Skip to main content Accessibility help
×
Hostname: page-component-84b7d79bbc-g78kv Total loading time: 0 Render date: 2024-07-28T08:29:50.873Z Has data issue: false hasContentIssue false

11 - Simulation and Learning

from Part III - Stability and Performance

Published online by Cambridge University Press:  17 March 2011

Sean Meyn
Affiliation:
University of Illinois, Urbana-Champaign
Get access

Summary

The chief motivation for performance evaluation is to compare candidate policies. For example, many of the policies described in Chapters 4 and 10 depend upon static or dynamic safety-stock parameters, and we would like to know how to choose the best parameter values in order to optimize performance.

We have seen in Chapter 8 that linear programming techniques can provide bounds on performance for the CRW model. This approach can be successfully applied in network models with many buffers and stations. However, linear programming techniques are not flexible with respect to the operating policy. For example, in order to distinguish similar policies with different safety-stock levels, constraints must be introduced in the LP specific to each safety-stock parameter. It is not clear how to introduce such constraints in the approaches that have been developed to date.

While not a topic of this book, there are classes of networks for which the invariant measure π is known. The crucial property required is reversibility, from which it follows that π has a product form, π(x) = π1(x1) … π(x) for xX [502, 290]. Outside of this very special class of models the computation of π is essentially impossible in large networks. We are thus led to simulation techniques to evaluate performance.

The simulation techniques surveyed in this chapter all involve a Markov chain X on a state space X.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • Simulation and Learning
  • Sean Meyn, University of Illinois, Urbana-Champaign
  • Book: Control Techniques for Complex Networks
  • Online publication: 17 March 2011
  • Chapter DOI: https://doi.org/10.1017/CBO9780511804410.014
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • Simulation and Learning
  • Sean Meyn, University of Illinois, Urbana-Champaign
  • Book: Control Techniques for Complex Networks
  • Online publication: 17 March 2011
  • Chapter DOI: https://doi.org/10.1017/CBO9780511804410.014
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • Simulation and Learning
  • Sean Meyn, University of Illinois, Urbana-Champaign
  • Book: Control Techniques for Complex Networks
  • Online publication: 17 March 2011
  • Chapter DOI: https://doi.org/10.1017/CBO9780511804410.014
Available formats
×