Skip to main content Accessibility help
×
Hostname: page-component-84b7d79bbc-5lx2p Total loading time: 0 Render date: 2024-07-29T13:08:44.416Z Has data issue: false hasContentIssue false

17 - Galaxy formation

Published online by Cambridge University Press:  05 June 2012

J. A. Peacock
Affiliation:
University of Edinburgh
Get access

Summary

The sequence of galaxy formation

The discussion of galaxy evolution in chapter 13 raised many basic questions about the process of galaxy formation: did bulges form first, and did they accrete disks later? What is the importance of galaxy mergers? What sets the form of the galaxy luminosity function? In addition, we have seen in chapters 12 and 16 that an Ω = 1 universe requires galaxy formation to be biased in favour of high-density environments; how could such a bias have arisen? The purpose of this chapter is to present some of the theoretical tools with which these questions may be tackled. We start with a simple overview of two contrasting ways in which collapsed objects like galaxies could form.

dissipationless collapse What will be the final state of an object that breaks away from the background and undergoes gravitational collapse? If the matter of the object is collisionless (either purely dark matter, or stars), this is a relatively well-posed problem, which should be capable of a clear solution.

The analytical approach has concentrated on gravitational thermodynamics, and sought an equilibrium solution. This has turned out to be a subtle and paradoxical problem, whose main analysis goes back to a classic paper by Lynden-Bell (1967). Imagine initially that the self-gravitating body consists of gas, so that it is reasonable to look for an equilibrium solution in the form of a configuration of constant temperature.

Type
Chapter
Information
Cosmological Physics , pp. 553 - 586
Publisher: Cambridge University Press
Print publication year: 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • Galaxy formation
  • J. A. Peacock, University of Edinburgh
  • Book: Cosmological Physics
  • Online publication: 05 June 2012
  • Chapter DOI: https://doi.org/10.1017/CBO9780511804533.018
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • Galaxy formation
  • J. A. Peacock, University of Edinburgh
  • Book: Cosmological Physics
  • Online publication: 05 June 2012
  • Chapter DOI: https://doi.org/10.1017/CBO9780511804533.018
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • Galaxy formation
  • J. A. Peacock, University of Edinburgh
  • Book: Cosmological Physics
  • Online publication: 05 June 2012
  • Chapter DOI: https://doi.org/10.1017/CBO9780511804533.018
Available formats
×