Skip to main content Accessibility help
×
Hostname: page-component-68945f75b7-l9cl4 Total loading time: 0 Render date: 2024-08-06T05:38:41.780Z Has data issue: false hasContentIssue false

1 - Introduction

Published online by Cambridge University Press:  01 September 2022

Alexandre K. Monro
Affiliation:
Royal Botanic Gardens, Kew
Simon J. Mayo
Affiliation:
Royal Botanic Gardens, Kew
Get access

Summary

This Systematics Association Special Volume is the result of a symposium entitled, ‘Cryptic taxa - artefact of classification or evolutionary phenomena?’ held on June 17 as part of the Association’s 10th Biennial Meeting 2019. I began to realise that the notion of cryptic species touches the heart of several major debates in biology, including, ‘what are species?’, ‘how should we recognize them?’, the notion of punctuated equilibria and that of morphological stasis in the fossil record. Also, in the midst of a biodiversity crisis the phenomenon of cryptic species suggests that there may be a greater diversity of evolutionary lineages in need of conservation than has been suggested. The chapters that emerged from the Symposium show clearly how the topic of 'species' remains central to biodiversity sciences and the subject of wide-ranging and lively debate. In almost every chapter there is a call for change, either of direction or for the inclusion of new developments and data, and their focus ranges from abandoning species altogether to highlighting the weaknesses in current taxonomic process suggesting that our representation of the biological universe is still a chaotic torso.

Type
Chapter
Information
Cryptic Species
Morphological Stasis, Circumscription, and Hidden Diversity
, pp. 1 - 13
Publisher: Cambridge University Press
Print publication year: 2022

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Álvarez-Presas, M., Amaral, S. V., Carbayo, F., Leal-Zanchet, A. M., and Riutort, M. (2015) Focus on the details: Morphological evidence supports new cryptic land flatworm (Platyhelminthes) species revealed with molecules. Organisms Diversity & Evolution 15: 379403. https://doi.org/10.1007/s13127–014-0197-zCrossRefGoogle Scholar
Anon (2019) International Code of Nomenclature of Prokaryotes. International Journal of Systematic and Evolutionary Microbiology 69: S1S111. https://doi.org/10.1099/ijsem.0.000778CrossRefGoogle Scholar
Armenteros, M., Ruiz-Abierno, A., and Decraemer, W. (2014) Taxonomy of Stilbonematinae (Nematoda: Desmodoridae): Description of two new and three known species and phylogenetic relationships within the family. Zoological Journal of the Linnean Society 171: 121. https://doi.org/10.1111/zoj.12126CrossRefGoogle Scholar
Atran, S. (1998) Folk biology and the anthropology of science: Cognitive universals and cultural particulars. Behavioral and Brain Sciences 21: 547569. https://doi.org/10.1017/S0140525X98001277Google Scholar
Bauret, L., Gaudeul, M., Sundue, M. A. A. et al. (2017) Madagascar sheds new light on the molecular systematics and biogeography of grammitid ferns: New unexpected lineages and numerous long-distance dispersal events. Molecular Phylogenetics and Evolution 111: 117. https://doi.org/10.1016/j.ympev.2017.03.005CrossRefGoogle ScholarPubMed
Bensch, S., Péarez-Tris, J., Waldenströum, J., and Hellgren, O. (2004) Linkage between nuclear and mitochondrial DNA sequences in avian malaria parasites: Multiple cases of cryptic speciation? Evolution 58: 16171621. https://doi.org/10.1111/j.0014-3820.2004.tb01742.xGoogle Scholar
Berlin, B. (1973) Folk systematics in relation to biological classification and nomenclature. Annual Reviews 4: 259271.Google Scholar
Berlin, B. (1992) Ethnobiological Classification: Principles of Categorization of Plants and Animals in Traditional Societies. Princeton University Press, Princeton, NJ.CrossRefGoogle Scholar
Berlin, B., Breedlove, D. E., and Raven, P. H. (1974) Principles of Tzeltal Plant Classification. Academic Press, New York and London.Google Scholar
Bulmer, R. N. H., Menzies, J. I., and Parker, F. (1968) Kalam classification of birds and reptiles. Journal of the Polynesian Society 84: 267308.Google Scholar
Carroll, S. P., Jørgensen, S. P., Kinnison, M. T. et al. (2014) Applying evolutionary biology to address global challenges. Science 346: 313323. https://doi.org/10.1126/science.1245993CrossRefGoogle ScholarPubMed
Cerca, J. Meyer, C., Purschke, G., and Struck, T. H. (2020) Delimitation of cryptic species drastically reduces the geographical ranges of marine interstitial ghost-worms (Stygocapitella; Annelida, Sedentaria). Molecular Phylogenetics and Evolution 143: 106663. https://doi.org/10.1016/j.ympev.2019.106663Google Scholar
Charlesworth, B. and Lande, R. (1982) Morphological stasis and developmental constraint: No problem for Neo-Darwinism. Nature 296: 610610. https://doi.org/10.1038/296610a0Google Scholar
Coyne, J. A. and Orr, O. H. (2004) Speciation. Sinauer Associates, Sunderland, MA.Google Scholar
Cozzuol, M. A., Clozato, C. L., Holanda, E. C. et al. (2013) A new species of tapir from the Amazon. Journal of Mammalogy 94: 13311345. https://doi.org/10.1644/12-MAMM-A-169.1CrossRefGoogle Scholar
Darwin, C. (1859) On the Origin of Species by Means of Natural Selection, or the Preservation of Favoured Races in the Struggle for Life. John Murray, London.Google Scholar
Davis, C. C., Schaefer, H., Xi, Z. et al. (2014) Long-term morphological stasis maintained by a plant-pollinator mutualism. Proceedings of the National Academy of Sciences 111: 59145919. https://doi.org/10.1073/pnas.1403157111Google Scholar
Davis, P. H. and Heywood, V. H. (1963) Principles of Angiosperm Taxonomy. Oliver & Boyd, Edinburgh.Google Scholar
Dexter, K. G., Pennington, T. D., and Cunningham, C. W. (2010) Using DNA to assess errors in tropical tree identifications: How often are ecologists wrong and when does it matter? Ecological Monographs 80: 267286. https://doi.org/10.1890/09-0267.1Google Scholar
Diamond, J. M. (1966) Zoological classification system of a primitive people. Science 151: 11021104. https://doi.org/10.1126/science.151.3714.1102Google Scholar
Dornburg, A., Federman, S., Eytan, R. I., and Near, T.J. (2016) Cryptic species diversity in sub-Antarctic islands: A case study of Lepidonotothen. Molecular Phylogenetics and Evolution 104: 3243. https://doi.org/10.1016/j.ympev.2016.07.013Google Scholar
Estes, S. and Arnold, S. J. (2007) Resolving the paradox of stasis: Models with stabilizing selection explain evolutionary divergence on all timescales. The American Naturalist 169: 227244. https://doi.org/10.1086/510633Google Scholar
Fišer, Ž. et al. (2015) Morphologically cryptic Amphipod species are “ecological clones” at regional but not at local scale: A case study of four Niphargus species. PLoS ONE 10: e0134384. https://doi.org/10.1371/journal.pone.0134384CrossRefGoogle ScholarPubMed
Fleck, L. (1980 [1935]) Enstehung und Entwicklung einer wissenschaftlichen Tatsache: Einführung in die Lehre vom Denkstil und Denkkollektiv. Suhrkamp, Frankfurt am Main.Google Scholar
Freudenstein, J. V., Broe, M. B., Folk, R. A., and Sinn, B. T. (2016) Biodiversity and the species concept: Lineages are not enough. Systematic Biology 66: 644656. https://doi.org/10.1093/sysbio/syw098Google Scholar
Funk, W. C., Caminer, M., and Ron, S. R. (2012) High levels of cryptic species diversity uncovered in Amazonian frogs. Proceedings of the Royal Society B: Biological Sciences 279: 18061814. https://doi.org/10.1098/rspb.2011.1653Google Scholar
Gabaldón, C., Serra, M., Carmona, M. J., and Montero-Pau, J. (2015) Life-history traits, abiotic environment and coexistence: The case of two cryptic rotifer species. Journal of Experimental Marine Biology and Ecology 465: 142152. https://doi.org/10.1016/j.jembe.2015.01.016CrossRefGoogle Scholar
Gingerich, P. D. (2019) Rates of Evolution: A Quantitative Synthesis. Cambridge University Press, Cambridge.Google Scholar
Gould, S. J. (2002) The Structure of Evolutionary Theory. Harvard University Press, Cambridge, MA.Google Scholar
Gross, J. B. (2016) Convergence and Parallelism in Astyanax Cave-Dwelling Fish: Evolutionary Biology. Springer, Cham, IL.Google Scholar
Haines-Young, R. and Potschin, M. (2010) The links between biodiversity, ecosystem services and human well-being. In: Raffaelli, D. G. and Frid, C. L. J. (eds.) Ecosystem Ecology: A New Synthesis. BES Ecological Reviews Series, Cambridge University Press, Cambridge, pp. 110139.Google Scholar
International Committee on Taxonomy of Viruses (2005) The international code of virus classification and nomenclature of ICTV. Virus Taxonomy: Eighth Report of the International Committee on Taxonomy of Viruses: 1209–1214. Available from: https://talk.ictvonline.org/information/w/ictv-information/383/ictv-codeCrossRefGoogle Scholar
Jordan, K. (1905) Der Gegensatz zwischen geographischer und nichtgeogeographischer Variation. Zeitschrift für wissenschaftliche Zoologie 83: 15210.Google Scholar
Khalik, M. Z., Bozkurt, E., and Schilthuizen, M. (2020) Morphological parallelism of sympatric cave‐dwelling microsnails of the genus Georissa at Mount Silabur, Borneo (Gastropoda, Neritimorpha, Hydrocenidae). Journal of Zoological Systematics and Evolutionary Research 58: 648661. https://doi.org/10.1111/jzs.12352CrossRefGoogle Scholar
Koh, L. P., Dunn, R. R., Sodhi, N. S. et al. (2004) Species coextinctions and the biodiversity crisis. Science 305: 16321634. https://doi.org/10.1126/science.1101101CrossRefGoogle ScholarPubMed
Korshunova, T., Fletcher, K., Picton, B. et al. (2020) The Emperor’s Cadlina, hidden diversity and gill cavity evolution: New insights for the taxonomy and phylogeny of dorid nudibranchs (Mollusca: Gastropoda). Zoological Journal of the Linnean Society 189: 762827. https://doi.org/10.1093/zoolinnean/zlz126CrossRefGoogle Scholar
Leavitt, D. H., Bezy, R. L., Crandall, K. A. et al. (2007) Multi-locus DNA sequence data reveal a history of deep cryptic vicariance and habitat-driven convergence in the desert night lizard Xantusia vigilis species complex (Squamata: Xantusiidae). Molecular Ecology 16: 44554481. https://doi.org/10.1111/j.1365-294X.2007.03496.xCrossRefGoogle ScholarPubMed
Leria, L., Vila-Farré, M., Álvarez-Presas, M. et al. (2020) Cryptic species delineation in freshwater planarians of the genus Dugesia (Platyhelminthes, Tricladida): Extreme intraindividual genetic diversity, morphological stasis, and karyological variability. Molecular Phylogenetics and Evolution 143: 106496. https://doi.org/10.1016/j.ympev.2019.05.010CrossRefGoogle ScholarPubMed
Lherminier, P. (2015) La valeur de l’espèce. La Pensée N° 383: 7585. https://doi.org/10.3917/lp.383.0075Google Scholar
Locke, J. (1689) An Essay Concerning Human Understanding. 1975 ed. Nidditch, P. H. (ed.) Clarendon Press, Oxford.Google Scholar
Ludwig, D. (2017) Indigenous and scientific kinds. The British Journal for the Philosophy of Science 68: 187212. https://doi.org/10.1093/bjps/axv031Google Scholar
Majnep, I. S. and Bulmer, R. N. H. (1977) Birds of My Kalam Country. Auckland University Press, Oxford University Press, Auckland and Oxford.Google Scholar
Mayden, R. L. (1997) A hierarchy of species concepts: The denouement in the saga of the species problem. In: , H. A. D. and Claridge, M. R. W. M. F. (ed.) The Systematics Association Special Volume Series, Species: The Units of Diversity. Chapman & Hall, London, pp. 381423.Google Scholar
Mayr, E. (1963) Animal Species and Evolution. Belknap Press, Harvard University Press, Cambridge, MA.Google Scholar
McDaniel, S. F. and Shaw, A. J. (2003) Phylogeographic structure and cryptic speciation in the trans-Antarctic moss Pyrrhobryum minioides. Evolution 57: 205215. https://doi.org/10.1111/j.0014-3820.2003.tb00256.xGoogle Scholar
Mills, S., Alcántara-Rodríguez, J. A., Ciros-Pérez, J. et al. (2017) Fifteen species in one: Deciphering the Brachionus plicatilis species complex (Rotifera, Monogononta) through DNA taxonomy. Hydrobiologia 796: 3958. https://doi.org/10.1007/s10750–016-2725-7Google Scholar
Momigliano, P., Denys, G. P. J., Jokinen, H., and Merilä, J. (2018) Platichthys solemdali sp. nov. (Actinopterygii, Pleuronectiformes): A New flounder species from the Baltic Sea. Frontiers in Marine Science 5. https://doi.org/10.3389/fmars.2018.00225Google Scholar
Muggia, L., Kocourkova, J., and Knudsen, K. (2015) Disentangling the complex of Lichenothelia species from rock communities in the desert. Mycologia 107: 12331253. https://doi.org/10.3852/15-021Google Scholar
Muñoz-Rodríguez, P., Carruthers, T., Wood, J. R. I. et al. (2019) A taxonomic monograph of Ipomoea integrated across phylogenetic scales. Nature Plants 5: 11361144. https://doi.org/10.1038/s41477–019-0535-4Google Scholar
Nater, A., Mattle-Greminger, M. P., Nurcahyo, A. et al. (2017) Morphometric, behavioral, and genomic evidence for a new orangutan species. Current Biology 27: 34873498.e10. https://doi.org/10.1016/j.cub.2017.09.047CrossRefGoogle ScholarPubMed
Online Etymological Dictionary (1993) species. Online Etymological Dictionary. www.etymonline.com/Google Scholar
Oxford University Press (1993) The New Shorter Oxford English Dictionary. Oxford University Press, Oxford.Google Scholar
Padial, J. M. and De la Riva, I. (2021) A paradigm shift in our view of species drives current trends in biological classification. Biological Reviews 96: 731751. https://doi.org/10.1111/brv.12676Google Scholar
Pennington, R. T. and Lavin, M. (2016) The contrasting nature of woody plant species in different neotropical forest biomes reflects differences in ecological stability. New Phytologist 210: 2537. https://doi.org/10.1111/nph.13724Google Scholar
Poelstra, J. W., Vijay, N., Bossu, C. M. et al. (2014) The genomic landscape underlying phenotypic integrity in the face of gene flow in crows. Science 344: 14101414. https://doi.org/10.1126/science.1253226CrossRefGoogle ScholarPubMed
Powers, A. K., Berning, D. J., and Gross, J. B. (2020) Parallel evolution of regressive and constructive craniofacial traits across distinct populations of Astyanax mexicanus cavefish. Journal of Experimental Zoology Part B: Molecular and Developmental Evolution 334: 450462. https://doi.org/10.1002/jez.b.22932CrossRefGoogle ScholarPubMed
De Queiroz, K. (1989) The general lineage concept of species, species criteria, and the process of speciation: A conceptual unification and terminological recommendations. In: Howard, S. H. B. D. J. (ed.) Endless Forms: Species and Speciation. Oxford University Press, New York, pp. 5775.Google Scholar
De Queiroz, K. (1999) The general lineage concept of species and the defining properties of the species category. In: Wilson, R. A. (ed.) New Interdisciplinary Essays. MIT Press, Cambridge, MA, pp. 4989.Google Scholar
De Queiroz, K. (2007) Species concepts and species delimitation. Systematic Biology 56: 879886. https://doi.org/10.1080/10635150701701083Google Scholar
Raff, R. A. (1996) The Shape of Life: Genes, Development, and the Evolution of Animal Form. University of Chicago Press, Chicago.Google Scholar
Rensch, B. (1938) Some problems of geographical variation and species‐formation. Proceedings of the Linnean Society of London 150: 275285. https://doi.org/10.1111/j.1095-8312.1938.tb00182k.xGoogle Scholar
Ride, W. D. L., Cogger, H. G., Dupuis, C. K. O. et al. (1999) International Code of Zoological Nomenclature. Fourth. The Natural History Museum, London, London.Google Scholar
Robinson, K. J., Twiss, S. D., Hazon, N. et al. (2015) Conspecific recognition and aggression reduction to familiars in newly weaned, socially plastic mammals. Behavioral Ecology and Sociobiology 69: 13831394. https://doi.org/10.1007/s00265–015-1952-7Google Scholar
Slater, M. H. (2015) Natural kindness. The British Journal for the Philosophy of Science 66: 375411. https://doi.org/10.1093/bjps/axt033Google Scholar
Smith, J. M. (1981) Macroevolution. Nature 289: 1314. https://doi.org/10.1038/289013a0Google Scholar
Stanley, S. M. (1979) Macroevolution, Pattern and Process. W. H. Freeman, San Francisco, 332 pp.Google Scholar
Struck, T. H., Feder, J. L., Bendiksby, M. et al. (2018a) Cryptic species – more than terminological chaos: A reply to Heethoff. Trends in Ecology & Evolution 33: 310312. https://doi.org/10.1016/j.tree.2018.02.008Google Scholar
Struck, T. H., Feder, J. L., Bendiksby, M. (2018b) Finding evolutionary processes hidden in cryptic species. Trends in Ecology & Evolution 33: 153163. https://doi.org/10.1016/j.tree.2017.11.007Google Scholar
Templeton, A. R. (1989) The meaning of species and speciation title. In: Endler, D. and Otte, J. A. (eds.) Speciation and Its Consequences. Sinauer Associates, Sunderland, MA, pp. 327.Google Scholar
Turland, N., Wiersema, J., Barrie, F. et al. eds. (2018) International Code of Nomenclature for Algae, Fungi, and Plants. Koeltz Botanical Books, Oberreifenberg, Germany.Google Scholar
Williams, P. H., Berezin, M. V., Cannings, S. G. et al. (2019) The arctic and alpine bumblebees of the subgenus Alpinobombus revised from integrative assessment of species’ gene coalescents and morphology (Hymenoptera, Apidae, Bombus). Zootaxa 4625: 168. https://doi.org/10.11646/zootaxa.4625.1.1Google Scholar
Williams, P. H., Cannings, S. G., and Sheffield, C. S. (2016) Cryptic subarctic diversity: A new bumblebee species from the Yukon and Alaska (Hymenoptera: Apidae). Journal of Natural History 50: 28812893. https://doi.org/10.1080/00222933.2016.1214294Google Scholar
Xavier, J. R., Rachello-Dolmen, P. G., Parra-Velandia, F. et al. (2010) Molecular evidence of cryptic speciation in the “cosmopolitan” excavating sponge Cliona celata (Porifera, Clionaidae). Molecular Phylogenetics and Evolution 56: 1320. https://doi.org/10.1016/j.ympev.2010.03.030Google Scholar
Yuan, J., Zhang, X., Gao, Y. et al. (2020) Adaptation and molecular evidence for convergence in decapod crustaceans from deep‐sea hydrothermal vent environments. Molecular Ecology 29: 39543969. https://doi.org/10.1111/mec.15610Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×