Skip to main content Accessibility help
×
Hostname: page-component-77c89778f8-fv566 Total loading time: 0 Render date: 2024-07-19T15:40:05.717Z Has data issue: false hasContentIssue false

4 - Physical properties: elasticity, friction and diffusivity

Published online by Cambridge University Press:  01 February 2010

Erland M. Schulson
Affiliation:
Dartmouth College, New Hampshire
Paul Duval
Affiliation:
Centre National de la Recherche Scientifique (CNRS), Paris
Get access

Summary

Introduction

In this chapter we review the elastic behavior of ice, friction of ice on ice and mass diffusion. In terms of creep, elastic properties allow the applied stress to be normalized and thus the behavior to be analyzed within the context of physical mechanisms (Chapters 5–8). The mass diffusion coefficient plays a similar role in creep under low stresses. It is important, as well, to the transformation from snow to ice (Chapter 3). In terms of fracture, elastic constants affect fracture toughness (Chapter 9) and, through that property, both the tensile (Chapter 10) and the compressive strength (Chapters 11, 12). Elasticity is also relevant to the ductile-to-brittle transition (Chapters 13) and to ice loads on structures (Chapter 14). Friction is a factor in the DB transition under compression and is a major consideration in brittle compressive failure, on scales small (Chapters 11, 12) and large (Chapter 15). Friction is also fundamental to tidally driven, strike-slip-like tectonic activity on a number of icy satellites within the outer Solar System, including Jupiter's moon Europa (Greenberg et al., 1998; Hoppa et al., 1999; Schulson, 2002; Kattenhorn, 2004), Neptune's Triton (Prockter et al., 2005) and Saturn's Enceladus (Nimmo et al., 2007; Smith-Konter and Pappalardo, 2008). Thermal properties play a less direct role, but we list them for completeness, Table 4.1.

Elastic properties of ice Ih single crystals

Elastic properties have been relatively well studied.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Anderson, D. L. and Benson, C. S. (1963). The densification and diagenesis of snow. In Ice and Snow, ed. Kingery, W. D.. Cambridge, Mass.: MIT Press, pp. 391–411.Google Scholar
Arakawa, M. and Maeno, N. (1997). Mechanical strength of polycrystalline ice under uniaxial compression. Cold Reg. Sci. Technol., 26, 215–229CrossRefGoogle Scholar
Baer, B. J., Brown, J. M., Zaug, J. M., Schiferl, D. and Chronister, E. L. (1998). Impulsive stimulated scattering on ice VI and ice VII. J. Chem. Phys., 108, 4540–4544.CrossRefGoogle Scholar
Barnes, P., Tabor, D., Walker, F. R. S. and Walker, J. F. C. (1971). The friction and creep of polycrystalline ice. Proc. R. Soc. Lond. A, 324, 127–155.CrossRefGoogle Scholar
Bender, M. L. (2002). Orbital tuning chronology for the Vostok climate record supported by trapped gas composition. Earth Planet. Sci. Lett., 204, 275–289.CrossRefGoogle Scholar
Brown, D. E. and George, S. M. (1996). Surface and bulk diffusion of H218O on single-crystal H216O ice multilayers. J. Phys. Chem., 100, 15460–15469.CrossRefGoogle Scholar
Budiansky, B. and O'Connell, R. J. (1976). Elastic-moduli of a cracked solid. Int. J. Solids Struct., 12, 81–97.CrossRefGoogle Scholar
Cox, G. F. N. and Weeks, W. F. (1983). Equations for determining the gas and brine volumes in sea-ice samples. J. Glaciol., 29, 306–316.CrossRefGoogle Scholar
Cox, G. F. N. and Weeks, W. F. (1986). Changes in the salinity and porosity of sea-ice samples during shipping and storage. J. Glaciol., 32, 371–375.CrossRefGoogle Scholar
Dantl, G. (1968). Die elastischen Moduln von Eis-Einkristallen. Phys. Kondens. Mater., 7, 390–397.Google Scholar
Dantl, G. (1969). Elastic moduli of ice. In Physics of Ice: Proceedings of the International Symposium on Physics of Ice, Munich, Germany, September 9–14, 1968, eds. Riechl, N., Bullemer, B. and Engelhardt, H.. New York: Plenum Press, 223–230.CrossRefGoogle Scholar
Dash, J. G., Fu, H. and Wettlaufer, J. S. (1995). The pre-melting of ice and its environmental consequences. Rep. Prog. Phys., 58, 115–167.CrossRefGoogle Scholar
Domine, F. and Xueref, I. (2001). Evaluation of depth profiling using laser resonant desorption as a method to measure diffusion coefficients in ice. Anal. Chem., 73, 4348–4353.CrossRefGoogle ScholarPubMed
Eisenberg, D. and Kauzmann, W. (1969). The Structure and Properties of Water. New York: Oxford University Press.Google Scholar
Elvin, A. A. (1996). Number of grains required to homogenize elastic properties of polycrystalline ice. Mech. Mater., 22, 51–64.CrossRefGoogle Scholar
Fletcher, N. H. (1970). The Chemical Physics of Ice. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
Fortt, A. (2006). The resistance to sliding along coulombic shear faults in columnar S2 ice. Ph.D. thesis, Thayer School of Engineering, Dartmouth College.
Furukawa, Y. and Nada, H. (1997). Anisotropic surface melting of an ice crystal and its relationship to growth forms. J. Phys. Chem. B., 101, 6167–6170.CrossRefGoogle Scholar
Gagnon, R. E., Kiefte, H., Clouter, M. J. and Whalley, E. (1988). Pressure dependence of the elastic constants of ice Ih to 2.8 kbar by Brillouin spectroscopy. J. Chem. Phys., 89, 4522–4528.CrossRefGoogle Scholar
Gagnon, R. E., Kiefte, H., Clouter, M. J. and Whalley, E. (1990). Acoustic velocities and densities of polycrystalline ice-Ih, Ice-II, Ice-III, Ice-V, and Ice-VI by Brillouin spectroscopy. J. Chem. Phys., 92, 1909–1914.CrossRefGoogle Scholar
Gammon, P. H., Kiefte, H. and Clouter, M. J. (1980). Elastic-constants of ice by Brillouin spectroscopy. J. Glaciol., 25, 159–167.CrossRefGoogle Scholar
Gammon, P. H., Kiefte, H., Clouter, M. J. and Denner, W. W. (1983). Elastic constants of artificial ice and natural ice samples by Brillouin spectroscopy. J. Glaciol., 29, 433–460.CrossRefGoogle Scholar
Gibson, L. G. and Ashby, M. F. (1988). Cellular Solids: Structure and Properties, 1st edn. Oxford: Pergamon Press.Google Scholar
Gold, L. W. (1958). Some observations on the dependence of strain on stress for ice. Can. J. Phys., 36, 1265–1275.CrossRefGoogle Scholar
Gold, L. W. (1988). On the elasticity of ice plates. Can. J. Civil Eng., 15, 1080–1084.CrossRefGoogle Scholar
Gold, L. W. (1994). The elastic modulus of columnar-grain fresh-water ice. Ann. Glaciol., 19, 13–18.CrossRefGoogle Scholar
Goto, K., Hondoh, T. and Higashi, A. (1986). Determination of diffusion coefficients of self-interstitials in ice with a new method of observing climb of dislocations by X-ray topography. Jpn. J. Appl. Phys., 25, 351–357.CrossRefGoogle Scholar
Greenberg, R., Geissler, P., Hoppa, G.et al. (1998). Tectonic processes on Europa: tidal stresses, mechnaical response and visible features. Icarus, 135, 64–78.CrossRefGoogle Scholar
Haas, J., Bullemer, B. and Kahane, A. (1971). Diffusion of helium in monocrystalline ice. Solid State Commun., 9, 2033–2035.CrossRefGoogle Scholar
Hearmon, R. F. S. (1961). Introduction to Applied Anisotropic Elasticity. Oxford: Oxford University Press.Google Scholar
Hill, R. (1952). The elastic behavior of a polycrystalline aggregate. Proc. Phys. Soc. Lond. A, 65, 349–354.CrossRefGoogle Scholar
Hobbs, P. V. (1974). Ice Physics. Oxford: Clarendon Press.Google Scholar
Hoenig, A. (1979). Elastic-moduli of a non-randomly cracked body. Int. J. Solids Struct., 15, 137–154.CrossRefGoogle Scholar
Hoppa, G., Tufts, B. R., Greenberg, R. and Geissler, P. (1999). Strike-slip faults on Europa: global shear patterns driven by tidal stress. Icarus, 141, 287–298.CrossRefGoogle Scholar
Hori, A. and Hondoh, T. (2003). Theoretical study on the diffusion of gases in hexagonal ice by the molecular orbital method. Can. J. Phys., 81, 251–259.CrossRefGoogle Scholar
Ikeda, T., Fukazawa, H., Mae, S.et al. (1999). Extreme fractionation of gases caused by formation of clathrate hydrates in Vostok Antarctic ice. Geophys. Res. Lett., 26, 91–94.CrossRefGoogle Scholar
Kattenhorn, S. A. (2004). Strike-slip fault evolution on Europa: evidence from tailcrack geometries. Icarus, 172, 582–602.CrossRefGoogle Scholar
Kennedy, F. E., Schulson, E. M. and Jones, D. (2000). Friction of ice on ice at low sliding velocities. Phil. Mag. A, 80, 1093–1110.CrossRefGoogle Scholar
Kirchner, H. O. K., Michot, G., Narita, N. and Suzuki, T. (2001). Snow as a foam of ice: plasticity, fracture and the brittle-to-ductile transition. Phil. Mag. A, 81, 2161–2181.CrossRefGoogle Scholar
Langleben, M. P. and Pounder, E. R. (1963). Elastic parameters of sea ice. In Ice and Snow Processes, Properties and Application, ed. Kingery, W. E.. Cambridge, Mass.: MIT Press, pp. 69–78.Google Scholar
Livingston, F. E. and George, S. M. (2001). Diffusion kinetics of HCl hydrates in ice measured using infrared laser resonant desorption depth-profiling. J. Phys. Chem. A, 105, 5155–5164.CrossRefGoogle Scholar
Livingston, F. E., Whipple, G. C. and George, S. M. (1997). Diffusion of HDO into single-crystal H216O ice multilayers: Comparison with H218O. J. Phys. Chem. B., 101, 6127–6131.CrossRefGoogle Scholar
Livingston, F. E., Whipple, G. C. and George, S. M. (1998). Surface and bulk diffusion of HDO on ultrathin single-crystal ice multilayers on Ru (001). J. Chem. Phys., 108, 2197–2207.CrossRefGoogle Scholar
Livingston, F. E., Smith, J. A. and George, S. M. (2002). General trends for bulk diffusion in ice and surface diffusion on ice. J. Phys. Chem. A, 106, 6309–6318.CrossRefGoogle Scholar
Mellor, M. (1975). A review of basic snow mechanics. In International Association of Hydrological Sciences Publication 114, pp. 251–291.Google Scholar
Mellor, M. (1977). Engineering properties of snow. J. Glaciol., 19, 15–66.CrossRefGoogle Scholar
Mellor, M. (1983). Mechanical behavior of sea ice. US Army Cold Regions Research and Engineering Laboratory (CRREL) Report, M 83-1.Google Scholar
Michel, B. (1978). Ice Mechanics. Laval, Quebec: Laval University Press.Google Scholar
Michel, B. and Ramseier, R. O. (1971). Classification of river and lake ice. Can. Geotech. J., 8(36), 36–45.CrossRefGoogle Scholar
Montagnat, M. and Schulson, E. M. (2003). On friction and surface cracking during sliding. J. Glaciol., 49, 391–396.CrossRefGoogle Scholar
Nanthikesan, S. and Sunder, S. S. (1994). Anisotropic elasticity of polycrystalline ice IH. Cold Reg. Sci. Technol., 22, 149–169.CrossRefGoogle Scholar
Nasello, O. B., Navarro de Juarez, S. and Prinzio, C. L. Di (2007). Measurement of self-diffusion on ice surface. Scr. Mater., 56, 1071–1073.CrossRefGoogle Scholar
Nemat-Nasser, S. and Horii, M. (1993). Micromechanics: Overall Properties of Heterogeneous Materials. Amsterdam, The Netherlands: Elsevier Science Publishers.Google Scholar
Nimmo, F., Spencer, J. R., Pappalardo, R. T. and Mullen, M. E. (2007). Shear heating as the origin of the plumes and heat flux on Enceladus. Nature, 447, 289–291.CrossRefGoogle ScholarPubMed
Nowick, A. S. and Berry, B. S. (1972). Anelastic Relaxation in Crystalline Solids. New York: Academic Press.Google Scholar
Nye, J. F. (1957). The distribution of stress and velocity in glaciers and ice-sheets. Proc. R. Soc. Lond. Ser. A, 239, 113–133.CrossRefGoogle Scholar
Nye, J. F. (1985). Physical Properties of Crystals: Their Representation by Tensors and Matrices. Oxford: Oxford University Press.Google Scholar
Petrenko, V. F. and Whitworth, R. W. (1999). Physics of Ice. New York: Oxford University Press.Google Scholar
Prockter, L. M., Nimmo, F. and Pappalardo, R. T. (2005). A shear heating origin for ridges on Triton. Geophys. Res. Lett., 32, L14202, doi: 10.1029/2005GL022832.CrossRefGoogle Scholar
Proctor, T. M. (1966). Low-temperature speed of sound in single-crystal ice. J. Acoust. Soc. Amer., 39, 972–977.CrossRefGoogle Scholar
Ramseier, R. O. (1967). Self-diffusion of tritium in natural and synthetic ice monocrystals. J. Appl. Phys., 38, 2553–2556.CrossRefGoogle Scholar
Reuss, A. Z. (1929). Berechnung der Fliessgrenze von Mischkristallen auf Grund der Pastizitatsbedingung fur Einkristalle. Z. Angew. Math. Mech., 9, 49.CrossRefGoogle Scholar
Reyes-Morel, P. E. and Chen, I.-W. (1990). Stress-biased anisotropic microcracking in zirconia polycrystals. J. Am. Ceram. Soc., 73, 1026–1033.CrossRefGoogle Scholar
Saeki, H., Ozaki, A. and Kubo, Y. (1981). Experimental study on flexural strength and elastic modulus of sea ice. In Proceedings of the 6th International Conference on Port and Ocean Engineering under Arctic Conditions. Quebec, Canada, Laval University, pp. 536–547.Google Scholar
Schulson, E. M. (2002). On the origin of a wedge crack within the icy crust of Europa. J. Geophys. Res., 107, doi:10.1029/2001JE001586.CrossRefGoogle Scholar
Shapiro, L. H., Johnson, J. B., Sturm, M. and Blaisdell, G. L. (1997). Snow mechanics: review of the state of knowledge and applications. CRREL Report, 97-3, 1–43.Google Scholar
Shewmon, P. G. (1989). Diffusion in Solids. Warrendale, PA: Minerals, Metals and Materials Society.Google Scholar
Shimizu, H., Niabetani, T., Nishiba, T. and Sasaki, S. (1996). High-pressure elastic properties of the VI and VII phase of ice in dense H2O and D2O. Am. Phys. Soc., 53, 6107–6110.Google ScholarPubMed
Sinha, N. K. (1989a). Elasticity of natural types of polycrystalline ice. Cold Reg. Sci. Technol., 17, 127–135.CrossRefGoogle Scholar
Sinha, N. K. (1989b). Experiments on anisotropic and rate-sensitive strain ratio and modulus of columnar-grained ice. Trans. ASME, 111, 354–560.Google Scholar
Smith-Konter, B. and Pappalardo, R. T. (2008). Tidally driven stress accumulation and shear failure of Enceladus's tiger stripes. Icarus (in press).CrossRefGoogle Scholar
Thibert, E. and Domine, F. (1997). Thermodynamics and kinetics of the solid solution of HCl in ice. J. Phys. Chem. B., 101, 3554–3565.CrossRefGoogle Scholar
Thibert, E. and Domine, F. (1998). Thermodynamics and kinetics of the solid solution of HNO3 in ice. J. Phys. Chem. B., 102, 4432–4439.CrossRefGoogle Scholar
Traetteberg, A., Gold, L. and Frederking, R. (1975). The strain rate and temperature dependence of Young's modulus of ice. In 3rd International Symposium on Ice, Hanover, New Hampshire, International Association for Hydraulic Research.Google Scholar
Tulk, C. A., Gagnon, R. E., Kieffer, H. H. and Clouter, M. J. (1994). Elastic constants of ice III by Brillouin spectroscopy. J. Chem. Phys., 101, 2350–2354.CrossRefGoogle Scholar
Tulk, C. A., Gagnon, R. E., Kieffer, H. H. and Clouter, M. J. (1996). Elastic constants of ice VI by Brillouin spectroscopy. J. Chem. Phys., 104, 7854–7859.CrossRefGoogle Scholar
Tulk, C. A., Kieffer, H. H., Clouter, M. J. and Gagnon, R. E. (1997). Elastic constants of ice III, V, and VI by Brillouin spectroscopy. J. Phys. Chem. B., 101, 6154–6157.CrossRefGoogle Scholar
Voigt, W. (1910). Lehrbuch der Kristallphysik, Berlin: B. G. Teubner.Google Scholar
Wang, Y. S. (1981). Uniaxial compression testing of Arctic sea ice. In 6th International Conference on Port and Ocean Engineering under Arctic Conditions. Quebec, Canada, Laval University.Google Scholar
Wegst, U. G. K., and Ashby, M. F. (2004). The mechanical efficiency of natural materials. Phil. Mag., 84, 2167–2181.CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×