Skip to main content Accessibility help
×
Hostname: page-component-77c89778f8-n9wrp Total loading time: 0 Render date: 2024-07-24T19:18:25.298Z Has data issue: false hasContentIssue false

3 - Linear systems and filtering theory

Published online by Cambridge University Press:  06 August 2009

B. V. K. Vijaya Kumar
Affiliation:
Carnegie Mellon University, Pennsylvania
Abhijit Mahalanobis
Affiliation:
Lockheed Martin Missiles & Fire Control, Orlando, Florida
Richard Juday
Affiliation:
Fellow SPIE
Get access

Summary

Correlation involves two signals or images. A reference image is correlated with a test image (also called a scene) to detect and locate the reference image in the scene. Thus the correlator can be considered as a system with an input (the scene), a stored template or filter (derived from the reference image), and an output (correlation). As we will see in this chapter, such a system is linear in the sense that a new input that is a weighted sum of original inputs results in an output that is an identically weighted sum of the original outputs. Thus a correlator can take advantage of the many properties of linear systems. The most important property is that a linear, time-invariant system can be characterized in terms of its frequency response. We use this and other related properties for the synthesis and use of correlation filters with attractive features such as distortion-tolerance and discrimination. In this chapter, we provide a review of some of the useful properties of signals and linear systems.

Basic systems

Strictly speaking, the signal is denoted s(·), and s(x) is the value of s(·) when the argument value is x. We will occasionally require the strict notation, but usually there is no confusion from writing s(x) to mean “s(·) with x being used as a general value for the argument.” Figure 3.1 is a simple block diagram of a system.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×