Skip to main content Accessibility help
×
Hostname: page-component-5c6d5d7d68-sv6ng Total loading time: 0 Render date: 2024-08-07T20:27:32.907Z Has data issue: false hasContentIssue false

7 - Modeling the ductile behavior of isotropic and anisotropic polycrystalline ice

Published online by Cambridge University Press:  01 February 2010

Erland M. Schulson
Affiliation:
Dartmouth College, New Hampshire
Paul Duval
Affiliation:
Centre National de la Recherche Scientifique (CNRS), Paris
Get access

Summary

Introduction

During the gravity-driven flow of glaciers and ice sheets, isotropic ice at the surface progressively becomes anisotropic with the development of textures. Strain-induced textures, combined with the strong anisotropy of the ice crystal, make the polycrystal anisotropic. A polycrystal of ice with most of its c-axes oriented in the same direction deforms at least ten times faster than an isotropic polycrystal, when it is sheared parallel to the basal planes. Depending on the flow conditions, this anisotropy varies from place to place. To construct ice-sheet flow models for the dating of deep ice cores, this evolving viscoplastic anisotropy must be taken into account. Computation with isotropic and anisotropic flow models predicts at depth an age of ice that can differ by several thousand years. From Mangeney et al. (1997), anisotropic ice could be more than 10% younger above the bumps of the bedrock and could be older by more than 100% within hollows. An adequate constitutive relationship must be also incorporated within large-scale flow models to simulate the variation of polar ice sheets with climate.

Various models have been proposed to simulate the evolution of the anisotropy and the behavior of such ices. The increasing numerical capability of computers and the advances in theories that link materials' microstructures and properties have enabled the development of new concepts and algorithms that constitute the so-called multiscale approach for the modeling of material behavior. In this chapter, we restrict our analysis to physically based micro-macro models using a self-consistent approach.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Alley, R. B. (1992). Flow-law hypotheses for ice-sheet modeling. J. Glaciol., 38, 245–256.CrossRefGoogle Scholar
Ashby, M. F. and Duval, P. (1985). The creep of polycrystalline ice. Cold Reg. Sci. Technol., 11, 285–300.CrossRefGoogle Scholar
Azuma, N. A. (1994). A flow law for anisotropic ice and its application to ice sheets. Earth Planet. Sci. Lett., 128, 601–614.CrossRefGoogle Scholar
Azuma, N. A. (1995). A flow law for anisotropic polycrystalline ice under uniaxial compressive deformation. Cold Reg. Sci. Technol., 23, 137–147.CrossRefGoogle Scholar
Azuma, N. and Higashi, A. (1985). Formation processes of ice fabric pattern in ice sheets. Ann. Glaciol., 6, 130–134.CrossRefGoogle Scholar
Boehler, J. P. (1987). Representations for isotropic and anisotropic non-polynomial tensor functions. In Applications of Tensor Functions in Solid Mechanics, ed. Boehler, J. P.. Berlin: Springer-Verlag, pp. 31–53.CrossRefGoogle Scholar
Budd, W. F. and Jacka, T. H. (1989). A review of ice rheology for ice sheet modelling. Cold Reg. Sci. Technol., 16, 107–144.CrossRefGoogle Scholar
Castelnau, O., Duval, P., Lebensohn, R. A. and Canova, G. R. (1996a). Viscoplastic modelling of texture development in polycrystalline ice with a self-consistent approach: comparison with bound estimates. J. Geophys. Res., 101 (B6), 13,851–13,868.CrossRefGoogle Scholar
Castelnau, O., Thorsteinsson, Th., Kipfstuhl, J., Duval, P. and Canova, G. R. (1996b). Modelling fabric development along the GRIP ice core, central Greenland. Ann. Glaciol., 23, 194–201.CrossRefGoogle Scholar
Castelnau, O., Canova, G. R., Lebensohn, R. A. and Duval, P. (1997). Modelling viscoplastic behavior of anisotropic polycrystalline ice with a self-consistent approach. Acta Mater., 45, 4823–4834.CrossRefGoogle Scholar
Castelnau, O., Duval, P., Montagnat, M. and Brenner, R. (2008). Elastoviscoplastic micromechanical modelling of the transient creep of ice. J. Geophys. Res., 113, B11203.CrossRefGoogle Scholar
Chapelle, S., Castelnau, O., Lipenkov, V. and Duval, P. (1998). Dynamic recrystallization and texture development in ice as revealed by the study of deep ice cores in Antarctica and Greenland. J. Geophys. Res., 103 (B3), 5091–5105.CrossRefGoogle Scholar
Durand, G. and 10 others (2006). Effect of impurities on grain growth in cold ice sheets. J. Geophys. Res., 111, FO1015, 1–18.CrossRefGoogle Scholar
Duval, P. (1976). Lois de fluage transitoire ou permanent de la glace polycristalline pour divers états de contrainte. Ann. Geophys., 32, 335–350.Google Scholar
Duval, P. and Gac, H. (1982). Mechanical behavior of Antarctic ice. Ann. Glaciol., 3, 92–95.CrossRefGoogle Scholar
Faria, S. H. (2006). Creep and recrystallization of large polycrystalline masses. I. General continuum theory. Proc. R. Soc. A, 462, 1493–1514.CrossRefGoogle Scholar
Gagliardini, O. and Meyssonnier, J. (1999). Analytical derivations for the behaviour and fabric evolution of a linear orthotropic ice polycrystal. J. Geophys. Res., 104 (B8), 17,797–17,809.CrossRefGoogle Scholar
Gagliardini, O., Gillet-Chauvet, F. and Montagnat, M. (in press). A review of anisotropic polar ice models: from crystal to ice-sheet flow models. In Physics of Ice Core Records 11, ed. Hondoh, T.. Sapporo: Hokkaido University Press.
Gillet-Chaulet, F. (2006). Modélisation de l'écoulement de la glace polaire anisotrope et premières applications au forage de Dôme C. Thèse de l'Université Joseph Fourier, Grenoble, France.
Gillet-Chaulet, F., Gagliardini, O., Meyssonnier, J., Montagnat, M. and Castelnau, O. (2005). A user-friendly anisotropic flow law for ice-sheet modelling. J. Glaciol., 51, 1–14.CrossRefGoogle Scholar
Gillet-Chaulet, F., Gagliardini, O., Meyssonnier, J., Zwinger, T. and Ruokolainen, J. (2006). Flow-induced anisotropy in polar ice and related ice-sheet flow modeling. J. Non-Newtonian Fluid Mech., 134, 33–43.CrossRefGoogle Scholar
Gödert, G. and Hutter, K. (1998). Induced anisotropy in large ice shields: theory and its homogenization. Continuum Mech. Thermodyn., 10, 293–318.Google Scholar
Gundestrup, N. S. and Hansen, B. L. (1984). Bore-hole survey at Dye 3, South Greenland. J. Glaciol., 30, 282–288.CrossRefGoogle Scholar
Hansen, D. P. and Wilen, L. A. (2002). Performance and applications of an automated c-axis fabric analyser. J. Glaciol., 48, 159–170.CrossRefGoogle Scholar
Hutchinson, J. W. (1976). Bounds and self-consistent estimates for creep of polycrystalline materials. Proc. R. Soc. Lond. A, 348, 101–127.CrossRefGoogle Scholar
Hutchinson, J. W. (1977). Creep and plasticity of hexagonal polycrystals as related to single crystal slip. Metall. Trans. 8A (9), 1465–1469.CrossRefGoogle Scholar
Hutter, K. (1983). Theoretical Glaciology. Dordrecht: Reidel Publishing Company.CrossRefGoogle Scholar
Kamb, W. B. (1961). The glide direction in ice. J. Glaciol., 3, 1097–1106.CrossRefGoogle Scholar
Lebensohn, R. A. (2001). N-site modeling of a 3D viscoplastic polycrystal using Fast Fourier Transform. Acta Mater., 49, 2723–2737.CrossRefGoogle Scholar
Lebensohn, R. A. and Tomé, C. N. (1993). A self-consistent anisotropic approach for the simulation of plastic deformation and texture development of polycrystals: application to zirconium alloys. Acta Metall., 41, 2611–2624.CrossRefGoogle Scholar
Lebensohn, R. A., Liu, Yi and Castaneda, P. Ponte (2004a). On the accuracy of the self-consistent approximation for polycrystals: comparison with full-field numerical simulations. Acta Mater., 52, 5347–5361.CrossRefGoogle Scholar
Lebensohn, R. A., Liu, Yi and Castaneda, P. Ponte (2004b). Macroscopic properties and field fluctuations in model power-law polycrystals: full-field solutions versus self-consistent estimates. Proc. R. Soc. Lond. A, 460, 1381–1405.CrossRefGoogle Scholar
Lebensohn, R. A., Tomé, C. N. and Castaneda, P. Ponte (2007). Self-consistent modeling of the mechanical behavior of viscoplastic polycrystals incorporating intragranular field fluctuations. Phil. Mag., 87, 4287–4322.CrossRefGoogle Scholar
Lebensohn, R. A., Montagnat, M., Mansuy, P.et al. (2009). Modeling viscoplastic behavior and heterogeneous intracrystalline deformation of columnar ice polycrystals, Acta Mater. (in press).CrossRefGoogle Scholar
Lipenkov, V., Barkov, N. I., Duval, P. and Pimienta, P. (1989). Crystalline structure of the 2083 m ice core at Vostok Station, Antarctica. J. Glaciol., 35, 392–398.CrossRefGoogle Scholar
Lipenkov, V., Salamatin, A. and Duval, P. (1997). Bubbly-ice densification in ice sheets: applications. J. Glaciol., 43, 397–407.CrossRefGoogle Scholar
Liu, Yi and Castaneda, P. Ponte (2004). Second-order theory for the effective behavior and field fluctuations in viscoplastic polycrystals. J. Mech. Phys. Solids, 52, 467–495.CrossRefGoogle Scholar
Lliboutry, L. (1993). Anisotropic, transversely isotropic nonlinear viscosity of rock ice and rheological parameters inferred from homogenization. Int. J. Plast., 9, 619–632.CrossRefGoogle Scholar
Mangeney, A., Califano, F. and Hutter, K. (1997). A numerical study of anisotropic, low Reynolds number, free surface flow of ice-sheet modeling. J. Geophys. Res., 102 (B10), 22,749–22,764.CrossRefGoogle Scholar
Manley, M. E. and Schulson, E. M. (1997). Kinks bands and cracks in S1 ice under across-column compression. Phil. Mag., 75, 83–90.Google Scholar
Mansuy, Ph. (2001). Contribution à l'étude du comportement viscoplastique d'un multicristal de glace: hétérogénéité de la déformation et localisation, expériences et modèles. Thèse de l'Université Joseph Fourier, Grenoble, France.
Masson, R. and Zaoui, A. (1999). Self-consistent estimates for the rate-dependent elasto-plastic behaviour of polycrystalline materials. J. Mech. Phys. Sol., 47, 1543–1568.CrossRefGoogle Scholar
Meyssonnier, J., Duval, P., Gagliardini, O. and Philip, A. (2001). Constitutive modeling and flow simulation of anisotropic polar ice. In Continuum Mechanics and Applications in Geophysics and the Environment. Berlin: Springer-Verlag.Google Scholar
Molinari, A., Canova, G. R. and Ahzy, S. (1987). A self-consistent approach of the large deformation polycrystal viscoplasticity. Acta Metall., 35, 2983–2994.CrossRefGoogle Scholar
Montagnat, M., Duval, P., Bastie, P., Hamelin, B. and Lipenkov, V. Ya. (2003). Lattice distortion in ice crystals from the Vostok core (Antarctica) revealed by hard X-ray diffraction: implication in the deformation of ice at low stresses. Earth Planet. Sci. Lett., 214, 369–378.CrossRefGoogle Scholar
Montagnat, M., Weiss, J., Duval, P.et al. (2006). The heterogeneous nature of slip in ice single crystals deformed under torsion. Phil. Mag., 86, 4259–4270.CrossRefGoogle Scholar
Morland, L. and Staroszczyk, R. (1998). Viscous response of polar ice with evolving fabric. Continuum Mech. Thermodyn., 10, 135–152.CrossRefGoogle Scholar
Nishikawa, O. and Takeshita, T. (1999). Dynamic analysis and two types of kink bands in quartz veins deformed under subgreenschist conditions. Tectonophysics, 301, 21–34.CrossRefGoogle Scholar
Pimienta, P., Duval, P. and Lipenkov, V. Ya. (1987). Mechanical behavior of anisotropic polar ice. In The Physical Basis of Ice Sheet Modeling, eds. Waddington, E. D. and Walder, J. S.. Vancouver: IAHS Publication 170, pp. 57–66.Google Scholar
Placidi, L., Hutter, K. and Faria, S. H. (2006). A critical review of the mechanics of polycrystalline polar ice. GAMM-Mitteilungen, 29, 80–117.CrossRefGoogle Scholar
Rigsby, G. P. (1951). Crystal fabric studies on Emmons Glacier, Mount Rainier, Washington. J. Geol., 59, 590–598.CrossRefGoogle Scholar
Russell-Head, D. S. and Budd, W. F. (1979). Ice-flow properties derived from bore-hole shear measurement combined with ice-core studies. J. Glaciol., 24, 117–130.CrossRefGoogle Scholar
Russell-Head, D. S. and Wilson, C. J. L. (2001). Automated fabric analyzer system for quartz and ice. Geol. Soc. Austral. Abstr., 64, 159.Google Scholar
Sachs, G. (1928). Zur Ableitung einer Fliessbedingung. Z. Ver. Dtsch. Ing., 72, 734–736.Google Scholar
Shoji, H. and Langway, C. C.. (1988). Flow-law parameters of the Dye 3, Greenland, deep ice core. Ann. Glaciol., 10, 146–150.CrossRefGoogle Scholar
Staroszczyk, R. and Morland, L. W. (2000). Plane ice-sheet flow with evolving orthotropic fabric. Ann. Glaciol., 30, 93–101.CrossRefGoogle Scholar
Svendsen, B. and Hutter, K. (1996). A continuum approach for modeling induced anisotropy in glaciers and ice sheets. Ann. Glaciol., 23, 262–269.CrossRefGoogle Scholar
Taylor, G. I. (1938). Plastic strain in metals. J. Inst. Met., 62, 307–324.Google Scholar
Thorsteinsson, Th. (2001). An analytical approach to deformation of anisotropic ice-crystal aggregates. J. Glaciol., 47, 507–516.CrossRefGoogle Scholar
Thorsteinsson, Th. (2002). Fabric development with nearest-neighbor interaction and dynamic recrystallization. J. Geophys. Res., 107 (B1), 1–13.CrossRefGoogle Scholar
Thorsteinsson, Th., Kipfstuhl, J. and Miller, H. (1997). Textures and fabrics in the GRIP ice core. J. Geophys. Res., 102 (C12), 26,583–26,599.CrossRefGoogle Scholar
Thorsteinsson, Th., Waddington, E. D., Taylor, K. C., Alley, R. B. and Blankenship, D. D. (1999). Strain-rate enhancement at Dye 3, Greenland. J. Glaciol., 45, 338–345.CrossRefGoogle Scholar
Veen, C. J. and Whillans, I. M. (1994). Development of fabric in ice. Cold Reg. Sci. Technol., 22, 171–195.CrossRefGoogle Scholar
Wilson, C. J. L., Burg, J. P. and Mitchell, J. C. (1986). The origin of kinks in polycrystalline ice. Tectonophysics, 127, 27–48.CrossRefGoogle Scholar
Zhou, A. G., Basu, S. and Barsoum, M. W. (2008). Kinking nonlinear elasticity, damping and microyielding of hexagonal close-packed metals. Acta Mater., 56, 60–67.CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×