAC Computations of 1950: Gateway to Numerical Weather Prediction. Bulletin of the American Meteorological Society, 60, 302312.Google Scholar
Pope, V., & Davies, T. (2002). Testing and Evaluating Atmospheric Climate Models. Computing in Science and Engineering, 4(5), 6469.Google Scholar
Poynting, J. H. (1907). On Prof. Lowell’s Method for Evaluating the Surface-Temperatures of the Planets; with an Attempt to Represent the Effect of Day and Night on the Temperature of the Earth. Philosophical Magazine, 14(84), 749760.Google Scholar
Pulkkinen, K., Undorf, S., Bender, F. et al. (2022). The Value of Values in Climate Science. Nature Climate Change, 12(1), 46.Google Scholar
Rahmstorf, S. (2002). Ocean Circulation and Climate during the Past 120,000 Years. Nature, 419(6903), 207214.Google Scholar
Randalls, S. (2010). History of the 2°C Climate Target. Wiley Interdisciplinary Reviews: Climate Change, 1(4), 598605.Google Scholar
Reason, J. (1997). Managing the Risks of Organizational Accidents. London, UK: Ashgate Publishing.Google Scholar
Reichler, T., & Kim, J. (2008). How Well Do Coupled Models Simulate Today’s Climate? Bulletin of the American Meteorological Society, 89(3), 303311.Google Scholar
Revelle, R., Broecker, W. S., Craig, H., Keeling, C. D., & Smagorinsky, J. (1965). Appendix Y4: Atmospheric Carbon Dioxide. In Tukey, J. W. (Ed.), Restoring the Quality of Our Environment. Washington DC.Google Scholar
Revelle, R., & Suess, H. E. (1957). Carbon Dioxide Exchange between Atmosphere and Ocean and the Question of an Increase of Atmospheric CO2 During the Past Decades. Tellus, 9(1), 1827.Google Scholar
Richardson, L. F. (1922). Weather Prediction by Numerical Processes. Cambridge, UK: Cambridge University Press.Google Scholar
Rijsberman, F. R., & Swart, R. (1990). Targets and Indicators of Climatic Change. Report of Working Group II of the Advisory Group on Greenhouse Gases. The Stockholm Environment Institute.Google Scholar
Rodhe, H., Charlson, R., & Crawford, E. (1997). Svante Arrhenius and the Greenhouse Effect. Ambio, 26(1), 25.Google Scholar
Roeckner, E., Mauritsen, T., Esch, M., & Brokopf, R. (2012). Impact of Melt Ponds on Arctic Sea Ice in Past and Future Climates as Simulated by MPI-ESM. Journal of Advances in Modeling Earth Systems, 4(9).Google Scholar
Rogelj, J., den Elzen, M., Höhne, N. et al. (2016). Paris Agreement Climate Proposals Need a Boost to Keep Warming Well below 2 °C. Nature, 534(7609), 631639.Google Scholar
Rousset, C., Vancoppenolle, M., Madec, G. et al. (2015). The Louvain-La-Neuve Sea Ice Model LIM3.6: Global and Regional Capabilities. Geoscientific Model Development, 8(10), 29913005.Google Scholar
Russell, M., Boulton, G., Clarke, P., Eyton, D., & Norton, J. (2010). The Independent Climate Change E-mails Review. www.cce-review.org/.Google Scholar
Santer, B. D., Wigley, T. M. L., & Taylor, K. E. (2011). The Reproducibility of Observational Estimates of Surface and Atmospheric Temperature Change. Science, 334(6060), 12321233.Google Scholar
Schaeffer, M., Hare, W., Rahmstorf, S., & Vermeer, M. (2012). Long-Term Sea-Level Rise Implied by 1.5 °C and 2 °C Warming Levels. Nature Climate Change, 2(12), 867870.Google Scholar
Schlesinger, M. (1986). Physically Based Modeling and Simulation of Climate and Climatic Change. Eos, Transactions American Geophysical Union, 67(49), 1377.Google Scholar
Schleussner, C.-F., Lissner, T. K., Fischer, E. M. et al. (2016). Differential Climate Impacts for Policy-Relevant Limits to Global Warming: The Case of 1.5 °C and 2 °C. Earth System Dynamics, 7(2), 327351.Google Scholar
Schmidt, G. A. (2005). Water Vapour: Feedback or Forcing? Retrieved from www.realclimate.org/index.php/archives/2005/04/water-vapour-feedback-or-forcing/Google Scholar
Schmidt, G. A., & Sherwood, S. (2015). A Practical Philosophy of Complex Climate Modelling. European Journal for Philosophy of Science, 5(2), 149169.Google Scholar
Schneider, S. H., & Dickinson, R. E. (1974). Climate Modeling. Reviews of Geophysics, 12(3), 447.Google Scholar
Schneider, T., Teixeira, J., Bretherton, C. S. et al. (2017). Climate Goals and Computing the Future of Clouds. Nature Climate Change, 7(1), 35.Google Scholar
Schulte-Uebbing, L., Hansen, G., Hernández, A. M., & Winter, M. (2015). Chapter Scientists in the IPCC AR5-Experience and Lessons Learned. Current Opinion in Environmental Sustainability, 14(June), 250256.Google Scholar
Seidel, D. J., Gillett, N. P., Lanzante, J. R., Shine, K. P., & Thorne, P. W. (2011). Stratospheric Temperature Trends: Our Evolving Understanding. Wiley Interdisciplinary Reviews: Climate Change, 2(4), 592616.Google Scholar
Serreze, M. C., Barrett, A. P., Stroeve, J. C., Kindig, D. N., & Holland, M. M. (2009). The Emergence of Surface-Based Arctic Amplification. Cryosphere, 3(1), 1119.Google Scholar
Shackley, S., Risbey, J., Stone, P., & Wynne, B. (1999). Adjusting to Policy Expectations in Climate Change Modeling: An Interdisciplinary Study of Flux Adjustments in Coupled Atmosphere-Ocean General Circulation Models. Stockholm, Sweden: The Stockholm Environment Institute.Google Scholar
Shaw, M., & Garlan, D. (1996). Software Architecture: Perspectives on an Emerging Discipline. Upper Saddle River, NJ: Prentice Hall.Google Scholar
Simpson, I. R., Tilmes, S., Richter, J. H. et al. (2019). The Regional Hydroclimate Response to Stratospheric Sulfate Geoengineering and the Role of Stratospheric Heating. Journal of Geophysical Research: Atmospheres, 124(23), 12587–12616.Google Scholar
Slingo, J., Bates, K., Nikiforakis, N. et al. (2009). Developing the Next-Generation Climate System Models: Challenges and Achievements. Philosophical Transactions. Series A, Mathematical, Physical, and Engineering Sciences, 367(1890), 815831.Google ScholarPubMed
Smagorinsky, J. (1983). The Beginnings of Numerical Weather Prediction and General Circulation Modelling: Early Recollections. Advances in Geophysics, 25, 338.CrossRefGoogle Scholar
Snyder, C. W. (2016). Evolution of Global Temperature Over the Past Two Million Years. Nature, 18, 117.Google Scholar
Soden, B. J., Held, I. M., Colman, R. et al. (2008). Quantifying Climate Feedbacks Using Radiative Kernels. Journal of Climate, 21(14), 35043520.Google Scholar
Soden, B. J., Wetherald, R. T., Stenchikov, G. L., & Robock, A. (2002). Global Cooling After the Eruption of Mount Pinatubo: A Test of Climate Feedback by Water Vapor. Science, 296(5568), 727730.Google Scholar
Solomon, S., Pierrehumbert, R. T., Matthews, H. D., Daniel, J. S., & Friedlingstein, P. (2013). Atmospheric Composition, Irreversible Climate Change, and Mitigation Policy. In Asrar, G. R. & Hurrell, J. W. (Eds.), Climate Science for Serving Society: Research, Modeling and Prediction Priorities (pp. 415436). Dordrecht, NL: Springer.Google Scholar
Sparrow, S., Millar, R. J., Yamazaki, K. et al. (2018). Finding Ocean States That Are Consistent with Observations from a Perturbed Physics Parameter Ensemble. Journal of Climate, 31(12), 46394656.CrossRefGoogle Scholar
Stainforth, D., Allen, M. R., Tredger, E. R., & Smith, L. A. (2007). Confidence, Uncertainty and Decision-Support Relevance in Climate Predictions. Philosophical Transactions. Series A, Mathematical, Physical, and Engineering Sciences, 365(1857), 21452161.Google Scholar
Staniforth, A., & Thuburn, J. (2012). Horizontal Grids for Global Weather and Climate Prediction Models: A Review. Quarterly Journal of the Royal Meteorological Society, 138(662), 126.Google Scholar
Staniforth, A., & Wood, N. (2008). Aspects of the Dynamical Core of a Nonhydrostatic, Deep-Atmosphere, Unified Weather and Climate-Prediction Model☆. Journal of Computational Physics, 227(7), 34453464.Google Scholar
Star, S. L. (2010). This is Not a Boundary Object: Reflections on the Origin of a Concept. Science, Technology, & Human Values, 35(5), 601617.Google Scholar
Stern, N. (2016). Current Climate Models Are Grossly Misleading. Nature, 530, 407409.Google Scholar
Stevens, B., Giorgetta, M., Esch, M. et al. (2013). Atmospheric Component of the MPI-M Earth System Model: ECHAM6. Journal of Advances in Modeling Earth Systems, 5(2), 146172.Google Scholar
Stocker, T. (2011). Introduction to Climate Modelling. Berlin, Heidelberg: Springer Berlin Heidelberg.Google Scholar
Strong, J., & Plass, G. N. (1950). The Effect of Pressure Broadening of Spectral Lines on Atmospheric Temperature. The Astrophysical Journal, 112(4), 365.Google Scholar
Supran, G., & Oreskes, N. (2017). Assessing ExxonMobil’s Climate Change Communications (1977–2014). Environmental Research Letters, 12(8), 084019.Google Scholar
Tait, P. G., Buchan, A., Creak, E. W., & Renard, A. (1889). The Voyage of the HMS Challenger: Physics and Chemistry (Thomson, C. W. & Murray, J., Eds.) (Vol. II). London, England: Morrison & Gibb.Google Scholar
Talandier, C., Deshayes, J., Treguier, A. M. et al. (2014). Improvements of Simulated Western North Atlantic Current System and Impacts on the AMOC. Ocean Modelling, 76, 119.Google Scholar
Teixeira, M. A. C. (2014). The Physics of Orographic Gravity Wave Drag. Frontiers in Physics, 2(July), 124.Google Scholar
Thompson, D. W. J., Kennedy, J. J., Wallace, J. M., & Jones, P. D. (2008). A Large Discontinuity in the Mid-Twentieth Century in Observed Global-Mean Surface Temperature. Nature, 453(7195), 646649.Google Scholar
Thorpe, A. J., Volkert, D. H., & Ziemianski, M. (2003). The Bjerknes’ Circulation Theorem: A Historical Perspective. Bulletin of the American Meteorological Society, 84(4), 471480.Google Scholar
Tilmes, S., Richter, J. H., Kravitz, B. et al. (2018). CESM1(WACCM) Stratospheric Aerosol Geoengineering Large Ensemble Project. Bulletin of the American Meteorological Society, 99(11), 23612371.Google Scholar
Tokarska, K. B., Stolpe, M. B., Sippel, S. et al. (2020). Past Warming Trend Constrains Future Warming in CMIP6 Models. Science Advances, 6(12), 114.Google Scholar
Tyndall, J. (1861). I. The Bakerian Lecture.—On the Absorption and Radiation of Heat by Gases and Vapours, and on the Physical Connexion of Radiation, Absorption, and Conduction. Philosophical Transactions of the Royal Society of London, 151(0), 136.Google Scholar
United Nations (1992) United Nations Framework Convention on Climate Change.Google Scholar
University Committee on Atmospheric Research. (1959). Preliminary Plans for a National Institute for Atmospheric Research. Technical Report, National Center for Atmospheric Research.Google Scholar
Valcke, S., Balaji, V., Craig, A. et al. (2012). Coupling Technologies for Earth System Modelling. Geoscientific Model Development, 5(6), 15891596.Google Scholar
Vancoppenolle, M., Fichefet, T., Goosse, H. et al. (2009). Simulating the Mass Balance and Salinity of Arctic and Antarctic Sea ice. 1. Model Description and Validation. Ocean Modelling, 27(1–2), 3353.Google Scholar
Very, F. W. (1901). Knut Angstrom on Atmospheric Absorption. Monthly Weather Review, 29 June (6), 268.Google Scholar
Walters, D., Boutle, I., Brooks, M. et al. (2017). The Met Office Unified Model Global Atmosphere 6.0/6.1 and JULES Global Land 6.0/6.1 configurations. Geoscientific Model Development, 10(4), 14871520.Google Scholar
Wan, H., Giorgetta, M. A., Zängl, G. et al. (2013). The ICON-1.2 Hydrostatic Atmospheric Dynamical Core on Triangular Grids – Part 1: Formulation and Performance of the Baseline Version. Geoscientific Model Development, 6(3), 735763.Google Scholar
Warner, L. (1985). The National Center for Atmospheric Research: An Architectural Masterpiece. Boulder, CO: The University Corporation for Atmospheric Research (UCAR).Google Scholar
Washington, W. M., Buja, L., & Craig, A. (2009). The Computational Future for Climate and Earth System Models: On the Path to Petaflop and Beyond. Philosophical Transactions. Series A, Mathematical, Physical, and Engineering Sciences, 367(1890), 833846.Google Scholar
Washington, W. M., & Meehl, G. A. (1989). Climate Sensitivity Due to Increased CO2: Experiments with a Coupled Atmosphere and Ocean General Circulation Model. Climate Dynamics, 4(1), 138.Google Scholar
Weart, S. (1989). Interview of Joseph Smagorinsky by Spencer Weart. Niels Bohr Library & Archives. American Institute of Physics, College Park, MD. www.aip.org/history-programs/niels-bohr-library/oral-histories/5056Google Scholar
Weart, S. (2007). Roger Revelle’s Discovery. Retrieved June 18, 2018, from https://history.aip.org/climate/pdf/Revelle.pdfGoogle Scholar
Weart, S. (2013). Rise of Interdisciplinary Research on Climate. Proceedings of the National Academy of Sciences, 110, 36573664.Google Scholar
Weisman, A. (2007). The World without Us. New York: Thomas Dunne Books.Google Scholar
Weyant, J. P. (2009). A Perspective on Integrated Assessment. Climatic Change, 95(3–4), 317323.Google Scholar
White, A. A., & Wood, N. (2015). Dynamical Meteorology | Primitive Equations. In Encyclopedia of Atmospheric Sciences (Vol. 1, pp. 384392). Elsevier.Google Scholar
Willett, K., Williams, C., Jolliffe, I. T. et al. (2014). A Framework for Benchmarking of Homogenisation Algorithm Performance on the Global Scale. Geoscientific Instrumentation, Methods and Data Systems, 3(2), 187200.Google Scholar
Williams, K. D., Copsey, D., Blockley, E. W. et al. (2018). The Met Office Global Coupled Model 3.0 and 3.1 (GC3.0 and GC3.1) Configurations. Journal of Advances in Modeling Earth Systems, 10(2), 357380.Google Scholar
Williamson, D. L., Kiehl, J. T., Ramanathan, V., Dickinson, R. E., & Hack, J. J. (1987). Description of NCAR Community Climate Model (CCM1) (No. NCAR/TN285+STR). NCAR.Google Scholar
Williamson, D. L. (2007). The Evolution of Dynamical Cores for Global Atmospheric Models. Journal of the Meteorological Society of Japan, 85B, 241269.Google Scholar
Williamson, D. L., Drake, J. B., Hack, J. J., Jakob, R., & Swarztrauber, P. N. (1992). A Standard Test Set for Numerical Approximations to the Shallow Water Equations in Spherical Geometry. Journal of Computational Physics, 102(1), 211224.Google Scholar
Williamson, D. L., Olson, J. G., & Jablonowski, C. (2009). Two Dynamical Core Formulation Flaws Exposed by a Baroclinic Instability Test Case. Monthly Weather Review, 137(2), 790796.Google Scholar
Wirth, N. (1995). A Plea for Lean Software. IEEE Computer, 28(2), 6468.Google Scholar
Xu, J., Gao, Y., Christley, S., & Madey, G. (2005). A Topological Analysis of the Open Source Software Development community. In Proceedings of the 38th Hawaii International Conference on System Sciences – 2005 (Vol. 00, pp. 1–10).Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×