Skip to main content Accessibility help
×
Hostname: page-component-5c6d5d7d68-wpx84 Total loading time: 0 Render date: 2024-08-19T07:21:50.250Z Has data issue: false hasContentIssue false

References

Published online by Cambridge University Press:  13 July 2017

Thomas D. Parsons
Affiliation:
University of North Texas
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Cyberpsychology and the Brain
The Interaction of Neuroscience and Affective Computing
, pp. 354 - 430
Publisher: Cambridge University Press
Print publication year: 2017

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aardema, F., O’Connor, K., Côté, S., & Taillon, A. (2010). Virtual reality induces dissociation and lowers sense of presence in objective reality. Cyberpsychology, Behavior, and Social Networking, 13(4), 429435.CrossRefGoogle ScholarPubMed
Abascal, J., & Nicolle, C. (2005). Moving towards inclusive design guidelines for socially and ethically aware HCI. Interacting with Computers, 17(5), 484505.CrossRefGoogle Scholar
Abbate, J. (1999). Inventing the Internet. Cambridge, MA: MIT Press.Google Scholar
Abraham, S., & Chengalur-Smith, I. (2010). An overview of social engineering malware: Trends, tactics, and implications. Technology in Society, 32(3), 183196.CrossRefGoogle Scholar
Achtman, R. L., Green, C. S., & Bavelier, D. (2008). Video games as a tool to train visual skills. Restorative Neurology and Neuroscience, 26, 435446.Google ScholarPubMed
Ackerman, P. L., Kanfer, R., & Goff, M. (1995). Cognitive and noncognitive determinants and consequences of complex skill acquisition. Journal of Experimental Psychology: Applied, 1, 270304.Google Scholar
Acquisti, A., & Grossklags, J. (2004). Privacy attitudes and privacy behavior. In Camp, L. J. & Lewis, S. (Eds.), Economics of information security (Vol. 12, pp. 165178). Boston, MA: Springer.CrossRefGoogle Scholar
Adams, R., Finn, P., Moes, E., Flannery, K., & Rizzo, A. S. (2009). Distractibility in attention/deficit/hyperactivity disorder (ADHD): The virtual reality classroom. Child Neuropsychology, 15, 120135.CrossRefGoogle ScholarPubMed
Adler, R. F., & Benbunan-Fich, R. (2013). Self-interruptions in discretionary multitasking. Computers in Human Behavior, 29(4), 14411449.CrossRefGoogle Scholar
Adolphs, R. (2003). Cognitive neuroscience of human social behaviour. Nature Reviews Neuroscience, 4(3), 165178.CrossRefGoogle ScholarPubMed
Adolphs, R. (2009). The social brain: Neural basis of social knowledge. Annual Review of Psychology, 60, 693.CrossRefGoogle ScholarPubMed
Alcañiz, M., Rey, B., Tembl, J., & Parkhutik, V. (2009). A neuroscience approach to virtual reality experience using transcranial Doppler monitoring. Presence, 18(2), 97111.CrossRefGoogle Scholar
Alcaro, A., & Panksepp, J. (2011). The SEEKING mind: Primal neuro-affective substrates for appetitive incentive states and their pathological dynamics in addictions and depression. Neuroscience & Biobehavioral Reviews, 35(9), 18051820.CrossRefGoogle ScholarPubMed
Alderman, N., Burgess, P. W., Knight, C., & Henman, C. (2003). Ecological validity of a simplified version of the multiple errands shopping test. Journal of the International Neuropsychological Society, 9(1), 3144.CrossRefGoogle ScholarPubMed
Alexander, G. E., DeLong, M. R., & Strick, P. L. (1986). Parallel organization of functionally segregated circuits linking basal ganglia and cortex. Annual Review of Neuroscience, 9, 357381.CrossRefGoogle ScholarPubMed
Allaire, J. C., Bäckman, L., Balota, D. A., Bavelier, D., Bjork, R. A., & Bower, G. H. (2014). A Consensus on the Brain Training Industry from the Scientific Community. Max Planck Institute for Human Development and Stanford Center on Longevity. Retrieved January 15, 2015 from http://longevity3.stanford.edu/blog/2014/10/15/the-consensuson-the-brain-training-industryfrom-the-scientific-community/.Google Scholar
Allanson, J. (2002). Electrophysiologically-interactive computer systems. IEEE Computers, 35, 6065.CrossRefGoogle Scholar
Allanson, J., & Fairclough, S. H. (2004). A research agenda for physiological computing. Interacting with Computers, 16(5), 857878.CrossRefGoogle Scholar
Allison, B. Z., Brunner, C., Kaiser, V., Müller-Putz, G. R., Neuper, C., & Pfurtscheller, G. (2010). Toward a hybrid brain–computer interface based on imagined movement and visual attention. Journal of Neural Engineering, 7(2), 399408.CrossRefGoogle Scholar
Allison, B. Z., Dunne, S., Leeb, R., Millán, J. D. R., & Nijholt, A. (Eds.) (2012). Towards practical brain-computer interfaces: Bridging the gap from research to real-world applications. Berlin, Heidelberg: Springer Science & Business Media, Verlag.Google Scholar
Allison, B. Z., McFarland, D. J., Schalk, G., Zheng, S. D., Jackson, M. M., & Wolpaw, J. R. (2008). Towards an independent brain–computer interface using steady state visual evoked potentials. Clinical Neurophysiology, 119(2), 399408.CrossRefGoogle ScholarPubMed
Alsina-Jurnet, I., & Gutiérrez-Maldonado, J. (2010). Influence of personality and individual abilities on the sense of presence experienced in anxiety triggering virtual environments. International Journal of Human-Computer Studies, 68(10), 788–80.CrossRefGoogle Scholar
Alvarez, R. P., Biggs, A., Chen, G., Pine, D. S., & Grillon, C. (2008). Contextual fear conditioning in humans: Cortical-hippocampal and amygdala contributions. Journal of Neuroscience, 28, 62116219.CrossRefGoogle ScholarPubMed
Alvarez, R. P., Johnson, L., & Grillon, C. (2007). Contextual-specificity of short-delay extinction in humans: Renewal of fear-potentiated startle in a virtual environment. Learning & Memory, 14, 247253.CrossRefGoogle Scholar
Alzahabi, R., & Becker, M. W. (2013). The association between media multitasking, task-switching, and dual-task performance. Journal of Experimental Psychology: Human Perception and Performance, 39(5), 1485.Google ScholarPubMed
Amaoka, T., Laga, H., Yoshie, M., & Nakajima, M. (2011). Personal space-based simulation of non-verbal communications. Entertainment Computing, 2(4), 245261.CrossRefGoogle Scholar
Amaral, D. G., Price, J. L., Pitkaenen, A., & Carmichael, S. T. (1992). Anatomical organization of the primate amygdaloid complex. In Aggleton, J. P. (Ed.), The amygdala: Neurobiological aspects of emotion, memory, and mental dysfunction (pp. 166). New York: Wiley.Google Scholar
American Psychiatric Association (2013). Diagnostic and statistical manual of mental disorders (5th edn.). Washington, DC: American Psychiatric Association.Google Scholar
Amft, M., Bzdok, D., Laird, A. R., Fox, P. T., Schilbach, L., & Eickhoff, S. B. (2015). Definition and characterization of an extended social-affective default network. Brain Structure and Function, 220(2), 10311049.CrossRefGoogle ScholarPubMed
Amodio, D. M., & Frith, C. D. (2006). Meeting of minds: The medial frontal cortex and social cognition. Nature Reviews Neuroscience, 7(4), 268277.CrossRefGoogle ScholarPubMed
Amodio, D. M. (2014). The neuroscience of prejudice and stereotyping. Nature Reviews Neuroscience, 15, 670682.CrossRefGoogle ScholarPubMed
Anderson, B. B., Vance, A., Kirwan, B., Jenkins, J., & Eargle, D. (2015). Using fMRI to explain the effect of dual-task interference on security behavior. In Information systems and neuroscience (pp. 145150). Switzerland: Springer International Publishing.CrossRefGoogle Scholar
Anderson, B., Fagan, P., Woodnutt, T., & Chamorro-Premuzic, T. (2012). Facebook psychology: Popular questions answered by research. Psychology of Popular Media Culture, 1(1), 23.CrossRefGoogle Scholar
Anderson, C. L., & Agarwal, R. (2010). Practicing safe computing: A multimedia empirical examination of home computer user security behavioral intentions. MIS Quarterly, 34(3), 613643.CrossRefGoogle Scholar
Anderson, E. W., Potter, K. C., Matzen, L. E., Shepherd, J. F., Preston, G. A., & Silva, C. T. (2011). A user study of visualization effectiveness using EEG and cognitive load. Computer Graphics Forum, 30(3), 791800.CrossRefGoogle Scholar
Anderson, J. R., & Schooler, L. J. (1991). Reflections of the environment in memory. Psychological Science, 2, 396408.CrossRefGoogle Scholar
Anderson, R. (2008). Security engineering: A guide to building dependable distributed systems (2nd edn.). Indianapolis, IN: Wiley.Google Scholar
Andrews, G., & Murphy, K. (2006). Does video-game playing improve executive function? Frontiers in Cognitive Science, 145161.Google Scholar
Andrews-Hanna, J. R. (2012). The brain’s default network and its adaptive role in internal mentation. The Neuroscientist, 18(3), 251270.CrossRefGoogle ScholarPubMed
Andrews-Hanna, J. R., Reidler, J. S., Sepulcre, J., Poulin, R., & Buckner, R. L. (2010). Functional-anatomic fractionation of the brain’s default network. Neuron 65(4), 550562.CrossRefGoogle ScholarPubMed
Andrews-Hanna, J. R., Smallwood, J., & Spreng, R. N. (2014). The default network and self-generated thought: Component processes, dynamic control, and clinical relevance. Annals of the New York Academy of Sciences, 1316(1), 2952.CrossRefGoogle ScholarPubMed
Anguera, J. A., Boccanfuso, J., Rintoul, J. L., Al-Hashimi, O., Faraji, F., Janowich, J. et al. (2013). Video game training enhances cognitive control in older adults. Nature, 501, 97101.CrossRefGoogle ScholarPubMed
Appelbaum, L. G., Cain, M. S., Darling, E. F., & Mitroff, S. R. (2013). Action video game playing is associated with improved visual sensitivity, but not alterations in visual sensory memory. Attention, Perception, and Psychophysics, 75, 11611167.CrossRefGoogle Scholar
Apperley, T. H. (2006). Genre and game studies: Toward a critical approach to video game genres. Simulation & Gaming, 37(1), 623.CrossRefGoogle Scholar
Arbesman, S. (2012). The half-life of facts: Why everything we know has an expiration date. New York: Current.Google Scholar
Ariely, D., & Berns, G. S. (2010). Neuromarketing: The hope and hype of neuroimaging in business. Nature Reviews Neuroscience, 11(4), 284292.CrossRefGoogle Scholar
Armstrong, C., Reger, G., Edwards, J., Rizzo, A., Courtney, C., & Parsons, T.D. (2013). Validity of the Virtual Reality Stroop Task (VRST) in active duty military. Journal of Clinical and Experimental Neuropsychology, 35, 113123.CrossRefGoogle ScholarPubMed
Armstrong, G. B., Boiarsky, G. A., & Mares, M. (1991). Background television and reading performance. Communications Monographs, 58(3), 235253.CrossRefGoogle Scholar
Ashburner, J., & Friston, K. J. (2000). Voxel-based morphometry – the methods. Neuroimage, 11(6), 805821.CrossRefGoogle ScholarPubMed
Ashby, F. G., Maddox, W. T., & Lee, W. W. (1994). On the dangers of averaging across subjects when using multidimensional scaling or the similarity-choice model. Psychological Science, 5, 144151.CrossRefGoogle Scholar
Asimakopulos, J., Boychuck, Z., Sondergaard, D., Poulin, V., Ménard, I., & Korner-Bitensky, N. (2012). Assessing executive function in relation to fitness to drive: A review of tools and their ability to predict safe driving. Australian Occupational Therapy Journal, 59, 402427.CrossRefGoogle ScholarPubMed
Attrill, A., & Fullwood, C. (Eds.). (2016). Applied cyberpsychology: Practical applications of cyberpsychological theory and research. Palgrave Macmillan, UK.CrossRefGoogle Scholar
Attrill, A. (Ed.). (2015). Cyberpsychology. Oxford University Press.Google Scholar
Aylett, R., Dias, J., & Paiva, A. (2006, June). An affectively driven planner for synthetic characters. In Proceedings of the Sixteenth International Conference on Automated Planning and Scheduling ICAPS (pp. 210).Google Scholar
Baas, J. M. P., van Ooijen, L., Goudriaan, A., & Kenemans, J. L. (2008). Failure to condition to a cue is associated with sustained contextual fear. Acta Psychologica (Amsterdam), 127, 581592.CrossRefGoogle ScholarPubMed
Backs, R. W., & Seljos, K. A. (1994). Metabolic and cardiorespiratory measures of mental effort: The effects of level of difficulty in a working memory task. International Journal of Psychophysiology, 16, 5768.CrossRefGoogle Scholar
Baddeley, A. (1981). The cognitive psychology of everyday life. British Journal of Psychology, 72(2), 257269.CrossRefGoogle Scholar
Baddeley, M. (2011). Information security: Lessons from behavioural economics. Cambridge: Cambridge University.Google Scholar
Bainbridge, W. S. (2007). The scientific research potential of virtual worlds. Science, 317, 472476. doi:10.1126/science.1146930.CrossRefGoogle ScholarPubMed
Banaji, M., & Crowder, R. G. (1989). The bankruptcy of everyday memory. American Psychologist, 44, 11851193.CrossRefGoogle Scholar
Banakou, D., Groten, R., and Slater, M. (2013). Illusory ownership of a virtual child body causes overestimation of object sizes and implicit attitude changes. Proceedings of the National Academy of Sciences USA, 110, 1284612851.CrossRefGoogle ScholarPubMed
Baniqued, P. L., Lee, H., Voss, M. W., Basak, C., Cosman, J. D., Desouza, S., et al. (2013). Selling points: What cognitive abilities are tapped by casual video games? Acta Psychologica (Amsterdam), 142(1), 7486.CrossRefGoogle ScholarPubMed
Baños, R. M., Botella, C., Alcañiz, M., Liaño, V., Guerrero, B., & Rey, B. (2004). Immersion and emotion: Their impact on the sense of presence. CyberPsychology & Behavior, 7(6), 734741.CrossRefGoogle ScholarPubMed
Bar, M. (2007). The proactive brain: Using analogies and associations to generate predictions. Trends in Cognitive Sciences, 11(7), 280289.CrossRefGoogle ScholarPubMed
Bard, P., (1929). Emotion. I. The neuro-humoral basis of emotional reactions. In Murchsion, C. (Ed.), The foundations of experimental psychology (pp. 449487). Worcester, MA: Clark University Press.CrossRefGoogle Scholar
Barnes, S. J., & Pressey, A. D. (2011). Who needs cyberspace? Examining drivers of needs in Second Life. Internet Research, 21(3), 236254.CrossRefGoogle Scholar
Baron, R. M., & Kenny, D. A. (1986). The moderator–mediator variable distinction in social psychological research: Conceptual, strategic, and statistical considerations. Journal of Personality and Social Psychology, 51(6), 1173.CrossRefGoogle ScholarPubMed
Barr, N., Pennycook, G., Stolz, J. A., & Fugelsang, J. A. (2015). The brain in your pocket: Evidence that smartphones are used to supplant thinking. Computers in Human Behavior, 48, 473480.CrossRefGoogle Scholar
Barrett, L. F., & Satpute, A. B. (2013). Large-scale brain networks in affective and social neuroscience: Towards an integrative functional architecture of the brain. Current Opinion in Neurobiology, 23(3), 361372.CrossRefGoogle ScholarPubMed
Barsalou, L. W. (2008). Grounded cognition. The Annual Review of Psychology, 59, 617645.CrossRefGoogle ScholarPubMed
Bart, O., Raz, S., & Dan, O. (2014). Reliability and validity of the Online Continuous Performance Test among children. Assessment, 21(5), 637643.CrossRefGoogle ScholarPubMed
Bartolomeo, P. (2011). The quest for the “critical lesion site” in cognitive deficits: Problems and perspectives. Cortex, 47(8), 10101012.CrossRefGoogle ScholarPubMed
Basak, C., Boot, W. R., Voss, M. W., and Kramer, A. F. (2008). Can training in a real-time strategy video game attenuate cognitive decline in older adults? Psychology and Aging, 23, 765777.CrossRefGoogle Scholar
Basak, C., Voss, M. W., Erickson, K. I., Boot, W. R., & Kramer, A. F. (2011). Regional differences in brain volume predict the acquisition of skill in a complex real-time strategy videogame. Brain and Cognition, 76(3), 407414.CrossRefGoogle Scholar
Bauer, R. M., Iverson, G. L., Cernich, A. N., Binder, L. M., Ruff, R. M., & Naugle, R. I. (2012). Computerized neuropsychological assessment devices: Joint position paper of the American Academy of Clinical Neuropsychology and the National Academy of Neuropsychology. Clinical Neuropsychology, 26, 177196.CrossRefGoogle ScholarPubMed
Baumann, S., Neff, C., Fetzick, S., Stangl, G., Basler, L., Vereneck, R., et al. (2003). A virtual reality system for neurobehavioral and functional MRI studies. Cyberpsychology and Behavior, 6, 259266. doi:10.1089/109493103322011542.CrossRefGoogle ScholarPubMed
Baumgartner, S. E., Weeda, W. D., van der Heijden, L. L., & Huizinga, M. (2014). The relationship between media multitasking and executive function in early adolescents. The Journal of Early Adolescence, 34(8), 11201144.CrossRefGoogle Scholar
Baumgartner, T., Speck, D., Wettstein, D., Masnari, O., Beeli, G., & Jäncke, L. (2008). Feeling present in arousing virtual reality worlds: Prefrontal brain regions differentially orchestrate presence experience in adults and children. Frontiers in Human Neuroscience, 2, 112.CrossRefGoogle ScholarPubMed
Baumgartner, T., Valko, L., Esslen, M., & Jäncke, L. (2006). Neural correlate of spatial presence in an arousing and noninteractive virtual reality: An EEG and psychophysiology study. CyberPsychology & Behavior, 9(1), 3045.CrossRefGoogle Scholar
Bavelier, D., Achtman, R. L., Mani, M., & Föcker, J. (2012). Neural bases of selective attention in action video game players. Vision Research, 61, 132143.CrossRefGoogle ScholarPubMed
Bavelier, D., Green, C. S., & Dye, M. W. (2010). Children, wired: For better and for worse. Neuron, 67(5), 692701.CrossRefGoogle ScholarPubMed
Bayless, J., Varney, N.R., & Roberts, R. (1989). Tinker Toy Test performance and vocational outcome in patients with closed head injuries. Journal of Clinical and Experimental Neuropsychology, 11, 913917.CrossRefGoogle ScholarPubMed
Beardon, L., Parsons, S., & Neale, H. (2001). An inter-disciplinary approach to investigating the use of virtual reality environments for people with Asperger syndrome. Educational and Child Psychology, 18(2), 5362.CrossRefGoogle Scholar
Beatty, J., & Wagoner, B. L. (1978). Pupillometric signs of brain activation vary with level of cognitive processing. Science, 199, 12161218.CrossRefGoogle ScholarPubMed
Becchio, C., Sartori, L., & Castiello, U. (2010). Toward you the social side of actions. Current Directions in Psychological Science, 19(3), 183188.CrossRefGoogle Scholar
Bechara, A. (2007). Iowa gambling task professional manual. Lutz, FL: Psychological Assessment Resources, Inc.Google Scholar
Bechara, A., & Damasio, A. R. (2005). The somatic marker hypothesis: A neural theory of economic decision. Games and Economic Behavior, 52(2), 336372.CrossRefGoogle Scholar
Bechara, A., Damasio, A. R., Damasio, H., & Anderson, S. W. (1994). Insensitivity to future consequences following damage to human prefrontal cortex. Cognition, 50(1), 715.CrossRefGoogle ScholarPubMed
Bechara, A., Damasio, H., Damasio, A. R., and Lee, G. P. (1999). Different contributions of the human amygdala and ventromedial prefrontal cortex to decision-making. The Journal of Neuroscience, 19, 54735481.CrossRefGoogle ScholarPubMed
Bechara, A., Damasio, H., Tranel, D., & Anderson, S. W. (1998). Dissociation of working memory from decision making within the human prefrontal cortex. The Journal of Neuroscience, 18(1), 428437.CrossRefGoogle ScholarPubMed
Bechara, A., Damasio, H., Tranel, D., & Damasio, A. R. (1997). Deciding advantageously before knowing the advantageous strategy. Science, 275(5304), 12931295.CrossRefGoogle ScholarPubMed
Bechara, A., Tranel, D., & Damasio, H. (2000). Characterization of the decision-making deficit of patients with ventromedial prefrontal cortex lesions. Brain, 123(11), 21892202.CrossRefGoogle ScholarPubMed
Bechara, A., Damasio, H., & Damasio, A. R. (2000). Emotion, decision making and the orbitofrontal cortex. Cerebral Cortex, 10(3), 295307.CrossRefGoogle ScholarPubMed
Bechara, A., Tranel, D., Damasio, H., & Damasio, A. R. (1996). Failure to respond autonomically to anticipated future outcomes following damage to prefrontal cortex. Cerebral Cortex, 6, 215225.CrossRefGoogle ScholarPubMed
Bechara, A., & Van der Kooy, D. (1989). The tegmental pedunculopontine nucleus: A brainstem output of the limbic system critical for the conditioned place references produced by morphine and amphetamine. Journal of Neuroscience, 9, 34403449.CrossRefGoogle Scholar
Becker, M. W., Alzahabi, R., & Hopwood, C. J. (2013). Media multitasking is associated with symptoms of depression and social anxiety. Cyberpsychology, Behavior, and Social Networking, 16(2), 132135.CrossRefGoogle ScholarPubMed
Beer, J. S. (2014). Exaggerated positivity in self-evaluation: A social neuroscience approach to reconciling the role of self-esteem protection and cognitive bias. Social and Personality Psychology Compass, 8(10), 583594.CrossRefGoogle Scholar
Behm-Morawitz, E. (2013). Mirrored selves: The influence of self-presence in a virtual world on health, appearance, and well-being. Computers in Human Behavior, 29(1), 119128.CrossRefGoogle Scholar
Bélanger, F., & Crossler, R. E. (2011). Privacy in the digital age: A review of information privacy research in information systems. MIS Quarterly, 35(4), 10171042.CrossRefGoogle Scholar
Bell, M., & Fox, N. (2003). Cognition and affective style: individual differences in brain electrical activity during spatial and verbal tasks. Brain and Cognition, 53, 441451.CrossRefGoogle ScholarPubMed
Benbasat, I., Dimoka, A., Pavlou, P. A., & Qiu, L. (2010). Incorporating social presence in the design of the anthropomorphic interface of recommendation agents: Insights from an fMRI study. In Proceedings of the 31st International Conference on Information Systems (December, pp. 122). Atlanta: Association for Information Systems.Google Scholar
Bennett, K. B., Cress, J. D., Hettinger, L. J., Stautberg, D., & Haas, M.W. (2001). A theoretical analysis and preliminary investigation of dynamically adaptive interfaces. International Journal of Aviation Psychology, 11, 169196.CrossRefGoogle Scholar
Ben-Shakhar, G. (1985). Standardization within individuals: A simple method to neutralize individual differences in skin conductance. Psychophysiology 22, 292299.CrossRefGoogle ScholarPubMed
Berka, C., Levendowski, D. J., Lumicao, M. N., Yau, A., Davis, G., Zivkovic, V. T., Olmstead, R. E., Tremoulet, P. D., & Craven, P. L. (2007). EEG correlates of task engagement and mental workload in vigilance, learning, and memory tasks. Aviation, Space, and Environmental Medicine, 78, B231B244.Google ScholarPubMed
Berntson, G. G., Boyson, S. T., & Cacioppo, J. T. (1992). Cardiac orienting and defensive responses: Potential origins in autonomic space. In Campbell, B.A., Hayne, H., & Richardson, R. (Eds.), Attention and information processing in infants and adults: Perspectives from human and animal research (pp. 163200). Hillsdale, NJ: Erlbaum.Google Scholar
Berretty, P. M., Todd, P. M., & Martignon, L. (1999). Categorization by elimination: Using few clues to choose. In Gigerenzer, G., Todd, P. M., & the ABC Research Group (Eds.), Simple heuristics that make us smart (pp. 235254). New York: Oxford University Press.Google Scholar
Berthoz, S., Armony, J. L., Blair, R. J. R., & Dolan, R. J. (2002). An fMRI study of intentional and unintentional (embarrassing) violations of social norms. Brain, 125(8), 16961708.CrossRefGoogle ScholarPubMed
Bessiere, K., Fleming, A., & Kiesler, S. (2007). The Ideal Elf: Identity exploration in world of warcraft. CyberPsychology & Behaviour, 10(4), 530535.CrossRefGoogle ScholarPubMed
Bickart, K. C., Dickerson, B. C., & Barrett, L. F. (2014). The amygdala as a hub in brain networks that support social life. Neuropsychologia, 63, 235248.CrossRefGoogle ScholarPubMed
Bickart, K. C., Hollenbeck, M. C., Barrett, L. F., & Dickerson, B. C. (2012). Intrinsic amygdala–cortical functional connectivity predicts social network size in humans. The Journal of Neuroscience, 32(42), 1472914741.CrossRefGoogle ScholarPubMed
Bickart, K. C., Wright, C. I., Dautoff, R. J., Dickerson, B. C., & Barrett, L. F. (2011). Amygdala volume and social network size in humans. Nature Neuroscience, 14(2), 163164.CrossRefGoogle ScholarPubMed
Bilder, R. M. (2011). Neuropsychology 3.0: Evidence-based science and practice. Journal of the International Neuropsychological Society, 17(01), 713.CrossRefGoogle ScholarPubMed
Billieux, J., Schimmenti, A., Khazaal, Y., Maurage, P., & Heeren, A. (2015). Are we overpathologizing everyday life? A tenable blueprint for behavioral addiction research. Journal of Behavioral Addictions, 4, 142144.CrossRefGoogle ScholarPubMed
Billieux, J., & Van der Linden, M. (2012). Problematic use of the Internet and self-regulation: A review of the initial studies. The Open Addiction Journal, 5, 2429.CrossRefGoogle Scholar
Biocca, F. (1992a). Communication within virtual reality: Creating a space for research. Journal of Communication, 42(4), 522.CrossRefGoogle Scholar
Biocca, F. (1992b). Virtual reality technology: A tutorial. Journal of Communication, 42(4), 2372.CrossRefGoogle Scholar
Biocca, F., & Delaney, B. (1995). Immersive virtual reality technology. In Biocca, F. & Levy, M. R. (Eds.), Communication in the age of virtual reality (pp. 57124). Hillsdale, NJ: Erlbaum.Google Scholar
Biocca, F., Harms, C., & Burgoon, J. K. (2003). Toward a more robust theory and measure of social presence: Review and suggested criteria. PRESENCE: Teleoperators and Virtual Environments, 12, 456480.CrossRefGoogle Scholar
Biocca, F., & Levy, M. R. (1995). Communication applications of virtual reality. In Biocca, F. & Levy, M. R. (Eds.), Communication in the age of virtual reality (pp. 127157). Hillsdale, NJ: Erlbaum.Google Scholar
Bioulac, S., Lallemand, S., Rizzo, A., Philip, P., Fabrigoule, C., & Bouvard, M. P. (2012). Impact of time on task on ADHD patient’s performances in a virtual classroom. European Journal of Paediatric Neurology, 16(5), 514521.CrossRefGoogle Scholar
Błachnio, A., & Przepiorka, A. (2015). Dysfunction of self-regulation and self-control in Facebook addiction. Psychiatric Quarterly, 18.Google Scholar
Blacker, K. J., & Curby, K. M. (2013). Enhanced visual short-term memory in action video game players. Attention, Perception, and Psychophysics, 75, 11281136.CrossRefGoogle ScholarPubMed
Blair, R. J. R., Morris, J. S., Frith, C. D., Perrett, D. I., & Dolan, R. J. (1999). Dissociable neural responses to facial expressions of sadness and anger. Brain, 122(5), 883893.CrossRefGoogle ScholarPubMed
Blascovich, J. (2001). Immersive virtual environments and social behavior. Science Briefs: Psychological Science Agenda, 14, 89.Google Scholar
Blascovich, J., Loomis, J., Beall, A. C., Swinth, K. R., Hoyt, C. L., & Bailenson, J. N. (2002). Immersive virtual environment technology as a methodological tool for social psychology. Psychological Inquiry, 13, 103124.CrossRefGoogle Scholar
Boehm-Davis, D. A., Gray, W. D., Adelman, L., Marshall, S., & Pozos, R. (2003). Understanding and measuring cognitive workload: A coordinated multidisciplinary approach. Defense Technical Information Center OAI-PMH Repository, 146.CrossRefGoogle Scholar
Bohil, C. J., Alicea, B., & Biocca, F. A. (2011). Virtual reality in neuroscience research and therapy. Nature Reviews Neuroscience, 12(12), 752762.CrossRefGoogle ScholarPubMed
Boiten, F. A., Frijda, N. H., & Wientjes, C. J. E. (1994). Emotions and respiratory patterns: Review and critical analysis. International Journal of Psychophysiology, 17, 103128.CrossRefGoogle ScholarPubMed
Boot, W. R., Blakely, D. P., & Simons, D. J. (2011). Do action video games improve perception and cognition? Frontiers in Psychology, 2, 226. doi: 10.3389/fpsyg.2011.00226.CrossRefGoogle ScholarPubMed
Boot, W. R., Kramer, A. F., Simons, D. J., Fabiani, M., & Gratton, G. (2008). The effects of video game playing on attention, memory, and executive control. Acta Psychologica, 129, 387398.CrossRefGoogle ScholarPubMed
Bos, D. P. O., Reuderink, B., van de Laar, B., Gürkök, H., Mühl, C., Poel, M., … & Heylen, D. (2010). Brain-computer interfacing and games. In Brain-computer interfaces (pp. 149178). London: Springer.Google Scholar
Bottari, C., Dassa, C., Rainville, C., & Dutil, E. (2009). The criterion-related validity of the IADL Profile with measures of executive functions, indices of trauma severity and sociodemographic characteristics. Brain Injury, 23, 322335.CrossRefGoogle ScholarPubMed
Bouchard, S., St-Jacques, J., Robillard, G., & Renaud, P. (2008). Anxiety increases the feeling of presence in virtual reality. Presence 17, 376391.CrossRefGoogle Scholar
Boudreau, C., McCubbins, M. D., & Coulson, S. (2009). Knowing when to trust others: An ERP study of decision making after receiving information from unknown people. Social Cognitive and Affective Neuroscience, 4(1), 2334.CrossRefGoogle ScholarPubMed
Boulos, M. N., & Wheeler, S. (2007). The emerging Web 2.0 social software: An enabling suite of sociable technologies in health and healthcare education. Health Information and Libraries Journal, 24, 223. doi:10.1111/j.1471-1842.2007.00701.x.CrossRefGoogle Scholar
Boulous, M. N., Hetherington, L., & Wheeler, S. (2007). Second Life: An overview of the potential of 3-D virtual worlds in medical and health education. Health Information and Libraries Journal, 24, 233245. doi:10.1111/j.1471-1842.2007.00733.x.CrossRefGoogle Scholar
Bowman, L. L., Levine, L. E., Waite, B. M., & Gendron, M. (2010). Can students really multitask? An experimental study of instant messaging while reading. Computers & Education, 54(4), 927931.CrossRefGoogle Scholar
Boyd, D. M., & Ellison, N. B. (2007). Social network sites: Definition, history and scholarship. Journal of Computer-Mediated Communications, 13, 210230.CrossRefGoogle Scholar
Boyle, E., Terras, M. M., Ramsay, J., & Boyle, J. M. (2013). Executive functions in digital games. Psychology, Pedagogy, and Assessment in Serious Games, 1946.Google Scholar
Bradley, M. M., & Lang, P. J. (2000). Affective reactions to acoustic stimuli. Psychophysiology, 37, 204215.CrossRefGoogle ScholarPubMed
Branco, P., & Encarnacao, L. M. (2004). Affective Computing for Behavior-based UI Adaptation, Procedures of Intelligent User Interface 2004 Conference, Ukita.Google Scholar
Brand, M., Young, K. S., & Laier, C. (2014). Prefrontal control and Internet addiction: A theoretical model and review of neuropsychological and neuroimaging findings. Frontiers in Human Neuroscience, 8, 375390.CrossRefGoogle ScholarPubMed
Brandt, J., Sullivan, C., Burrell II, L. E., Rogerson, M., & Anderson, A. (2013). Internet-based screening for dementia risk. PloS one, 8(2), e57476.CrossRefGoogle ScholarPubMed
Brave, S., Nass, C., & Hutchinson, K. (2005). Computers that care: Investigating the effects of orientation of emotion exhibited by an embodied computer agent. International Journal of Human-Computer Studies, 62(2), 161178.CrossRefGoogle Scholar
Brennan, D. M., Mawson, S., & Brownsell, S. (2009). Telerehabilitation: Enabling the remote delivery of healthcare, rehabilitation, and self-management. Studies in Health Technology and Informatics, 145, 231248.Google ScholarPubMed
Bressler, S. L. (1995) Large-scale cortical networks and cognition. Brain Research Reviews, 20, 288304.CrossRefGoogle ScholarPubMed
Bressler, S. L., & Menon, V. (2010). Large-scale brain networks in cognition: emerging methods and principles. Trends in Cognitive Sciences, 14(6), 277290.CrossRefGoogle ScholarPubMed
Bressler, S. L., Tang, W., Sylvester, C. M., Shulman, G. L., & Corbetta, M. (2008). Top-down control of human visual cortex by frontal and parietal cortex in anticipatory visual spatial attention. The Journal of Neuroscience, 28(40), 1005610061.CrossRefGoogle ScholarPubMed
Brevers, D., & Noël, X. (2013). Pathological gambling and the loss of willpower: a neurocognitive perspective. Socioaffective Neuroscience & Psychology, 3.CrossRefGoogle Scholar
Brock, L.L., Rimm-Kaufman, S.E., Nathanson, L., & Grimm, K.J. (2009). The contributions of “hot” and “cool” executive function to children’s academic achievement, learning-related behaviors, and engagement in kindergarten. Early Childhood Research Quarterly, 24, 337349.CrossRefGoogle Scholar
Brockmyer, J. F. (2015). Playing violent video games and desensitization to violence. Child and Adolescent Psychiatric Clinics of North America, 24(1), 6577.CrossRefGoogle ScholarPubMed
Brookings, J. B., Wilson, G. F., & Swain, C. R. (1996). Psychophysiological responses to changes in workload during simulated air traffic control. Biological Psychology, 42, 361377.CrossRefGoogle ScholarPubMed
Buckley, D., Codina, C., Bhardwaj, P., & Pascalis, O. (2010). Action video game players and deaf observers have larger Goldmann visual fields. Vision Research, 50, 548556.CrossRefGoogle ScholarPubMed
Buckner, R. L., Andrews-Hanna, J. R., & Schacter, D. L. (2008). The brain’s default network. Annals of the New York Academy of Sciences, 1124(1), 138.CrossRefGoogle ScholarPubMed
Buelow, M. T., & Suhr, J. A. (2009). Construct validity of the Iowa gambling task. Neuropsychology Review, 19(1), 102114.CrossRefGoogle ScholarPubMed
Buettner, R. (2015). Investigation of the relationship between visual website complexity and users’ mental workload: A NeuroIS perspective. In Information systems and neuroscience (pp. 123128). Switzerland: Springer International Publishing.CrossRefGoogle Scholar
Buettner, R., Sauer, S., Maier, C., & Eckhardt, A. (2015, January). Towards ex ante prediction of user performance: A novel NeuroIS methodology based on real-time measurement of mental effort. In System Sciences (HICSS), 2015 48th Hawaii International Conference on (pp. 533542). IEEE.CrossRefGoogle Scholar
Bulgurcu, B., Cavusoglu, H., & Benbasat, I. (2010). Information security policy compliance: An empirical study of rationality-based beliefs and information security awareness. MIS Quarterly, 34(3), 523548.CrossRefGoogle Scholar
Burak, L. (2012). Multitasking in the university classroom. International Journal for the Scholarship of Teaching and Learning, 6(2), 8.CrossRefGoogle Scholar
Burgess, P. W. (1997). Theory and methodology in executive function and research. In Rabbitt, P. (Ed.), Methodology of frontal and executive function (pp. 81116). Hove, UK: Psychology Press.Google Scholar
Burgess, P. W. (2000). Strategy application disorder: The role of the frontal lobes in human multitasking. Psychological Research, 63, 279288.CrossRefGoogle ScholarPubMed
Burgess, P. W., Alderman, N., Evans, J., Emslie, H., & Wilson, B. A. (1998). The ecological validity of tests of executive function. Journal of the International Neuropsychological Society, 4(06), 547558.CrossRefGoogle ScholarPubMed
Burgess, P. W., Alderman, N., Forbes, C., Costello, A., Coates, L., Dawson, D. R., Anderson, N. D., Gilbert, S. J., Dumontheil, I., and Channon, S. (2006). The case for the development and use of “ecologically valid” measures of executive function in experimental and clinical neuropsychology. Journal of the International Neuropsychological Society, 12(02), 194209.CrossRefGoogle ScholarPubMed
Burgess, P. W., & Simons, J. S., (2005). Theories of frontal lobe executive function: Clinical applications. In Halligan, P. W. & Wade, D. T. (Eds.), Effectiveness of rehabilitation for cognitive deficits (pp. 211231). Oxford: Oxford University Press.CrossRefGoogle Scholar
Burgess, P. W., Veitch, E., de Lacy Costello, A., & Shallice, T. (2000). The cognitive and neuroanatomical correlates of multitasking. Neuropsychologia, 38, 848863.CrossRefGoogle ScholarPubMed
Bush, G., Luu, P., & Posner, M. I. (2000). Cognitive and emotional influences in anterior cingulate cortex. Trends in Cognitive Sciences, 4(6), 215222.CrossRefGoogle ScholarPubMed
Bush, G. (2010). Attention-deficit/hyperactivity disorder and attention networks. Neuropsychopharmacology 35, 278300.CrossRefGoogle ScholarPubMed
Buxbaum, L., Dawson, A., & Linsley, D. (2012). Reliability and validity of the virtual reality lateralized attention test in assessing hemispatial neglect in right hemisphere stroke. Neuropsychology, 26, 430441.CrossRefGoogle ScholarPubMed
Byrne, E. A., & Parasuraman, R. (1996). Psychophysiology and adaptive automation. Biological Psychology, 42, 249268.CrossRefGoogle ScholarPubMed
Bzdok, D., Schilbach, L., Vogeley, K., Schneider, K., Laird, A. R., Langner, R., & Eickhoff, S. B. (2012). Parsing the neural correlates of moral cognition: ALE meta-analysis on morality, theory of mind, and empathy. Brain Structure and Function, 217(4), 783796.CrossRefGoogle ScholarPubMed
Cacioppo, J. T. (1994). Social neuroscience: Autonomic, neuroendocrine, and immune responses to stress. Psychophysiology, 31(2), 113128.CrossRefGoogle ScholarPubMed
Cacioppo, J. & Berntson, G. (1992). Social psychological contributions to the decade of the brain. Doctrine of multilevel analysis. American Psychologist, 47(8), 10191028.CrossRefGoogle Scholar
Cacioppo, J. T., Berntson, G. G., & Crites, S. L. (1996). Social neuroscience: Principles of psychophysiological arousal and response. In Higgins, E. T. & Kruglanski, A. W. (Eds.), Social psychology: Handbook of basic principles, pp. 72101. New York: Guilford.Google Scholar
Cacioppo, J. T., Berntson, G. G., & Decety, J. (2010). Social neuroscience and its relationship to social psychology. Social Cognition, 28(6), 675.CrossRefGoogle ScholarPubMed
Cacioppo, J. T., & Decety, J. (2011). Social neuroscience: Challenges and opportunities in the study of complex behavior. Annals of the New York Academy of Sciences, 1224(1), 162173.CrossRefGoogle Scholar
Cacioppo, S., Frum, C., Asp, E., Weiss, R. M., Lewis, J. W., & Cacioppo, J. T. (2013). A quantitative meta-analysis of functional imaging studies of social rejection. Scientific Reports, 3.CrossRefGoogle Scholar
Cacioppo, J. T., & Tassinary, L. G. (1990). Inferring psychological significance from physiological signals. American Psychologist, 45(1), 16.CrossRefGoogle ScholarPubMed
Cacioppo, J. T., Tassinary, L. G., & Berntson, G. (Eds.), (2007). Handbook of psychophysiology. Cambridge: Cambridge University Press.Google Scholar
Cain, M. S., Landau, A. N., & Shimamura, A. P. (2012) Action video game experience reduces the cost of switching tasks. Attention, Perception, & Psychophysics, 17.CrossRefGoogle Scholar
Cain, M. S., & Mitroff, S. R. (2011). Distractor filtering in media multitaskers. Perception-London, 40(10), 1183.CrossRefGoogle ScholarPubMed
Calhoun, V. D., & Pearlson, G. D. (2012). A selective review of simulated driving studies: Combining naturalistic and hybrid paradigms, analysis approaches and future directions. NeuroImage, 59, 2535.CrossRefGoogle ScholarPubMed
Calvo, R., & D’Mello, S. (2010). Affect detection: An interdisciplinary review of models, methods, and their applications. Affective Computing, IEEE Transactions on, 1(1), 1837.CrossRefGoogle Scholar
Calvo, R. A., D’Mello, S., Gratch, J., & Kappas, A. (Eds.), (2014). The Oxford handbook of affective computing. Oxford University Press, USA.Google Scholar
Campbell, C. M., et al. (2010). Catastrophizing delays the analgesic effect of distraction. Pain, 149(2), 202207.CrossRefGoogle ScholarPubMed
Campbell, Z., Zakzanis, K. K., Jovanovski, D., Joordens, S., Mraz, R., & Graham, S. J. (2009). Utilizing virtual reality to improve the ecological validity of clinical neuropsychology: An FMRI case study elucidating the neural basis of planning by comparing the Tower of London with a three-dimensional navigation task. Applied Neuropsychology, 16(4), 295306.CrossRefGoogle Scholar
Cao, X., Douguet, A. S., Fuchs, P., & Klinger, E. (2010). Designing an ecological virtual task in the context of executive functions: a preliminary study. Proceedings of the 8th International Conference on Disability, Virtual Reality and Associated Technologies, 31, 7178.Google Scholar
Carberry, S., & de Rosis, F. (2008). Introduction to special Issue on “Affective modeling and adaptation.” User Modeling and User-Adapted Interaction, 18(1–2), 19.CrossRefGoogle Scholar
Carlin, A. S., Hoffman, H. G., & Weghorst, S. (1997). Virtual reality and tactile augmentation in the treatment of spider phobia: A case report. Behaviour Research and Therapy, 35, 153158.CrossRefGoogle ScholarPubMed
Carr, N. (2010). The shallows: How the Internet is changing the way we think, read and remember. Atlantic Books Ltd.Google Scholar
Carrier, L. M., Rosen, L. D., Cheever, N. A., & Lim, A. F. (2015). Causes, effects, and practicalities of everyday multitasking. Developmental Review, 35, 6478.CrossRefGoogle Scholar
Carroll, D., Turner, J. R., & Hellawell, J. C. (1986). Heart rate and oxygen consumption during active psychological challenge: The effects of level of difficulty. Psychophysiology, 23, 174181.CrossRefGoogle ScholarPubMed
Carter, E. J., & Pelphrey, K. A. (2008). Friend or foe? Brain systems involved in the perception of dynamic signals of menacing and friendly social approaches. Social Neuroscience, 3(2), 151163.CrossRefGoogle ScholarPubMed
Carter, Sid & Smith Pasqualini, Marcia (2004). Stronger autonomic response accompanies better learning: A test of Damasio’s somatic marker hypothesis. Cognition and Emotion, 18(7), 901911.CrossRefGoogle Scholar
Castel, A. D., Pratt, J., & Drummond, E. (2005). The effects of action video game experience on the time course of inhibition of return and the efficiency of visual search. Acta Psychologica (Amsterdam), 119, 217230.CrossRefGoogle ScholarPubMed
Castellanos, F. X., Margulies, D. S., Kelly, C., Uddin, L. Q., Ghaffari, M., Kirsch, A., … & Sonuga-Barke, E. J. (2008). Cingulate-precuneus interactions: A new locus of dysfunction in adult attention-deficit/hyperactivity disorder. Biological Psychiatry, 63(3), 332337.CrossRefGoogle ScholarPubMed
Castellanos, F. X., & Proal, E. (2012). Large-scale brain systems in ADHD: Beyond the prefrontal–striatal model. Trends in Cognitive Sciences, 16(1), 1726.CrossRefGoogle ScholarPubMed
Castellanos, F. X., Sonuga-Barke, E. J., Milham, M. P., & Tannock, R. (2006). Characterizing cognition in ADHD: Beyond executive dysfunction. Trends in Cognitive Sciences, 10(3), 117123.CrossRefGoogle ScholarPubMed
Catani, M., & Mesulam, M. (2008). What is a disconnection syndrome? Cortex, 44(8), 911913.CrossRefGoogle ScholarPubMed
Chakrabarti, B. (2013). Parameterising ecological validity and integrating individual differences within second-person neuroscience. Behavioral and Brain Sciences, 36(04), 414415.CrossRefGoogle ScholarPubMed
Chaminade, T., Hodgins, J., & Kawato, M. (2007). Anthropomorphism influences perception of computer-animated characters’ actions. Social Cognitive and Affective Neuroscience, 3, 206216.CrossRefGoogle Scholar
Chan, R. C. K., Shum, D., Toulopoulou, T., & Chen, E. Y. H. (2008). Assessment of executive functions: Review of instruments and identification of critical issues. Archives of Clinical Neuropsychology, 23(2), 201216.CrossRefGoogle ScholarPubMed
Chandler, J, Mueller, P, & Paolacci, G. 2014. Nonnaïveté among AmazonMechanical Turk workers: Consequences and solutions for behavioral researchers. Behavior Research Methods, 46, 112130.CrossRefGoogle Scholar
Chang, L. J., Yarkoni, T., Khaw, M. W., & Sanfey, A. G. (2012). Decoding the role of the insula in human cognition: Functional parcellation and large-scale reverse inference. Cerebral Cortex, 23, 739749.doi:10.1093/cercor/bhs065.CrossRefGoogle ScholarPubMed
Charlier, N., Zupancic, N., Fieuws, S., Denhaerynck, K., Zaman, B., & Moons, P. (2016). Serious games for improving knowledge and self-management in young people with chronic conditions: A systematic review and meta-analysis. Journal of the American Medical Informatics Association, 23(1), 230239.CrossRefGoogle ScholarPubMed
Chaytor, N., & Schmitter-Edgecombe, M. (2003). The ecological validity of neuropsychological tests: A review of the literature on everyday cognitive skills. Neuropsychology Review, 13(4), 181197.CrossRefGoogle ScholarPubMed
Chaytor, N., Schmitter-Edgecombe, M., & Burr, R. (2006). Improving the ecological validity of executive functioning assessment. Archives of Clinical Neuropsychology, 21(3), 217227.CrossRefGoogle ScholarPubMed
Chelune, G. J., & Moehle, K. A. (1986). Neuropsychological assessment and everyday functioning. In Wedding, D., Horton, A. M., & Webster, J. (Eds.), The neuropsychology handbook (pp. 489525). New York: Springer.Google Scholar
Chen, H. L. (2009). Consumer risk perception and addictive consumption behavior. Social Behavior and Personality: An International Journal, 37(6), 767780.CrossRefGoogle Scholar
Chen, R., Chen, J., & Li, L. (2015). Action videogame play improves visual motor control. Journal of Vision, 15, 42. doi: 10.1167/15.12.42.pmid:26325730.CrossRefGoogle Scholar
Chiappe, D., Conger, M., Liao, J., Caldwell, J. L., & Vu, K. L. (2013). Improving multi-tasking ability through action videogames. Applied Ergonomics, 44, 278284.CrossRefGoogle ScholarPubMed
Chisholm, J. D., Hickey, C., Theeuwes, J., & Kingstone, A. (2010). Reduced attentional capture in action video game players. Attention, Perception & Psychophysics, 72, 667671.CrossRefGoogle ScholarPubMed
Chisholm, J. D., & Kingstone, A. (2012). Improved top-down control reduces oculomotor capture: The case of action video game players. Attention, Perception & Psychophysics, 74, 257262.CrossRefGoogle ScholarPubMed
Cho, K. H., Lee, K. J., & Song, C. H. (2012). Virtual-reality balance training with a video-game system improves dynamic balance in chronic stroke patients. The Tohoku Journal of Experimental Medicine, 228(1), 6974.CrossRefGoogle ScholarPubMed
Chou, Y. H., Yang, B. H., Hsu, J. W., Wang, S. J., Lin, C. L., Huang, K. L., … & Lee, S. M. (2013). Effects of video game playing on cerebral blood flow in young adults: A SPECT study. Psychiatry Research: Neuroimaging, 212(1), 6572.CrossRefGoogle ScholarPubMed
Choudhury, S., & McKinney, K. A. (2013). Digital media, the developing brain and the interpretive plasticity of neuroplasticity. Transcultural Psychiatry, 1363461512474623.CrossRefGoogle Scholar
Christensen, A. L. (1996). Alexandr Romanovich Luria (1902–1977): Contributions to neuropsychological rehabilitation. Neuropsychological Rehabilitation, 6(4), 279304.CrossRefGoogle Scholar
Ciaramelli, E., Muccioli, M., Ladavas, E., & di Pellegrino, G. (2007). Selective deficit in personal moral judgment following damage to ventromedial prefrontal cortex. Social Cognitive and Affective Neuroscience, 2(2), 8492.CrossRefGoogle ScholarPubMed
Cinar, E., & Sahin, F. (2013). New classification techniques for electroencephalogram (EEG) signals and a real-time EEG control of a robot. Neural Computing and Applications, 22(1), 2939.CrossRefGoogle Scholar
Cincotti, F., Mattia, D., Aloise, F., Bufalari, S., Schalk, G., Oriolo, , … Babiloni, F. (2008). Non-invasive brain-computer interface system: Towards its application as assistive technology. Brain Research Bulletin, 75(6), 796803.CrossRefGoogle ScholarPubMed
Citi, L., Poli, R., Cinel, C., & Sepulveda, F. (2008). P300-based BCI mouse with genetically-optimized analogue control. Neural Systems and Rehabilitation Engineering, 16(1), 5161.CrossRefGoogle ScholarPubMed
Clark, A. (1997). Being there: Putting brain body and world together again. Cambridge, MA: MIT Press.Google Scholar
Clark, A. (1999). Embodied, situated, and distributed cognition. In Betchel, W. and Graham, G. (Eds.), A Companion to Cognitive Science. Malden, MA: Blackwell Publishing.Google Scholar
Clark, A. (2008). Supersizing the mind: Embodiment, action, and cognitive extension. Oxford University Press.CrossRefGoogle Scholar
Clark, A., & Chalmers, D. (1998). The extended mind. Analysis, 58 (1), 719.CrossRefGoogle Scholar
Clark, J. E., Lanphear, A. K., & Riddick, C. C. (1987). The effects of videogame playing on the response selection processing of elderly adults. Journal of Gerontology, 42(1), 8285.CrossRefGoogle ScholarPubMed
Clark, L., & Manes, F. (2004). Social and emotional decision-making following frontal lobe injury. Neurocase, 10(5), 398403.CrossRefGoogle ScholarPubMed
Climent, G., and Bánterla, F. (2011). Nesplora classroom, ecological assessment of attentional processes. Theoretical Manual. Donostia, Spain: Nesplora.Google Scholar
Clowes, R. W. (2013). The cognitive integration of e-memory. Review of Philosophy and Psychology, 4(1), 107133.CrossRefGoogle Scholar
Cobb, S.V. (2007). Virtual environments supporting learning and communication in special needs education. Topics in Language Disorders, 27(3), 211225.CrossRefGoogle Scholar
Cocchi, L., Zalesky, A., Fornito, A., & Mattingley, J. B. (2013). Dynamic cooperation and competition between brain systems during cognitive control. Trends in Cognitive Sciences, 17(10), 493501.CrossRefGoogle ScholarPubMed
Cohen, J. E., Green, C. S., & Bavelier, D. (2008). Training visual attention with video games: Not all games are created equal. In O’Neil, H. F. & Perez, R. S. (Eds.), Computer games and team and individual learning. Oxford, UK: Elsevier Ltd.Google Scholar
Cole, D. M., Beckmann, C. F., Long, C. J., Matthews, P. M., Durcan, M. J., & Beaver, J. D. (2010). Nicotine replacement in abstinent smokers improves cognitive withdrawal symptoms with modulation of resting brain network dynamics. Neuroimage, 52(2), 590599.CrossRefGoogle ScholarPubMed
Collinger, J. L., Boninger, M. L., Bruns, T. M., Curley, K., Wang, W., & Weber, D. J. (2013). Functional priorities, assistive technology, and brain-computer interfaces after spinal cord injury. Journal of Rehabilitation Research & Development, 50(2), 145159.CrossRefGoogle ScholarPubMed
Colzato, L. S., van den Wildenberg, W. P., Zmigrod, S., & Hommel, B. (2013). Action video gaming and cognitive control: Playing first person shooter games is associated with improvement in working memory but not action inhibition. Psychological Research, 77, 234239.CrossRefGoogle Scholar
Colzato, L. S., van den Wildenberg, W., & Hommel, B. (2014). Cognitive control and the COMT Val158Met polymorphism: Genetic modulation of videogame training and transfer to task-switching efficiency. Psychological Research, 78, 670678. doi: 10.1007/s00426-013-0514-8. pmid:24030137.Google ScholarPubMed
Colzato, L. S., Van Leeuwen, P. J., Van Den Wildenberg, W. P., & Hommel, B. (2010). DOOM’d to switch: Superior cognitive flexibility in players of first person shooter games. Frontiers in Psychology, 1.CrossRefGoogle Scholar
Connolly, I., Palmer, M., Barton, H., and Kirwan, G. (Eds.), (2016). An introduction to cyberpsychology. New York: Routledge.CrossRefGoogle Scholar
Conway, M. A. (1991). In defense of everyday memory. American Psychologist, 46, 1926.CrossRefGoogle Scholar
Cook, L., Hanten, G., Orsten, K., Chapman, S., Li, X., Wilde, E., et al. (2013). Effects of moderate to severe traumatic brain injury on anticipating consequences of actions in adults: A preliminary study. Journal of the International Neuropsychological Society. 19, 508517.CrossRefGoogle ScholarPubMed
Corbetta, M., & Shulman, G. L. (2002). Control of goal-directed and stimulus-driven attention in the brain. Nature Reviews Neuroscience, 3(3), 201215.CrossRefGoogle ScholarPubMed
Costa, L. (1983). Clinical neuropsychology: A discipline in evolution. Journal of Clinical Neuropsychology, 5, 111.CrossRefGoogle ScholarPubMed
Costanzo, M. E., Leaman, S., Jovanovic, T., Norrholm, S. D., Rizzo, A. A., Taylor, P., & Roy, M. J. (2014). Psychophysiological response to virtual reality and subthreshold posttraumatic stress disorder symptoms in recently deployed military. Psychosomatic Medicine, 76(9), 670677.CrossRefGoogle ScholarPubMed
Côté, S., & Bouchard, S. (2005). Documenting the Efficacy of Virtual RealityExposure with Psychophysiological and Information Processing Measures. Applied Psychophysiology and Biofeedback, 30(3), 217232.CrossRefGoogle ScholarPubMed
Courtney, C., Dawson, M., Rizzo, A., Arizmendi, B., & Parsons, T. D. (2013). Predicting navigation performance with psychophysiological responses to threat in a virtual environment. Lecture Notes in Computer Science, 8021, 129138.CrossRefGoogle Scholar
Courtney, C. G., Dawson, M. E., Schell, A. M., Iyer, A., & Parsons, T. D. (2010). Better than the real thing: Eliciting fear with moving and static computer-generated stimuli. International Journal of Psychophysiology, 78, 107114.CrossRefGoogle Scholar
Coyle, H., Traynor, V., & Solowij, N. (2015). Computerized and virtual reality cognitive training for individuals at high risk of cognitive decline: Systematic review of the literature. The American Journal of Geriatric Psychiatry, 23(4), 335359.CrossRefGoogle ScholarPubMed
Coyne, J. T., Baldwin, C., Cole, A., Sibley, C., & Roberts, D. M. (2009). Applying real time physiological measures of cognitive load to improve training. Lecture Notes in Artificial Intelligence, 5638, 469478.Google Scholar
Cozolino, L. (2014). The neuroscience of human relationships: Attachment and the developing social brain (Norton Series on Interpersonal Neurobiology). New York: WW Norton & Company.Google Scholar
Craig, A. D. (2002). How do you feel? Interoception: The sense of the physiological condition of the body. Nature Reviews Neuroscience, 3, 655666.CrossRefGoogle Scholar
Craig, A. D. (2003). Interoception: The sense of the physiological condition of the body. Current Opinion in Neurobiology, 13(4), 500505.CrossRefGoogle ScholarPubMed
Craig, A. D. (2009a). Emotional moments across time: A possible neural basis for time perception in the anterior insula. Philosophical Transactions Of the Royal Society of London B: Biological Sciences, 364, 19331942. doi:10.1098/rstb.2009.0008.CrossRefGoogle Scholar
Craig, A. D. (2009b). How do you feel – now? The anterior insula and human awareness. Nature Reviews Neuroscience, 10, 5970.doi:10.1038/nrn2555.CrossRefGoogle Scholar
Craig, A. D. (2010a). Once an island, now the focus of attention. Brain Structure and Function, 214, 395396.doi:10.1007/s00429-010-0270-0.CrossRefGoogle ScholarPubMed
Craig, A. D. (2010b). The sentient self. Brain Structure and Function, 214, 563577. doi:10.1007/s00429-010-0248-y.CrossRefGoogle ScholarPubMed
Critchley, H. D. (2005). Neural mechanisms of autonomic, affective, and cognitive integration. Journal of Comparative Neurology, 493, 154166.CrossRefGoogle ScholarPubMed
Critchley, H. D., Elliott, R., Mathias, C. J., & Dolan, R. J. (2000). Neural activity relating to generation and representation of galvanic skin conductance responses: A functional magnetic resonance imaging study. Neuroscience, 20(8), 30333040.CrossRefGoogle ScholarPubMed
Critchley, H. D., Wiens, S., Rotshtein, P., Öhman, A., & Dolan, R. J. (2004). Neural systems supporting interoceptive awareness. Nature Neuroscience, 7(2), 189195.CrossRefGoogle ScholarPubMed
Cromwell, H. C., & Panksepp, J. (2011). Rethinking the cognitive revolution from a neural perspective: How overuse/misuse of the term “cognition” and the neglect of affective controls in behavioral neuroscience could be delaying progress in understanding the BrainMind. Neuroscience & Biobehavioral Reviews, 35(9), 20262035.CrossRefGoogle ScholarPubMed
Crone, E. A., Somsen, R. J., Beek, B. V., & Van Der Molen, M. W. (2004). Heart rate and skin conductance analysis of antecendents and consequences of decision making. Psychophysiology, 41(4), 531540.CrossRefGoogle ScholarPubMed
Crossler, R. E., Johnston, A. C., Lowry, P. B., Hu, Q., Warkentin, M., & Baskerville, R. (2013). Future directions for behavioral information security research. Computers & Security, 32, 90101.CrossRefGoogle Scholar
Crowder, S. A., & Merritte, K. (2013). The possible therapeutic benefits of utilizing motion gaming systems on pediatric patients presenting autism. Journal of the Tennessee Medical Association, 106(8), 4143.Google ScholarPubMed
Csikszentmihalyi, M. (1990). Flow: The psychology of optimal experience. New York, HarperCollins.Google Scholar
Csikszentmihalyi, M. (1994). The evolving self. New York, Harper Perennial.Google Scholar
Csikszentmihalyi, M. (1997). Finding flow. New York, Basic Books.Google Scholar
Cuthbert, B. N. (2014). The RDoC framework: Facilitating transition from ICD/DSM to dimensional approaches that integrate neuroscience and psychopathology. World Psychiatry, 13(1), 2835.CrossRefGoogle ScholarPubMed
Cuthbert, B. N., Bradley, M. M., & Lang, P. J. (1996). Probing picture perception: Activation and emotion. Psychophysiology, 33, 103111.CrossRefGoogle ScholarPubMed
Cuthbert, B. N., & Insel, T. R. (2013). Toward the future of psychiatric diagnosis: The seven pillars of RDoC. BMC Medicine, 11(1), 126.CrossRefGoogle ScholarPubMed
Cuthbert, B. N., Schupp, H. T., Bradley, M. M., Birbaumer, N., & Lang, P. J. (2000). Brain potentials in affective picture processing: Covariation with autonomic arousal and affective report. Biological Psychology, 52, 95111.CrossRefGoogle ScholarPubMed
Dai, W., Han, D., Dai, Y., & Xu, D. (2015). Emotion recognition and affective computing on vocal social media. Information & Management, 52(7), 777788.CrossRefGoogle Scholar
Damasio, A. R. (1994). Descartes’ error: Emotion, rationality and the human brain. New York: GP Putnam.Google Scholar
Damasio, A. R. (2000). A second chance for emotion. In Lane, R. D. & Nadel, L. (Eds.), Cognitive neuroscience of emotion (pp. 1223). New York: Oxford University Press.Google Scholar
Damasio, A., & Carvalho, G. B. (2013). The nature of feelings: evolutionary and neurobiological origins. Nature Reviews Neuroscience, 14(2), 143152.CrossRefGoogle ScholarPubMed
Damasio, H., & Damasio, A. R. (1989). Lesion analysis in neuropsychology. New York: Oxford University Press.Google Scholar
Danziger, Z. (2014). A reductionist approach to the analysis of learning in brain-computer interfaces. Biological Cybernetics, 108(2), 183201.CrossRefGoogle Scholar
D’Arcy, J., & Herath, T. (2011). A review and analysis of deterrence theory in the IS security literature: Making sense of the disparate findings. European Journal of Information Systems, 20(6), 643658.CrossRefGoogle Scholar
Das, D. A., et al. (2005). The efficacy of playing a virtual reality game in modulating pain for children with acute burn injuries: A randomized controlled trial [ISRCTN87413556]. BMC Pediatr., 5(1), 1.CrossRefGoogle ScholarPubMed
Davey, C. G., Allen, N. B., Harrison, B. J., Dwyer, D. B., & Yücel, M. (2010). Being liked activates primary reward and midline self-related brain regions. Human Brain Mapping, 31(4), 660668.CrossRefGoogle ScholarPubMed
Davidson, R. J. (1995). Cerebral asymmetry, emotion, and affective style. In Davidson, R. J. & Hugdahl, K. (Eds.), Brain asymmetry (pp. 361387). Cambridge: MIT Press.Google Scholar
Davidson, R. J. (1998). Affective style and affective disorders: Perspectives from affective neuroscience. Cognition and Emotion, 12, 307320.CrossRefGoogle Scholar
Davidson, R. J. (2000). Affective style, psychopathology, and resilience: Brain mechanisms and plasticity. American Psychologist, 55, 11961214.CrossRefGoogle ScholarPubMed
Davidson, R. J. (2003). Affective neuroscience and psychophysiology: Toward a synthesis. Psychophysiology, 40, 655665.CrossRefGoogle ScholarPubMed
Davidson, R. J., Jackson, D. C., & Kalin, N. H. (2000). Emotion, plasticity, context, and regulation: Perspectives from affective neuroscience. Psychological Bulletin, 126(6), 890.CrossRefGoogle ScholarPubMed
Davis, R. C. (1957). Section of psychology: Response patterns. Transactions of the New York Academy of Sciences, 19 (8 Series II), 731739.CrossRefGoogle Scholar
Dawson, D. R., Anderson, N. D., Burgess, P., Cooper, E., Krpan, K. M., and Stuss, D. T. (2009). Further development of the Multiple Errands Test: Standardized scoring, reliability and ecological validity for the Baycrest version. Archives of Physical Medicine and Rehabilitation, 90, S41S51.CrossRefGoogle ScholarPubMed
Dawson, M. E., Filion, D. L., & Schell, A. M. (1989). Is elicitation of the autonomic orienting response associated with allocation of processing resources? Psychophysiology, 26(5), 560572.CrossRefGoogle ScholarPubMed
Dawson, M. E., Schell, A. M., Beers, J. R., & Kelly, A. (1982). Allocation of cognitive processing capacity during human autonomic classical conditioning. Journal of Experimental Psychology: General, 111(3), 273.CrossRefGoogle ScholarPubMed
de Borst, A. W., & de Gelder, B. (2015). Is it the real deal? Perception of virtual characters versus humans: An affective cognitive neuroscience perspective. Frontiers in Psychology, 6.CrossRefGoogle ScholarPubMed
de Gelder, B., & Hortensius, R. (2014). The many faces of the emotional body. In New Frontiers in Social Neuroscience (pp. 153164). Switzerland: Springer International Publishing.CrossRefGoogle Scholar
de Guinea, A. O., Titah, R., & Léger, P. M. (2014). Explicit and implicit antecedents of users’ behavioral beliefs in information systems: A neuropsychological investigation. Journal of Management Information Systems, 30(4), 179210.CrossRefGoogle Scholar
de Kloet, A. J., Berger, M. A., Verhoeven, I. M., van Stein, C. K., Vlieland, T. P. (2012). Gaming supports youth with acquired brain injury? A pilot study. Brain Injury, 26(7–8), 10211029.CrossRefGoogle ScholarPubMed
Decety, J., & Yoder, K. J. (2015). Empathy and motivation for justice: Cognitive empathy and concern, but not emotional empathy, predict sensitivity to injustice for others. Social Neuroscience, (ahead-of-print), 114.Google Scholar
Decker, S. A., & Gay, J. N. (2011). Cognitive-bias toward gaming-related words and disinhibition in World of Warcraft gamers. Computers in Human Behavior, 27(2), 798810.CrossRefGoogle Scholar
Dehaene, S, Cohen, L. (2007). Cultural recycling of cortical maps. Neuron, 56, 384–98.CrossRefGoogle ScholarPubMed
Deng, L. Y., Hsu, C. L., Lin, T. C., Tuan, J. S., & Chang, S. M. (2010). EOG-based human–computer interface system development. Expert Systems with Applications, 37(4), 33373343.CrossRefGoogle Scholar
Denny, B. T., Kober, H., Wager, T. D., & Ochsner, K. N. (2012). A meta-analysis of functional neuroimaging studies of self-and other judgments reveals a spatial gradient for mentalizing in medial prefrontal cortex. Journal of Cognitive Neuroscience, 24(8), 17421752.CrossRefGoogle ScholarPubMed
De Raedt, R. (2006). Does neuroscience hold promise for the further development of behavior therapy? The case of emotional change after exposure in anxiety and depression. Scandinavian Journal of Psychology, 47, 225236.CrossRefGoogle ScholarPubMed
deWall, C., Wilson, B. A., & Baddeley, A. D. (1994). The Extended Rivermead Behavioral Memory Test: A measure of everyday memory performance in normal adults. Memory, 2, 149166.Google Scholar
Diamond, A. (2013). Executive functions. Annual Review of Psychology, 64, 135168.CrossRefGoogle ScholarPubMed
Díaz-Orueta, U., Garcia-López, C., Crespo-Eguílaz, N., Sánchez-Carpintero, R., Climent, G., and Narbona, J. (2014). AULA virtual reality test as an attention measure: Convergent validity with Conners’ continuous performance test. Child Neuropsychol., 20, 328342.CrossRefGoogle ScholarPubMed
Diemer, J. E., Alpers, G. W., Peperkorn, H. M., Shiban, Y., and Mühlberger, A. (2015). The impact of perception and presence on emotional reactions: A review of research in virtual reality. Frontiers in Psychology, 6, 26. doi: 10.3389/fpsyg.2015.00026.CrossRefGoogle ScholarPubMed
Diemer, J., Mühlberger, A., Pauli, P., & Zwanzger, P. (2014). Virtual reality exposure in anxiety disorders: Impact on psychophysiological reactivity. The World Journal of Biological Psychiatry, 15(6), 427442.CrossRefGoogle ScholarPubMed
Dimoka, A. (2010). What does the brain tell us about trust and distrust? Evidence from a functional neuroimaging study. Mis Quarterly, 34(2), 373396.CrossRefGoogle Scholar
Dimoka, A., Banker, R. D., Benbasat, I., Davis, F. D., Dennis, A. R., Gefen, D., Gupta, A., Ischebeck, A., Kenning, P., Müller-Putz, G., Pavlou, P. A., Riedl, R., vom Brocke, J., & Weber, B. (2012). On the use of neurophysiological tools in IS research: Developing a research agenda for NeuroIS. MIS Quarterly, 36(3), 679702.CrossRefGoogle Scholar
Dimoka, A., Pavlou, P. A., & Davis, F. D. (2011). Research commentary-NeuroIS: The potential of cognitive neuroscience for information systems research. Information Systems Research, 22(4), 687702.CrossRefGoogle Scholar
Ding, W. N., Sun, J. H., Sun, Y. W., Zhou, Y., Li, L., Xu, J. R., & Du, Y. S. (2013). Altered default network resting-state functional connectivity in adolescents with Internet gaming addiction. PloS one, 8(3), e59902.CrossRefGoogle ScholarPubMed
Ding, W. N., Sun, J. H., Sun, Y. W., Chen, X., Zhou, Y., Zhuang, Z. G., … & Du, Y. S. (2014). Trait impulsivity and impaired prefrontal impulse inhibition function in adolescents with internet gaming addiction revealed by a Go/No-Go fMRI study. Behavioral and Brain Functions, 10(20), 19.CrossRefGoogle ScholarPubMed
Domínguez, D. J. F. (2015). Toward a neuroanthropology of ethics. In Clausen, J. & Levy, N. (Eds.), Handbook of neuroethics (pp. 289298). Berlin: Springer.CrossRefGoogle Scholar
Donchin, E., Spencer, K. M., & Wijesinghe, R. (2000). The mental prosthesis: Assessing the speed of a P300-based brain–computer interface. IEEE Transactions on Rehabilitation Engineering, 8, 174179.CrossRefGoogle ScholarPubMed
Dong, G., DeVito, E. E., Du, X., & Cui, Z. (2012). Impaired inhibitory control in “internet addiction disorder”: a functional magnetic resonance imaging study. Psychiatry Research: Neuroimaging, 203(2), 153158.CrossRefGoogle ScholarPubMed
Dong, G., Hu, Y., Lin, X., & Lu, Q. (2013). What makes Internet addicts continue playing online even when faced by severe negative consequences? Possible explanations from an fMRI study. Biological Psychology, 94(2), 282289.CrossRefGoogle ScholarPubMed
Dong, G., Lin, X., & Potenza, M. N. (2015). Decreased functional connectivity in an executive control network is related to impaired executive function in Internet gaming disorder. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 57, 7685.CrossRefGoogle Scholar
Dong, G., Lin, X., Zhou, H., & Lu, Q. (2014). Cognitive flexibility in Internet addicts: fMRI evidence from difficult-to-easy and easy-to-difficult switching situations. Addictive Behaviors, 39(3), 677683.CrossRefGoogle ScholarPubMed
Dong, G., Lu, Q., Zhou, H., & Zhao, X. (2010). Impulse inhibition in people with Internet addiction disorder: Electrophysiological evidence from a Go/NoGo study. Neuroscience Letters, 485(2), 138142.CrossRefGoogle ScholarPubMed
Dong, G., Shen, Y., Huang, J., & Du, X. (2013). Impaired error-monitoring function in people with Internet addiction disorder: An event-related FMRI study. European Addiction Research, 19(5), 269275.CrossRefGoogle ScholarPubMed
Dong, G., Zhou, H., & Zhao, X. (2011). Male Internet addicts show impaired executive control ability: Evidence from a color-word Stroop task. Neuroscience Letters, 499(2), 114118.CrossRefGoogle ScholarPubMed
Donohue, S. E., Woldorff, M. G., & Mitroff, S. R. (2010). Video game players show more precise multisensory temporal processing abilities. Attention, Perception and Psychophysics, 72, 11201129.CrossRefGoogle ScholarPubMed
Doricchi, F., de Schotten, M. T., Tomaiuolo, F., & Bartolomeo, P. (2008). White matter (dis) connections and gray matter (dys) functions in visual neglect: Gaining insights into the brain networks of spatial awareness. Cortex, 44(8), 983995.CrossRefGoogle ScholarPubMed
Dotsch, R., and Wigboldus, D. H. J. (2008). Virtual prejudice. Journal of Experimental Social Psychology, 44, 11941198.CrossRefGoogle Scholar
Draper, J. V., Kaber, D. B. & Usher, J. M. (1998). Telepresence. Human Factors, 40, 354375.CrossRefGoogle ScholarPubMed
Dreher, J. C., Koechlin, E., Tierney, M., & Grafman, J. (2008). Damage to the fronto-polar cortex is associated with impaired multitasking. PLoS One, 3(9), e3227e3227.CrossRefGoogle Scholar
Droutman, V., Bechara, A., & Read, S. J. (2015). Roles of the different sub-regions of the insular cortex in various phases of the decision-making process. Frontiers in Behavioral Neuroscience, 9.CrossRefGoogle ScholarPubMed
Duddu, V., Isaac, M. K., & Chaturvedi, S. K. (2006). Somatization, somatosensory amplification, attribution styles and illness behaviour: A review. International Review of Psychiatry, 18(1), 2533.CrossRefGoogle ScholarPubMed
Dunbar, R. (1992). Neocortex size as a constraint on group size in primates. Journal of Human Evolution, 22(6), 469493.CrossRefGoogle Scholar
Dunbar, R. (1993). Coevolution of neocortical size, group size and language in humans. Behavioral and Brain Sciences, 16(4), 681–93.CrossRefGoogle Scholar
Dunbar, R. (1998). The social brain hypothesis. Brain, 9, 10.Google Scholar
Dunbar, R. & Shultz, S. (2007). Understanding primate brain evolution. Philosophical Transactions of the Royal Society B, 362, 649658.CrossRefGoogle ScholarPubMed
Dunbar, R. I. M. (2011). Evolutionary basis of the social brain. In Decety, J. & Cacioppo, J. (Eds.), Oxford handbook of social neuroscience (pp. 2838). Oxford: Oxford University Press.Google Scholar
Dunbar, R. I. M. (2012). Bridging the bonding gap: The transition from primates to humans. Philosophical Transactions of the Royal Society of London B: Biological Sciences, 367(1597), 18371846.CrossRefGoogle ScholarPubMed
Dunbar, R. I. (2014). The social brain psychological underpinnings and implications for the structure of organizations. Current Directions in Psychological Science, 23(2), 109114.CrossRefGoogle Scholar
Dunbar, R. I. M. (2016). Do online social media cut through the constraints that limit the size of offline social networks? Royal Society Open Science, 3(1), 150292.CrossRefGoogle ScholarPubMed
Duncan, J., & Owen, A. M. (2000). Common regions of the human frontal lobe recruited by diverse cognitive demands. Trends in Neuroscience, 23, 475483.doi:10. 1016/s0166-2236(00)01633-7.CrossRefGoogle ScholarPubMed
Dunn, E. J., Searight, H. R., Grisso, T., Margolis, R. B., & Gibbons, J. L. (1990). The relation of the Halstead-Reitan Neuropsychological Battery to functional daily living skills in geriatric patients. Archives of Clinical Neuropsychology, 5, 103117.CrossRefGoogle ScholarPubMed
Durlach, N. I., & Mavor, A. S. (1994). Committee on virtual reality research, commission on behavioral development, social science, mathematics education, commission on physical sciences, and applications, national research council, virtual reality: Scientific and technological challenges, National Academy Press, p. 189.Google Scholar
Dustman, R. E., Emmerson, R. Y., Steinhaus, L. A., Shearer, D. E., & Dustman, T. J. (1992). The effects of videogame playing on neuropsychological performance of elderly individuals. Journal of Gerontology, 47(3), 168171.CrossRefGoogle ScholarPubMed
Dutta, A., Kumar, R., Malhotra, S., Chugh, S., Banerjee, A., & Dutta, A. (2013). A low-cost point-of-care testing system for psychomotor symptoms of depression affecting standing balance: A preliminary study in India. Depression Research and Treatment.CrossRefGoogle Scholar
Duvinage, M., et al. (2013). A P300-based quantitative comparison between the Emotiv Epoc headset and a medical EEG device. Biomedical Engineering, 765.Google Scholar
Dux, P. E., Tombu, M. N., Harrison, S., Rogers, B. P., Tong, F., & Marois, R. (2009). Training improves multitasking performance by increasing the speed of information processing in human prefrontal cortex. Neuron, 63(1), 127138.CrossRefGoogle ScholarPubMed
Dye, M. W. G., & Bavelier, D. (2010). Differential development of visual attention skills in school-age children. Vision Research, 50, 452459.CrossRefGoogle ScholarPubMed
Dye, M. W. G., Green, C. S., & Bavelier, D. (2009). The development of attention skills in action video game players. Neuropsychologia, 47, 17801789.CrossRefGoogle ScholarPubMed
Earls, H. A., Englander, Z. A., & Morris, J. P. (2013). Perception of race-related features modulates neural activity associated with action observation and imitation. Neuroreport, 24(8), 410413.CrossRefGoogle ScholarPubMed
Egerton, A., Mehta, M. A., Montgomery, A. J., Lappin, J. M., Howes, O. D., Reeves, S. J., … & Grasby, P. M. (2009). The dopaminergic basis of human behaviors: A review of molecular imaging studies. Neuroscience & Biobehavioral Reviews, 33(7), 11091132.CrossRefGoogle ScholarPubMed
Eisenberger, N. I. (2012). The neural bases of social pain: Evidence for shared representations with physical pain. Psychosomatic Medicine, 74, 126135.CrossRefGoogle ScholarPubMed
Eisenberger, N. I. (2013). An empirical review of the neural underpinnings of receiving and giving social support: Implications for health. Psychosomatic Medicine, 75(6), 545.CrossRefGoogle ScholarPubMed
Eisenberger, N. I. (2015). Social pain and the brain: Controversies, questions, and where to go from here. Annual Review of Psychology, 66, 601629.CrossRefGoogle Scholar
Eisenberger, N. I., Lieberman, M. D., & Williams, K. D. (2003). Does rejection hurt? An fMRI study of social exclusion. Science, 302(5643), 290292.CrossRefGoogle ScholarPubMed
Elkind, J. S., Rubin, E., Rosenthal, S., Skoff, B., and Prather, P. (2001). A simulated reality scenario compared with the computerized Wisconsin card sorting test: An analysis of preliminary results. Cyberpsychology & Behavior, 4, 489496.CrossRefGoogle ScholarPubMed
Ellison, N. B., Steinfield, C., & Lampe, C. (2011). Connection strategies: Social capital implications of Facebook-enabled communication practices. New Media & Society, 1461444810385389.CrossRefGoogle Scholar
Emonds, G., Declerck, C. H., Boone, C., Vandervliet, E. J., & Parizel, P. M. (2012). The cognitive demands on cooperation in social dilemmas: An fMRI study. Social Neuroscience, 7(5), 494509.CrossRefGoogle ScholarPubMed
Engel, A. K., Fries, P., & Singer, W. (2001). Dynamic predictions: Oscillations and synchrony in top-down processing. Nature Reviews Neuroscience, 2, 704716.CrossRefGoogle ScholarPubMed
Entertainment Software Association (2010). Essential facts about the computer and video game industry: Sales, demographic, and usage data.Google Scholar
Enzinger, C., Ropele, S., Fazekas, F., Loitfelder, M., Gorani, F., Seifert, T., … & Müller-Putz, G. (2008). Brain motor system function in a patient with complete spinal cord injury following extensive brain-computer interface training. Experimental Brain Research, 190(2), 215223.CrossRefGoogle Scholar
Erickson, K. I., Boot, W. R., Basak, C., Neider, M. B., Prakash, R. S., Voss, M. W., … & Kramer, A. F. (2010). Striatal volume predicts level of video game skill acquisition. Cerebral Cortex, 293.CrossRefGoogle Scholar
Ernst, M., Bolla, K., Mouratidis, M., Contoreggi, C., Matochik, J. A., Kurian, V., et al. (2002). Decision-making in a risk-taking task: A PET study. Neuropsychopharmacology, 26, 682691.CrossRefGoogle Scholar
Esfahani, E. T., & Sundararajan, V. (2012). Classification of primitive shapes using brain–computer interfaces. Computer-Aided Design, 44(10), 10111019.CrossRefGoogle Scholar
Etzel, J. A., Johnsen, E. L., Dickerson, J., Tranel, D., & Adolphs, R. (2006). Cardiovascular and respiratory responses during musical mood induction. International Journal of Psychophysiology, 61, 5769.CrossRefGoogle ScholarPubMed
Fairclough, S. H. (2009). Fundamentals of physiological computing. Interacting with Computers, 21(1), 133145.CrossRefGoogle Scholar
Fairclough, S. H. (2014). Advances in physiological computing. Gilleade, K. (Ed.). London: Springer-Verlag.CrossRefGoogle Scholar
Fairclough, S.H., & Venables, L. (2006). Prediction of subjective states from psychophysiology: A multivariate approach. Biological Psychology, 71, 100110.CrossRefGoogle ScholarPubMed
Farmer, H., Tajadura-Jiménez, A., & Tsakiris, M. (2012). Beyond the colour of my skin: How skin colour affects the sense of body-ownership. Consciousness and Cognition, 21(3), 12421256.CrossRefGoogle ScholarPubMed
Farwell, L. A., & Donchin, E. (1988). Talking off the top of your head: Toward a mental prosthesis utilizing event related brain potentials. Electroencephalographic Clinical Neurophysiology, 70, 510523.CrossRefGoogle Scholar
Fassbender, C., Zhang, H., Buzy, W. M., Cortes, C. R., Mizuiri, D., Beckett, L., & Schweitzer, J. B. (2009). A lack of default network suppression is linked to increased distractibility in ADHD. Brain Research, 1273, 114128.CrossRefGoogle ScholarPubMed
Faur, C., Clavel, C., Pesty, S., and Martin, J. C. (2013). PERSEED: A self-based model of personality for virtual agents inspired by socio-cognitive theories. In Human Association conference on affective computing and intelligent interaction (pp. 467472). Geneva: IEEE.Google Scholar
Fazio, R. H., & Olson, M. A. (2003). Implicit measures in social cognition research: Their meaning and use. Annual Review of Psychology, 54(1), 297327.CrossRefGoogle ScholarPubMed
Fehr, F. S., & Stern, J. A. (1970). Peripheral physiological variables and emotion: The James-Lange theory revisited. Psychological Bulletin, 74(6), 411.CrossRefGoogle ScholarPubMed
Fellows, L. K., & Farah, M. J. (2005). Different underlying impairments in decision making following ventromedial and dorsolateral frontal lobe damage in humans. Cerebral Cortex, 15(1), 5863.CrossRefGoogle ScholarPubMed
Feng, J., Spence, I., & Pratt, (2007). Playing an action video game reduces gender differences in spatial cognition. Psychological Science, 18, 850855.CrossRefGoogle ScholarPubMed
Ferguson, A. M., McLean, D., & Risko, E. F. (2015). Answers at your fingertips: Access to the Internet influences willingness to answer questions. Consciousness and Cognition, 37, 91102.CrossRefGoogle Scholar
Finlay, B.L., & Darlington, R.B. (1995). Linked regularities in the development and evolution of mammalian brains. Science, 268(5217), 15781584.CrossRefGoogle ScholarPubMed
Fisher, H. E., Aron, A., & Brown, L. L. (2006). Romantic love: A mammalian brain system for mate choice. Philosophical Transactions of the Royal Society of London B: Biological Sciences, 361(1476), 21732186.CrossRefGoogle Scholar
Fisher, M., Goddu, M. K., & Keil, F. C. (2015). Searching for explanations: How the Internet inflates estimates of internal knowledge. Journal of Experimental Psychology: General, 144 (3), 674.CrossRefGoogle ScholarPubMed
Fitzsimons, G. M., Finkel, E. J., & vanDellen, M. R. (2015). Transactive goal dynamics. Psychological Review, 122(4), 648673.CrossRefGoogle ScholarPubMed
Flach, J.M., & Holden, J.G. (1998). The reality of experience: Gibson’s way. Presence-Teleoperators and Virtual Environments, 7, 9095.CrossRefGoogle Scholar
Flavián-Blanco, C., Gurrea-Sarasa, R., & Orús-Sanclemente, C. (2011). Analyzing the emotional outcomes of the online search behavior with search engines. Computers in Human Behavior, 27(1), 540551.CrossRefGoogle Scholar
Fleming, T., Dixon, R., Frampton, C., & Merry, S. (2012). A pragmatic randomized controlled trial of computerized CBT (SPARX) for symptoms of depression among adolescents excluded from mainstream education. Behavioural and Cognitive Psychotherapy, 40(05), 529541.CrossRefGoogle ScholarPubMed
Foerde, K., Knowlton, B. J., & Poldrank, R. A. (2006). Modulation of competing memory systems by distraction. Proceedings of the National Association of Sciences, 103, 1177811783.CrossRefGoogle ScholarPubMed
Fok, S., Schwartz, R., Wronkiewicz, M., Holmes, C., Zhang, J., Somers, T., … & Leuthardt, E. (2011). An EEG-based brain computer interface for rehabilitation and restoration of hand control following stroke using ipsilateral cortical physiology. In Engineering in Medicine and Biology Society, EMBC, 2011 Annual International Conference of the IEEE (pp. 62776280).CrossRefGoogle Scholar
Forbes, C. E., & Grafman, J. (2010). The role of the human prefrontal cortex in social cognition and moral judgment. Annual Review of Neuroscience, 33, 299324.CrossRefGoogle ScholarPubMed
Forman, S. D., Dougherty, G. G., Casey, B. J., Siegle, G. J., Braver, T. S., Barch, D. M., … & Lorensen, E. (2004). Opiate addicts lack error-dependent activation of rostral anterior cingulate. Biological Psychiatry, 55(5), 531537.CrossRefGoogle ScholarPubMed
Fox, C. J., Iaria, G., & Barton, J. J. (2008). Disconnection in prosopagnosia and face processing. Cortex, 44(8), 9961009.CrossRefGoogle ScholarPubMed
Fox, J., Arena, D., & Bailenson, J. N. (2009). Virtual reality: A survival guide for the social scientist. Journal of Media Psychology, 21(3), 95113.CrossRefGoogle Scholar
Fox, J., & Tang, W. Y. (2014). Sexism in online video games: The role of conformity to masculine norms and social dominance orientation. Computers in Human Behavior, 33, 314320.CrossRefGoogle Scholar
Fraga, T., Pichiliani, M., & Louro, D. (2013). Experimental art with brain controlled interface. Lecture Notes in Computer Science, 8009, 642651.CrossRefGoogle Scholar
Franceschini, S., Gori, S., Ruffino, M., Viola, S., Molteni, M., and Facoetti, A. (2013). Action video games make dyslexic children read better. Current Biology, 23, 462466.CrossRefGoogle ScholarPubMed
Franklin, T. R., Acton, P. D., Maldjian, J. A., Gray, J. D., Croft, J. R., Dackis, C. A., … & Childress, A. R. (2002). Decreased gray matter concentration in the insular, orbitofrontal, cingulate, and temporal cortices of cocaine patients. Biological Psychiatry, 51(2), 134142.CrossRefGoogle ScholarPubMed
Franzen, M. D., & Wilhelm, K. L. (1996). Conceptual foundations of ecological validity in neuropsychological assessment. In Sbordone, R. J. & Long, C. J. (Eds.), Ecological validity of neuropsychological testing (pp. 91112). Boca Raton, FL: St. Lucie Press.Google Scholar
Fredrickson, M. (1981). Orienting and defensive reactions to phobic and conditioned fear stimuli in phobics and normals. Psychophysiology, 18, 456465.CrossRefGoogle Scholar
Freeman, D., Pugh, K., Antley, A., Slater, M., Bebbington, P., Gittins, M., et al. (2008). Virtual reality study of paranoid thinking in the general population. British Journal of Psychiatry, 192, 258263.CrossRefGoogle ScholarPubMed
Freeman, J., Avons, S. E., Pearson, D. E., & IJsselsteijn, W. A. (1999). Effects of sensory information and prior experience on direct subjective ratings of presence. Presence, 8(1), 113.CrossRefGoogle Scholar
Freese, J. L. & Amaral, D. G. (2009). Neuroanatomy of the primate amygdala. In Whalen, P. J. & Phelps, E. A. (Eds.), The human amygdala. New York, NY: The Guilford Press.Google Scholar
Friedman, D., Steed, A., & Slater, M. (2007, September). Spatial social behavior in second life. In Intelligent virtual agents (pp. 252263). Berlin, Heidelberg: Springer.CrossRefGoogle Scholar
Frith, C. D., & Frith, U. (2008). Implicit and explicit processes in social cognition. Neuron, 60(3), 503510.CrossRefGoogle ScholarPubMed
Frith, U., & Frith, C.D. (2003). Development and neurophysiology of mentalizing. Philosophical Transactions of the Royal Society London B: Biological Sciences, 358(1431), 459473.CrossRefGoogle ScholarPubMed
Funkenstein, D. H. (1956). Nor-epinephrine-like and epinephrine-like substances in relation to human behavior. The Journal of Nervous and Mental Disease, 124(1), 5868.CrossRefGoogle ScholarPubMed
Funkenstein, D. H., King, S. H., & Drolette, M. (1954). The direction of anger during a laboratory stress-inducing situation. Psychosomatic Medicine, 16(5), 404413.CrossRefGoogle ScholarPubMed
Furnell, S., & Clarke, N. (2012). Power to the people? The evolving recognition of human aspects of security. Computers & Security, 31(8), 983988.CrossRefGoogle Scholar
Fuster, J. M. (2000). The module: Crisis of a paradigm. Neuron, 1(26), 5153.CrossRefGoogle Scholar
Gadanho, S. C. (2003). Learning behavior-selection by emotions and cognition in a multi-goal robot task. The Journal of Machine Learning Research, 4, 385412.Google Scholar
Gallagher, S. (2011). The overextended mind. Versus: Quaderni di studi semiotici, 113115.Google Scholar
Gallagher, S., & Crisafi, A. (2009). Mental institutions. Topoi, 28(1), 4551.CrossRefGoogle Scholar
Gandhi, T., Trikha, M., Santhosh, J., & Anand, S. (2010). Development of an expert multitask gadget controlled by voluntary eye movements. Expert Systems with Applications, 37(6), 42044211.CrossRefGoogle Scholar
Garavan, H. (2010). Insula and drug cravings. Brain Structure and Function, 214, 593601. doi: 10.1007/s00429-010-0259-8.CrossRefGoogle ScholarPubMed
Gazzaniga, M. S. (2008). Human: The science behind what makes your brain unique. New York, NY: Harper Perennial.Google Scholar
Geniole, S. N., Carré, J. M., & McCormick, C. M. (2011). State, not trait, neuroendocrine function predicts costly reactive aggression in men after social exclusion and inclusion. Biological Psychology, 87(1), 137145.CrossRefGoogle Scholar
Gentile, D. A., Choo, H., Liau, A., Sim, T., Li, D., Fung, D., & Khoo, A. (2011). Pathological video game use among youths: A two-year longitudinal study. Pediatrics, 127(2), e319e329.CrossRefGoogle ScholarPubMed
Gentile, D. A., & Stone, W. (2005). Violent video game effects on children and adolescents. A review of the literature. Minerva Pediatrica, 57(6), 337358.Google ScholarPubMed
Georgescu, A. L., Kuzmanovic, B., Roth, D., Bente, G., & Vogeley, K. (2014). The use of virtual characters to assess and train non-verbal communication in high-functioning autism. Frontiers in Human Neuroscience, 8.CrossRefGoogle ScholarPubMed
Gilbert, R. L., Murphy, N. A., & Ávalos, M. C. (2011). Realism, idealization, and potential negative impact of 3D virtual relationships. Computers in Human Behavior, 27(5), 20392046.CrossRefGoogle Scholar
Glenberg, A. (1999). Why mental models must be embodied. In Rickheit, G. and Habel, C. (Eds.). Mental models in discourse processing and reasoning. New York: Elsevier.Google Scholar
Globisch, J., Hamm, A. O., Esteves, F., & Öhman, A. (1999). Fear appears fast: Temporal course of startle reflex potentiation in animal fearful subjects. Psychophysiology, 36(1), 6675.CrossRefGoogle ScholarPubMed
Glotzbach, E., Ewald, H., Andreatta, M., Pauli, P., and Mühlberger, A. (2012). Contextual fear conditioning predicts subsequent avoidance behavior in a virtual reality environment. Cognition and Emotion, 26, 12561272.CrossRefGoogle Scholar
Glotzbach-Schoon, E., Andreatta, M., Reif, A., Ewald, H., Tröger, C., Baumann, C., et al. (2013). Contextual fear conditioning in virtual reality is affected by 5HTTLPR and NPSR1 polymorphisms: Effects on fear-potentiated startle. Frontiers in Behavioral Neuroscience, 7, 31.CrossRefGoogle ScholarPubMed
Go, Y. H., Chua, B. H., Chai, B. B. H., Lee, C. Y., & Ning-Jia, E. (2011, July). The effect of risk perception on the usage of social network sites: A conceptual model and research propositions. In The 2nd international research symposium in service management (pp. 554558).Google Scholar
Goel, V., & Dolan, R. J. (2003). Reciprocal neural response within lateral and ventral medial prefrontal cortex during hot and cold reasoning. Neuroimage, 20(4), 23142321.CrossRefGoogle ScholarPubMed
Goldstein, G. (1996). Functional considerations in neuropsychology. In Sbordone, R. J. & Long, C. J. (Eds.), Ecological validity of neuropsychological testing (pp. 7589). Delray Beach, FL: GR Press/St. Lucie Press.Google Scholar
Goldstein, J., Cajko, L., Oosterbroek, M., Michielsen, M., Van Houten, O., & Salverda, F. (1997). Video games and the elderly. Social Behavior and Personality: An International Journal, 25(4), 345352.CrossRefGoogle Scholar
Gong, D., He, H., Liu, D., Ma, W., Dong, L., Luo, C., & Yao, D. (2015). Enhanced functional connectivity and increased gray matter volume of insula related to action video game playing. Scientific Reports, 5.CrossRefGoogle Scholar
Gong, D., He, H., Ma, W., Liu, D., Huang, M., Dong, L., … & Yao, D. (2016). Functional integration between salience and central executive networks: A role for action video game experience. Neural Plasticity, 1, 19.CrossRefGoogle Scholar
Goodale, M. A., & Milner, A. D. (1992). Separate visual pathways for perception and action. Trends in Neurosciences, 15(1), 2025.CrossRefGoogle ScholarPubMed
Goodkind, M., Eickhoff, S. B., Oathes, D. J., Jiang, Y., Chang, A., Jones-Hagata, L. B., … & Grieve, S. M. (2015). Identification of a common neurobiological substrate for mental illness. JAMA psychiatry, 72(4), 305315.CrossRefGoogle ScholarPubMed
Gordon, M., Barkley, R.A., & Lovett, B.J. (2006). Tests and observational measures. In: Barkley, R. A. (Ed.), Attention-deficit hyperactivity disorder: A handbook for diagnosis and treatment (3rd edition, pp. 369388). New York: Guilford,.Google Scholar
Gorini, A., Capideville, C. S., DeLeo, G., Mantovani, F., & Riva, G. (2011). The role of immersion and narrative in mediated presence: The virtual hospital experience. Cyberpsychology, Behavior and Social Networking, 14, 99105.CrossRefGoogle ScholarPubMed
Gorini, A., Gaggioli, A., Vigna, C., & Riva, G. (2008). A Second Life for e-health: Prospects for the use of 3-D virtual worlds in clinical psychology. Journal of Medical Internet Research, 10, e21. doi:10.2196/jmir.1029.CrossRefGoogle Scholar
Gorini, A., & Riva, G. (2008). The potential of virtual reality as anxiety management tool: A randomized controlled study in a sample of patients affected by generalized anxiety disorder. Trials, 9(25), 17456215.CrossRefGoogle Scholar
Gosling, S. D., & Mason, W. (2015). Internet research in psychology. Annual Review of Psychology, 66, 877902.CrossRefGoogle ScholarPubMed
Gosling, S. D., Vazire, S., Srivastava, S., & John, O. P. (2004). Should we trust Web-based studies? A comparative analysis of six preconceptions about Internet questionnaires. The American Psychologist, 59, 93104. doi:10.1037/0003-066X.59.2.93.CrossRefGoogle ScholarPubMed
Gouveia, P. A. R., Brucki, S. M. D., Malheiros, S. M. F., & Bueno, O. F. A. (2007). Disorders in planning and strategy application in frontal lobe lesion patients. Brain and Cognition, 63(3), 240246.CrossRefGoogle ScholarPubMed
Gozli, D. G., Bavelier, D., & Pratt, J. (2014). The effect of action video game playing on sensorimotor learning: evidence from a movement tracking task. Human Movement Science, 38, 152162. doi: 10.1016/j.humov.2014.09.004.CrossRefGoogle ScholarPubMed
Granek, J. A., Gorbet, D. J., & Sergio, L. E. (2010). Extensive video-game experience alters cortical networks for complex visuomotor transformations. Cortex, 46(9), 11651177.CrossRefGoogle ScholarPubMed
Grant, S., Bonson, K. R., Contoreggi, C., & London, E. D. (1999). Activation of the ventromedial prefrontal cortex correlates with gambling task performance: A FDG-PET study. Society for Neuroscience Abstracts, 25, 1551.Google Scholar
Graybiel, A. M. (2000). The basal ganglia. Current Biology, 10(14), R509R511.CrossRefGoogle ScholarPubMed
Green, C. S., & Bavelier, D. (2003). Action video game modifies visual selective attention. Nature, 423, 534537.CrossRefGoogle ScholarPubMed
Green, C. S., & Bavelier, D. (2004). Does action video game play really enhance the number of items that can be simultaneously attended? Journal of Vision, 4, 632.CrossRefGoogle Scholar
Green, C. S., & Bavelier, D. (2006a). Effect of action video games on the spatial distribution of visuospatial attention. Journal of Experimental Psychology: Human Perception and Performance, 32(6), 1465.Google ScholarPubMed
Green, C. S., & Bavelier, D. (2006b). Enumeration versus multiple object tracking: The case of action video game players. Cognition, 101, 217245.CrossRefGoogle ScholarPubMed
Green, C. S., & Bavelier, D. (2007). Action-video-game experience alters the spatial resolution of vision. Psychological Science, 18, 8894.CrossRefGoogle ScholarPubMed
Green, C. S., & Bavelier, D. (2015). Action video game training for cognitive enhancement. Current Opinion in Behavioral Sciences, 4, 103108.CrossRefGoogle Scholar
Green, C. S., Li, R., & Bavelier, D. (2010). Perceptual learning during action video game playing. Topics in Cognitive Science, 2, 202216.CrossRefGoogle ScholarPubMed
Green, C. S., Pouget, A., & Bavelier, D. (2010). Improved probabilistic inference as a general learning mechanism with action video games. Current Biology, 20, 15731579.CrossRefGoogle ScholarPubMed
Green, C. S., Sugarman, M. A., Medford, K., Klobusicky, E., & Bavelier, D. (2012). The effect of action video game experience on task-switching. Computers in Human Behavior, 28, 984994.CrossRefGoogle ScholarPubMed
Greene, J. D. (2008). The secret joke of Kant’s soul. In Armstrong, W.S. (Ed.), Moral psychology: The neuroscience of morality – emotion, brain disorders and development (Vol.3) (pp. 3580). Cambridge: MIT Press.Google Scholar
Greene, J. D., Nystrom, L. E., Engell, A. D., Darley, J. M., & Cohen, J. D. (2004). The neural bases of cognitive conflict and control in moral judgment. Neuron, 44(2), 389400.CrossRefGoogle ScholarPubMed
Greenfield, D. (2011). The addictive properties of Internet usage. Internet addiction: A handbook and guide to evaluation and treatment (pp. 135153). Hoboken, NJ: Wiley.Google Scholar
Greenfield, P. M., de Winstanley, P., Kilpatrick, H., & Kaye, D. (1994). Action videogames and informal education: Effects on strategies for dividing visual attention. Journal of Applied Developmental Psychology, 15, 105123. doi:10.1016/0193-3973 (94)90008-6.CrossRefGoogle Scholar
Gregor, S., Lin, A. C., Gedeon, T., Riaz, A., & Zhu, D. (2014). Neuroscience and a nomological network for the understanding and assessment of emotions in information systems research. Journal of Management Information Systems, 30(4), 1348.CrossRefGoogle Scholar
Grewal, D., Gotlieb, J., & Marmorstein, H. (1994). The moderating effects of message framing and source credibility on the price-perceived risk relationship. Journal of Consumer Research, 145153.CrossRefGoogle Scholar
Griffiths, M. (2000). Does Internet and computer “addiction” exist? Some case study evidence. CyberPsychology and Behavior, 3(2), 211218.CrossRefGoogle Scholar
Griffiths, M. D. (1995). Technological addictions. Clinical Psychology Forum, 76, 1419.CrossRefGoogle Scholar
Griffiths, M. D. (1999a). Internet addiction: Fact or fiction? The Psychologist.Google Scholar
Griffiths, M. D. (1999b). Internet addiction: Internet fuels other addictions. Student British Medical Journal, 7, 428429.Google Scholar
Grossberg, S., & Schmajuk, N. A. (1987). Neural dynamics of attentionally modulated Pavlovian conditioning: Conditioned reinforcement, inhibition, and opponent processing. Psychobiology, 15(3), 195240.CrossRefGoogle Scholar
Guilmette, T. J., & Kastner, M. P. (Eds.) (1996). The prediction of vocational functioning from neuropsychological data. Delray Beach, FL: GR Press/St. Lucie Press.Google Scholar
Guo, K. H., Yuan, Y., Archer, N. P., & Connelly, C. E. (2011). Understanding nonmalicious security violations in the workplace: A composite behavior model. Journal of Management Information Systems, 28(2), 203236.CrossRefGoogle Scholar
Gutierrez-Martinez, O., Gutierrez-Maldonado, J., and Loreto-Quijada, D. (2011). Control over the virtual environment influences the presence and efficacy of a virtual reality intervention on pain. Studies in Health Technology and Informatics, 167, 111115.Google ScholarPubMed
Haarmann, A., Boucsein, W., & Schaefer, F. (2009). Combining electrodermal responses and cardiovascular measures for probing adaptive automation during simulated flight. Applied Ergonomics, 40, 10261040.CrossRefGoogle ScholarPubMed
Haber, S. N., & Knutson, B. (2010). The reward circuit: linking primate anatomy and human imaging. Neuropsychopharmacology, 35(1), 426.CrossRefGoogle ScholarPubMed
Haier, R. J., Siegel, B. V., MacLachlan, A., Soderling, E., Lottenberg, S., & Buchsbaum, M. S. (1992). Regional glucose metabolic changes after learning a complex visuospatial/motor task: A positron emission tomographic study. Brain Research, 570(1), 134143.CrossRefGoogle ScholarPubMed
Hall, J. A., Tickle-Degnen, L., Rosenthal, R., & Mosteller, F. (1994). Hypotheses and problems in research synthesis. In Cooper, H. & Hedges, L. V. (Eds.), Handbook of research synthesis (pp. 1728). New York: Russell Sage FoundationGoogle Scholar
Halliday, A. M., Butler, S. R. & Paul, R. (1987). A textbook of clinical neurophysiology. Chichester: Wiley.Google Scholar
Hammer, R., Ronen, M., Sharon, A., Lankry, T., Huberman, Y., & Zamtsov, V. (2010). Mobile culture in college lectures: Instructors’ and students’ perspectives. Interdisciplinary Journal of E-Learning and Learning Objects, 6(1), 293304.Google Scholar
Hampton, K. N., Goulet, L. S., Rainie, L., & Purcell, K. (2011). Social networking sites and our lives: How people’s trust, personal relationships, and civic and political involvement are connected to their use of social networking sites and other technologies. Pew Internet & American Life Project. www.pewinternet.org/~/media/Files/Reports/2011/PIP%20-%20Social%20networking%20sites%20and%20our%20lives.pdf.Google Scholar
Han, D. H., Bolo, N., Daniels, M. A., Arenella, L., Lyoo, I. K., & Renshaw, P. F. (2011). Brain activity and desire for Internet video game play. Comprehensive Psychiatry, 52(1), 8895.CrossRefGoogle ScholarPubMed
Han, D. H., Hwang, J. W., & Renshaw, P. F. (2010). Bupropion sustained release treatment decreases craving for video games and cue-induced brain activity in patients with Internet video game addiction. Experimental and Clinical Psychopharmacology, 18(4), 297.CrossRefGoogle ScholarPubMed
Han, D. H., Lee, Y. S., Yang, K. C., Kim, E. Y., Lyoo, I. K., & Renshaw, P. F. (2007). Dopamine genes and reward dependence in adolescents with excessive internet video game play. Journal of Addiction Medicine, 1(3), 133138.CrossRefGoogle ScholarPubMed
Han, D. H., Lyoo, I. K., & Renshaw, P. F. (2012). Differential regional gray matter volumes in patients with on-line game addiction and professional gamers. Journal of Psychiatric Research, 46(4), 507515.CrossRefGoogle ScholarPubMed
Hancock, P. A., & Szalma, J. L. (2003). The future of neuroergonomics. Theoretical Issues in Ergonomic Science, 44, 238249.CrossRefGoogle Scholar
Hare, R. M. (1984). Supervenience. Aristotelian Society, 58, 116.CrossRefGoogle Scholar
Hari, R., & Kujala, M. V. (2009). Brain basis of human social interaction: From concepts to brain imaging. Physiological Reviews, 89, 453479. doi: 10.1152/physrev.00041.2007.CrossRefGoogle ScholarPubMed
Hariri, A. R., Bookheimer, S. Y., & Mazziotta, J. C. (2000). Modulating emotional responses: Effects of a neocortical network on the limbic system. Neuroreport, 11, 4348.CrossRefGoogle ScholarPubMed
Harley, D., Fitzpatrick, G., Axelrod, L., White, G., & McAllister, G. (2010). Making the Wii at home: Game play by older people in sheltered housing (pp. 156176). Berlin Heidelberg: Springer.Google Scholar
Harley, J. P., Allen, C., Braciszewski, T. L., Cicerone, K. D., Dahlberg, C., Evans, S., … & Malec, J. F. (1992). Guidelines for cognitive rehabilitation. NeuroRehabilitation, 2(3), 6267.Google Scholar
Harris, L. T., & Fiske, S. T. (2010). Neural regions that underlie reinforcement learning are also active for social expectancy violations. Social Neuroscience, 5(1), 7691.CrossRefGoogle ScholarPubMed
Healey, J. A., & Picard, R. W. (2005). Detecting stress during real-world driving tasks using physiological sensors. Intelligent Transportation Systems, IEEE Transactions on, 6(2), 156166.CrossRefGoogle Scholar
Heaton, R. K. (1993). Wisconsin card sorting test: Computer version 2. Odessa: Psychological Assessment Resources.Google Scholar
Heim, C., & Nemeroff, C. B. (1999). The impact of early adverse experiences on brain systems involved in the pathophysiology of anxiety and affective disorders. Biological Psychiatry, 46(11), 15091522.CrossRefGoogle ScholarPubMed
Heingartner, D. (2009). Mental block. Spectrum, IEEE, 46(1), 4243.CrossRefGoogle Scholar
Henninger, D. E. (2006). Ecological validity of neuropsychological assessment: The roles of vocational assessment and employment in aging HIV+ adults. Fordham University, New York.Google Scholar
Henrich, J., Heine, S. J., & Norenzayan, A. (2010). The weirdest people in the world? Behavioral and Brain Sciences, 33(2–3), 6183.CrossRefGoogle ScholarPubMed
Henry, M., Joyal, C. C., & Nolin, P. (2012). Development and initial assessment of a new paradigm for assessing cognitive and motor inhibition: The bimodal virtual-reality Stroop. Journal of Neuroscience Methods, 210(2), 125131.CrossRefGoogle ScholarPubMed
Hermans, E. J., Henckens, M. J., Joëls, M., & Fernández, G. (2014). Dynamic adaptation of large-scale brain networks in response to acute stressors. Trends in Neurosciences, 37(6), 304314.CrossRefGoogle ScholarPubMed
Hinson, J. M., Jameson, T. L., & Whitney, P. (2002). Somatic markers, working memory, and decision making. Cognitive, Affective, & Behavioral Neuroscience, 2(4), 341353.CrossRefGoogle ScholarPubMed
Hinson, J. M., Jameson, T. L., & Whitney, P. (2003). Impulsive decision making and working memory. Journal of Experimental Psychology: Learning, Memory, and Cognition, 29(2), 298.Google ScholarPubMed
Hodges, L. F., Watson, B. A., Kessler, G. D., Rothbaum, B. O., & Opdyke, D. (1996). Virtually conquering fear of flying. Computer Graphics and Applications, 16, 4249.CrossRefGoogle Scholar
Hoeft, F., Watson, C. L., Kesler, S. R., Bettinger, K. E., and Reiss, A. L. (2008). Gender differences in the mesocorticolimbic system during computer game-play. Journal of Psychiatric Research, 42, 253258.CrossRefGoogle ScholarPubMed
Hoffman, H. G., et al. (2000). Virtual reality as an adjunctive pain control during burn wound care in adolescent patients. Pain, 85(1–2), 305309.CrossRefGoogle ScholarPubMed
Hoffman, H. G., Prothero, J., Wells, M., et al. (1998). Virtual chess: The role of meaning in the sensation of presence. Int. Journal of Human-Computer Interaction, 10, 251263.CrossRefGoogle Scholar
Hong, S. B., Kim, J. W., Choi, E. J., Kim, H. H., Suh, J. E., Kim, C. D., … & Yi, S. H. (2013). Reduced orbitofrontal cortical thickness in male adolescents with internet addiction. Behavioral and Brain Functions, 9(11), 90819089.CrossRefGoogle ScholarPubMed
Hong, W., & Thong, J. Y. (2013). Internet privacy concerns: An integrated conceptualization and four empirical studies. MIS Quarterly, 37(1), 275298.CrossRefGoogle Scholar
Höök, K. (2009). Affective loop experiences: Designing for interactional embodiment. Philosophical Transactions of the Royal Society B: Biological Sciences, 364(1535), 35853595.CrossRefGoogle ScholarPubMed
Horne-Moyer, H. L., Moyer, B. H., Messer, D. C., & Messer, E. S. (2014). The use of electronic games in therapy: A review with clinical implications. Current Psychiatry Reports, 16(12), 19.CrossRefGoogle ScholarPubMed
Hoshi, E. (2013). Cortico-basal ganglia networks subserving goal-directed behavior mediated by conditional visuo-goal association. Frontiers in Neural Circuits, 7.CrossRefGoogle ScholarPubMed
Hoshikawa, Y., & Yamamoto, Y. U. (1997). Effects of Stroop color-word conflict test on the autonomic nervous system responses. American Journal of Physiology-Heart and Circulatory Physiology, 272(3), H1113H1121.CrossRefGoogle ScholarPubMed
Hou, H., Jia, S., Hu, S., Fan, R., Sun, W., Sun, T., & Zhang, H. (2012). Reduced striatal dopamine transporters in people with Internet addiction disorder. BioMed Research International.Google Scholar
Hu, Q., Dinev, T., Hart, P., & Cooke, D. (2012). Managing employee compliance with information security policies: The critical role of top management and organizational culture*. Decision Sciences, 43(4), 615660.CrossRefGoogle Scholar
Hu, Q., West, R., & Smarandescu, L. (2015). The role of self-control in information security violations: Insights from a cognitive neuroscience perspective. Journal of Management Information Systems, 31(4), 648.CrossRefGoogle Scholar
Hubert, M., Hubert, M., Riedl, R., & Kenning, P. (2014). How consumer impulsiveness moderates online trustworthiness evaluations: Neurophysiological insights. In: Proceedings of the 35th International Conference on Information Systems, Auckland.Google Scholar
Hubert-Wallander, B., Green, C. S., Sugarman, M., Bavelier, D. (2011). Changes in search rate but not in the dynamics of exogenous attention in action videogame players. Attention, Perception and Psychophysics, 73, 23992412.CrossRefGoogle Scholar
Huettel, S. A., Song, A. W., & McCarthy, G. (2004). Functional magnetic resonance imaging (Vol. 1). Sunderland: Sinauer Associates.Google Scholar
Hugues, S. K., Lewis, R. F. (2015). Frequent use of social networking sites is associated with poor psychological functioning among children and adolescents. Cyberpsychol Behavior and Social Networks, 18(7): 380385.Google Scholar
Hung, Y., Vetivelu, A., Hird, M. A., Yan, M., Tam, F., Graham, S. J., … & Schweizer, T. A. (2014). Using fMRI virtual-reality technology to predict driving ability after brain damage: A preliminary report. Neuroscience Letters, 558, 4146.CrossRefGoogle ScholarPubMed
Hunter, J. E., Schmidt, F. L., & Judiesch, M. K. (1990). Individual differences in output variability as a function of job complexity. Journal of Applied Psychology, 75(1), 28.CrossRefGoogle Scholar
Hunter, J. E., & Schmidt, F. L. (1997). Cumulative research knowledge and social policy formation: The critical role of meta-analysis. Psychology, Public Policy, and Law, 2, 324347. doi:10.1037/1076-8971.2.2.324.CrossRefGoogle Scholar
Hussain, Z., & Griffiths, M. D. (2008). Gender swapping and socializing in cyberspace: An exploratory study. CyberPsychology & Behavior, 11(1), 4753.CrossRefGoogle ScholarPubMed
Hutchinson, C. V., & Stocks, R. (2013). Selectively enhanced motion perception in core video gamers. Perception, 42, 675677.CrossRefGoogle ScholarPubMed
Hyun, G. J., Shin, Y. W., Kim, B. N., Cheong, J. H., Jin, S. N., & Han, D. H. (2013). Increased cortical thickness in professional on-line gamers. Psychiatry Investigation, 10(4), 388392.CrossRefGoogle ScholarPubMed
Iacoboni, M. (2009). Neurobiology of imitation. Current Opinion in Neurobiology, 19(6), 661665.CrossRefGoogle ScholarPubMed
Iacoboni, M., Lieberman, M. D., Knowlton, B. J., Molnar-Szakacs, I., Moritz, M., Throop, C. J., & Fiske, A. P. (2004). Watching social interactions produces dorsomedial prefrontal and medial parietal BOLD fMRI signal increases compared to a resting baseline. Neuroimage, 21(3), 11671173.CrossRefGoogle ScholarPubMed
Iengo, S., Origlia, A., Staffa, M., & Finzi, A. (2012, September). Attentional and emotional regulation in human-robot interaction. In RO-MAN, 2012 IEEE (pp. 11351140). IEEE.Google Scholar
Imam, B., & Jarus, T. (2014). Virtual reality rehabilitation from social cognitive and motor learning theoretical perspectives in stroke population. Rehabilitation Research and Practice, 1, 111.CrossRefGoogle Scholar
Immordino-Yang, M. H., & Damasio, A. (2007). We feel, therefore we learn: The relevance of affective and social neuroscience to education. Mind, Brain, and Education, 1(1), 310.CrossRefGoogle Scholar
Insel, T., Cuthbert, B., Garvey, M., Heinssen, R., Pine, D. S., Quinn, K., … & Wang, P. (2010). Research domain criteria (RDoC): Toward a new classification framework for research on mental disorders. American Journal of Psychiatry, 167(7), 748751.CrossRefGoogle Scholar
Internet Live Stats. (2015). Internet users. Retrieved from Internet Live Stats: www.internetlivestats.com/internet-users-by-country/.Google Scholar
Inventado, P., Legaspi, R., Suarez, M., & Numao, M. (2011). Predicting student emotions resulting from appraisal of its feedback. Research and Practice in Technology Enhanced Learning, 6(2), 107133.Google Scholar
Inzlicht, M., Bartholow, B. D., & Hirsh, J. B. (2015). Emotional foundations of cognitive control. Trends in Cognitive Sciences, 19(3), 126132.CrossRefGoogle ScholarPubMed
Ipsos MediaCT. (2015). The 2015 essential facts about the computer and video game industry. Entertainment Software Association. Available online at: www.theesa.com/wp-content/uploads/2015/04/ESA-Essential-Facts-2015.pdf.Google Scholar
Iriarte, Y., Diaz-Orueta, U., Cueto, E., Irazustabarrena, P., Banterla, F., and Climent, G. (2012). AULA-advanced virtual reality tool for the assessment of attention: normative study in Spain. Journal of Attention Disorders doi: 10.1177/1087054712465335 [Epub ahead of print].CrossRefGoogle Scholar
Irons, J. L., Remington, R. W., & McLean, J. P. (2011). Not so fast: Rethinking the effects of action video games on attentional capacity. Australian Journal of Psychology, 63, 224231.CrossRefGoogle Scholar
Iyer, A., Cosand, L., Courtney, C., Rizzo, A. A., & Parsons, T. D. (2009). Considerations for designing response quantification procedures in non-traditional psychophysiological applications. Lecture Notes in Artificial Intelligence, 5638, 479487.Google Scholar
Jacobsen, W. C., & Forste, R. (2011). The wired generation: Academic and social outcomes of electronic media use among university students. Cyberpsychology, Behavior, and Social Networking, 14(5), 275280.CrossRefGoogle ScholarPubMed
Jaeggi, S. M., Buschkuehl, M., Jonides, J., & Perrig, W. J. (2008). Improving fluid intelligence with training on working memory. Proceedings of the National Academy of Sciences, 105(19), 68296833.CrossRefGoogle ScholarPubMed
Jagaroo, V. (2009). Neuroinformatics for Neuropsychology (pp. 2584). New York: Springer-Verlag.CrossRefGoogle Scholar
James, W. (1884). What is an emotion? Mind, 9(34), 188205.CrossRefGoogle Scholar
James, W. (1890). The principles of psychology (Vol. 1). New York: Holt.Google Scholar
James, W. (1894). The physical basis of emotion. Psychological Review, 1, 516529.CrossRefGoogle Scholar
Jansari, A. S., Froggatt, D., Edginton, T., and Dawkins, L. (2013). Investigating the impact of nicotine on executive functions using a novel virtual reality assessment. Addiction, 108, 977984.CrossRefGoogle ScholarPubMed
Jatupaiboon, N., Pan-ngum, S., & Israsena, P. (2013a). Emotion classification using minimal EEG channels and frequency bands. In Computer Science and Software Engineering (JCSSE), 2013 10th International Joint Conference on (pp. 2124). IEEE.CrossRefGoogle Scholar
Jatupaiboon, N., Pan-ngum, S., & Israsena, P. (2013b). Real-time EEG-based happiness detection system. The Scientific World Journal, 618649, 112.CrossRefGoogle Scholar
Jennings, J. & Coles, M. G. (Eds.) (1991). Handbook of cognitive psychophysiology: Central and autonomic nervous system approaches. Chichester: Wiley.Google Scholar
Jerome, L. W., & Jordan, P. J. (2007). Psychophysiological perspective on presence. Psychological Services, 4(2), 7584.CrossRefGoogle Scholar
Joffe, T. H., & Dunbar, R. I. M. (1997). Visual and socio–cognitive information processingin primate brain evolution. Proceedings Of the Royal Society, London, 264(1386), 13031307.CrossRefGoogle Scholar
John, L. K., Acquisti, A., & Loewenstein, G. (2011). Strangers on a plane: Context-dependent willingness to divulge sensitive information. Journal of Consumer Research, 37(5), 858873.CrossRefGoogle Scholar
Jovanovski, D., Zakzanis, K., Campbell, Z., Erb, S., & Nussbaum, D. (2012a). Development of a novel, ecologically oriented virtual reality measure of executive function: The Multitasking in the City Test. Applied Neuropsychology: Adult, 19, 171182.CrossRefGoogle ScholarPubMed
Jovanovski, D., Zakzanis, K., Ruttan, L., Campbell, Z., Erb, S., & Nussbaum, D. (2012b). Ecologically valid assessment of executive dysfunction using a novel virtual reality task in patients with acquired brain injury. Applied Neuropsychology, 19, 207220.CrossRefGoogle ScholarPubMed
Junco, R., & Cotten, S. R. (2011). Perceived academic effects of instant messaging use. Computers & Education, 56(2), 370378.CrossRefGoogle Scholar
Junco, R., & Cotten, S. R. (2012). No A 4 U: The relationship between multitasking and academic performance. Computers & Education, 59(2), 505514.CrossRefGoogle Scholar
Kahneman, D. (1973). Attention and effort. Englewood Cliffs, NJ: Prentice Hall.Google Scholar
Kahneman, D., & Treisman, A. (1984). Changing views of attention and automaticity. In Parasuraman, R., Davies, D. R., & Beatty, J. (Eds.), Varieties of attention (pp. 2961). New York, NY: Academic Press.Google Scholar
Kalechstein, A. D., Newton, T. F., & Van Gorp, W. G. (2003). Neurocognitive functioning is associated with employment status: A quantitative review. Journal of Clinical and Experimental Neuropsychology, 25(8), 11861191.CrossRefGoogle ScholarPubMed
Kallinen, K., Salminen, M., Ravaja, N., Kedzior, R., & Sääksjärvi, M. (2007). Presence and emotion in computer game players during 1st person vs. 3rd person playing view: Evidence from self-report, eye-tracking, and facial muscle activity data. Proceedings of the PRESENCE, 187190.Google Scholar
Kanai, R., Bahrami, B., Roylance, R., & Rees, G. (2012). Online social network size is reflected in human brain structure. Proceedings of the Royal Society of London B: Biological Sciences, 279(1732), 13271334.Google ScholarPubMed
Kandel, E. R., Schwartz, J. H. Jessell, T. M., & Siegelbaum, S. A. (2012). Principles of neural science, (5th Edition). Elsevier.Google Scholar
Karle, J.W., Watter, S., & Shedden, J.M. (2010). Task switching in video game players: Benefits of selective attention but not resistance to proactive interference. Acta Psychologica, 134, 70.CrossRefGoogle Scholar
Kassner, M. P., Wesselmann, E. D., Law, A. T., & Williams, K. D. (2012). Virtually ostracized: Studying ostracism in immersive virtual environments. Cyberpsychology, Behavior, and Social Networking, 15(8), 399403.CrossRefGoogle ScholarPubMed
Kätsyri, J., Hari, R., Ravaja, N., & Nummenmaa, L. (2013a). Just watching the game ain’t enough: Striatal fMRI reward responses to successes and failures in a video game during active and vicarious playing. Frontiers in Human Neuroscience, 7.CrossRefGoogle Scholar
Kätsyri, J., Hari, R., Ravaja, N., & Nummenmaa, L. (2013b). The opponent matters: Elevated fMRI reward responses to winning against a human versus a computer opponent during interactive video game playing. Cerebral Cortex, 23(12), 28292839.CrossRefGoogle ScholarPubMed
Kaufmann, T., HOlz, E., Kubler, A. (2013). Comparison of tactile, auditory, and visual modality for brain-computer interface use: A case study with a patient in the locked-in state. Frontiers in Neuroscience, 7, 129.CrossRefGoogle ScholarPubMed
Ke, F. (2009). A qualitative meta-analysis of computer games as learning tools. In Ferdig, R. E. (Eds.), Handbook of research on effective electronic gaming in education (Vol. 1, pp. 132). Hershey, PA: Information Science Reference.Google Scholar
Ke, F., & Im, T. (2013). Virtual-reality-based social interaction training for children with high-functioning autism. The Journal of Educational Research, 106(6), 441461.CrossRefGoogle Scholar
Keefe, F. J., Huling, D. A., Coggins, M. J., Keefe, D. F., Rosenthal, M. Z., Herr, N. R., & Hoffman, H. G. (2012). Virtual reality for persistent pain: A new direction for behavioral pain management. PAIN, 153(11), 21632166.CrossRefGoogle Scholar
Kelley, W.M., Macrae, C.N., Wyland, C.L., Caglar, S., Inati, S., & Heatherton, T.F. (2002). Finding the self? An event-related fMRI study. Journal of Cognitive Neuroscience, 14, 785794.CrossRefGoogle ScholarPubMed
Kelly, A. C., Uddin, L. Q., Biswal, B. B., Castellanos, F. X., & Milham, M. P. (2008). Competition between functional brain networks mediates behavioral variability. Neuroimage, 39(1), 527537.CrossRefGoogle ScholarPubMed
Kennedy, D.O., & Scholey, A.B. (2000). Glucose administration, heart rate and cognitive performance: Effects of increasing mental effort. Psychopharmacology, 149, 6371.CrossRefGoogle ScholarPubMed
Kerns, J. G., Cohen, J. D., MacDonald, A. W. III, Cho, R. Y., Stenger, V. A., & Carter, C. S. (2004). Anterior cingulate conflict monitoring and adjustments in control. Science, 303, 10231026.CrossRefGoogle ScholarPubMed
Kerr, A., & Zelazo, P.D. (2004). Development of hot executive function: The children’s gambling task. Brain and Cognition, 55, 148157.CrossRefGoogle ScholarPubMed
Keysers, C., & Gazzola, V. (2007). Integrating simulation and theory of mind: From self to social cognition. Trends in Cognitive Science, 11(5), 194196.CrossRefGoogle ScholarPubMed
Kibby, M. Y., Schmitter-Edgecombe, M., & Long, C. J. (1998). Ecological validity of neuropsychological tests: Focus on the California Verbal Learning Test and the Wisconsin Card Sorting Test. Archives of Clinical Neuropsychology, 13(6), 523-534.Google ScholarPubMed
Kim, M. K., Kim, M., Oh, E., & Kim, S. P. (2013). A review on the computational methods for emotional state estimation from the human EEG. Computational and Mathematical Methods in Medicine, 2013.CrossRefGoogle Scholar
Kim, S. H., Baik, S. H., Park, C. S., Kim, S. J., Choi, S. W., & Kim, S. E. (2011). Reduced striatal dopamine D2 receptors in people with Internet addiction. Neuroreport, 22(8), 407411.CrossRefGoogle ScholarPubMed
Kinzie, M. B., Whitaker, S. D., & Hofer, M. J. (2005). Instructional uses of instant messaging (IM) during classroom lectures. Journal of Educational Technology & Society, 8(2), 150160.Google Scholar
Kiper, P., Piron, L., Turolla, A., Stozek, J., & Tonin, P. (2011). The effectiveness of reinforced feedback in virtual environment in the first 12 months after stroke. Neurologia i Neurochirurgia Polska, 45(5), 436444.CrossRefGoogle ScholarPubMed
Kirwan, G, & Power, A. (2011). The psychology of cyber crime. Pennsylvania: IGI Global Press.Google Scholar
Klinger, E., Bouchard, S., Légeron, P., Roy, S., Lauer, F., Chemin, I., & Nugues, P. (2005). Virtual reality therapy versus cognitive behavior therapy for social phobia: A preliminary controlled study. Cyberpsychology & Behavior, 8(1), 7688.CrossRefGoogle ScholarPubMed
Klinger, E., & Weiss, P. L. (2009). Shifting towards remote located virtual environments for rehabilitation. Proceedings of the Chais Conference on Instructional Technologies Research. Haifa, Israel.Google Scholar
Knight, C., Alderman, N., & Burgess, P. W. (2002). Development of a simplified version of the multiple errands test for use in hospital settings. Neuropsychological Rehabilitation, 12(3), 231255.CrossRefGoogle Scholar
Knoll, A., Wang, Y., Chen, F., Xu, J., Ruiz, N., Epps, J., & Zarjam, P. (2011). Measuring cognitive workload with low-cost electroencephalograph. In Human-computer interaction–INTERACT 2011 (pp. 568571). Berlin Heidelberg: Springer.CrossRefGoogle Scholar
Ko, C. H., Liu, G. C., Hsiao, S., Yen, J. Y., Yang, M. J., Lin, W. C., … & Chen, C. S. (2009). Brain activities associated with gaming urge of online gaming addiction. Journal of Psychiatric Research, 43(7), 739747.CrossRefGoogle ScholarPubMed
Ko, C. H., Liu, G. C., Yen, J. Y., Chen, C. Y., Yen, C. F., & Chen, C. S. (2013). Brain correlates of craving for online gaming under cue exposure in subjects with Internet gaming addiction and in remitted subjects. Addiction Biology, 18(3), 559569.CrossRefGoogle ScholarPubMed
Ko, C. H., Yen, J. Y., Yen, C. F., Chen, C. S., & Chen, C. C. (2012). The association between Internet addiction and psychiatric disorder: A review of the literature. European Psychiatry, 27(1), 18.Google Scholar
Kobayashi, N., Yoshino, A., Takahashi, Y., & Nomura, S. (2007). Autonomic arousal in cognitive conflict resolution. Autonomic Neuroscience: Basic and Clinical, 132, 7075.CrossRefGoogle ScholarPubMed
Koenig, S.T., Crucian, G.P., Dalrymple-Alford, J.C., Dünser, A. (2009). Virtual reality rehabilitation of spatial abilities after brain damage. Studies in Health Technology and Informatics, 144, 105107.Google ScholarPubMed
Koenigs, M., & Tranel, D. (2007). Irrational economic decision-making after ventromedial prefrontal damage: Evidence from the Ultimatum Game. The Journal of Neuroscience, 27(4), 951956.CrossRefGoogle ScholarPubMed
Koepp, M. J., Gunn, R. N., Lawrence, A. D., Cunningham, V. J., Dagher, A., Jones, T., … & Grasby, P. M. (1998). Evidence for striatal dopamine release during a video game. Nature, 393(6682), 266268.CrossRefGoogle ScholarPubMed
Kohler, C. G., Walker, J. B., Martin, E. A., Healey, K. M., & Moberg, P. J. (2010). Facial emotion perception in schizophrenia: A meta-analytic review. Schizophrenia Bulletin, 36, 10091019.CrossRefGoogle ScholarPubMed
Kokal, I., Gazzola, V., and Keysers, C. (2009). Acting together in and beyond the mirror neuron system. Neuroimage, 47, 20462056.CrossRefGoogle ScholarPubMed
Kolb, B., & Whishaw, I. Q. (2015). Fundamentals of human neuropsychology. New York: Macmillan.Google Scholar
Kolek, E. A., & Saunders, D. (2008). Online disclosure: An empirical examination of undergraduate Facebook profiles. Journal of Student Affairs Research and Practice, 45(1), 125.Google Scholar
Koller, M., & Walla, P. (2012). Measuring affective information processing in information systems and consumer research–introducing startle reflex modulation. ICIS 2012 Proceedings, AIS.Google Scholar
Kononova, A. G. (2013). Effects of distracting ads and cognitive control on the processing of online news stories with stereotype-related information. Cyberpsychology, Behavior, and Social Networking, 16(5), 321328.CrossRefGoogle ScholarPubMed
Konvalinka, I., & Roepstorff, A. (2012). The two-brain approach: How can mutually interacting brains teach us something about social interaction? Frontiers in Human Neuroscience, 6, 215. doi: 10.3389/fnhum.2012.00215.CrossRefGoogle ScholarPubMed
Kosinski, M., Matz, S. C., Gosling, S. D., Popov, V., & Stillwell, D. (2015). Facebook as a research tool for the social sciences: Opportunities, challenges, ethical considerations, and practical guidelines. American Psychologist, 70(6), 543.CrossRefGoogle ScholarPubMed
Kovács, Á. M., Kühn, S., Gergely, G., Csibra, G., & Brass, M. (2014). Are all beliefs equal? Implicit belief attributions recruiting core brain regions of theory of mind. PloS one, 9(9), e106558.CrossRefGoogle ScholarPubMed
Koziol, L. F., & Budding, D. E. (2009). Subcortical structures and cognition: Implications for neuropsychological assessment. New York: Springer Science & Business Media.CrossRefGoogle Scholar
Krawczyk, D., Bartlett, J., Kantarcioglu, M., Hamlen, K., & Thuraisingham, B. (2013, June). Measuring expertise and bias in cyber security using cognitive and neuroscience approaches. In Intelligence and Security Informatics (ISI), 2013 IEEE International Conference on (pp. 364367). IEEE.CrossRefGoogle Scholar
Kreibig, S. D., Wilhelm, F. H., Roth, W. T., & Gross, J. J. (2007). Cardiovascular, electrodermal, and respiratory response patterns to fear- and sadness-inducing films. Psychophysiology, 44, 787806.CrossRefGoogle ScholarPubMed
Kuan, K. K., Zhong, Y., & Chau, P. Y. (2014). Informational and normative social influence in group-buying: Evidence from self-reported and EEG data. Journal of Management Information Systems, 30(4), 151178.CrossRefGoogle Scholar
Kuhl, J. (1981). Motivational and functional helplessness: The moderating effect of state versus action orientation. Journal of Personality and Social Psychology, 40(1), 155.CrossRefGoogle Scholar
Kühn, S., & Gallinat, J. (2014). Amount of lifetime video gaming is positively associated with entorhinal, hippocampal and occipital volume. Molecular Psychiatry, 19(7), 842847.CrossRefGoogle ScholarPubMed
Kühn, S., Gleich, T., Lorenz, R. C., Lindenberger, U., & Gallinat, J. (2014). Playing Super Mario induces structural brain plasticity: Gray matter changes resulting from training with a commercial video game. Molecular Psychiatry, 19(2), 265271.CrossRefGoogle ScholarPubMed
Kurzban, R., Tooby, J., & Cosmides, L. (2001). Can race be erased? Coalitional computation and social categorization. Proceedings of the National Academy of Sciences, 98(26), 1538715392.CrossRefGoogle ScholarPubMed
Kurzweil, R. (2005). The singularity is near: When humans transcend biology. New York: Viking.Google Scholar
Kurzweil, R. (2012). How to create a mind: The secret of human thought revealed. New York: Viking.Google Scholar
Kuss, D. J. (2013). Internet gaming addiction: Current perspectives. Psychology Research and Behavior Management, 6, 125.CrossRefGoogle ScholarPubMed
Kuss, D. J., & Griffiths, M. D. (2012). Internet and gaming addiction: A systematic literature review of neuroimaging studies. Brain Sciences, 2(3), 347374.CrossRefGoogle ScholarPubMed
Lacey, J. I., (1959). Psychophysiological approaches to the evaluation of psychotherapeutic process and outcome. In Rubenstein, E.A. & Parloff, M.B. (Eds.), Research in psychotherapy (pp. 160208). Washington, DC: American Psychological Association.CrossRefGoogle Scholar
Lallart, E., Lallart, X., & Jouvent, R. (2009). Agency, the sense of presence, and schizophrenia. Cyberpsychology & Behavior, 12(2), 139145.CrossRefGoogle ScholarPubMed
Lalonde, G., Henry, M., Drouin-Germain, A., Nolin, P., & Beauchamp, M. H. (2013). Assessment of executive function in adolescence: A comparison of traditional and virtual reality tools. Journal of Neuroscience Methods, 219, 7682. doi: 10.1016/j.jneumeth.2013.07.005.CrossRefGoogle ScholarPubMed
Lam, L. T. (2014). Internet gaming addiction, problematic use of the Internet, and sleep problems: A systematic review. Current Psychiatry Reports, 16(4), 19.CrossRefGoogle ScholarPubMed
Laming, D. (1992). Analysis of short-term retention: Models for Brown–Peterson experiments. Journal of Experimental Psychology: Learning, Memory, & Cognition, 18, 13421365.Google Scholar
Lang, P. J., Bradley, M. M., & Cuthbert, B. N. (1997). International affective picture system (IAPS): Technical manual and affective ratings. NIMH Center for the Study of Emotion and Attention, 3958.Google Scholar
Lange, C. G. (1885). The mechanism of the emotions. The Classical Psychologist, 672685.Google Scholar
Langhan, T. S. (2008). Simulation training for emergency medicine residents: Time to move forward. CJEM, 10(05), 467469.CrossRefGoogle ScholarPubMed
Lanier, J., & Biocca, F. (1992). An insider’s view of the future of virtual reality. Journal of Communication, 42, 150172.CrossRefGoogle Scholar
Lanius, R. A., Frewen, P. A., Tursich, M., Jetly, R., & McKinnon, M. C. (2015). Restoring large-scale brain networks in PTSD and related disorders: a proposal for neuroscientifically-informed treatment interventions. European Journal of Psychotraumatology, 6.CrossRefGoogle ScholarPubMed
Larson, E. B., Feigon, M., Gagliardo, P., & Dvorkin, A. Y. (2014). Virtual reality and cognitive rehabilitation: A review of current outcome research. NeuroRehabilitation, 34(4), 759772.CrossRefGoogle ScholarPubMed
Lazer, D., Pentland, A. S., Adamic, L., Aral, S., Barabasi, A. L., Brewer, D., … & Jebara, T. (2009). Life in the network: The coming age of computational social science. Science (New York, NY), 323(5915), 721.CrossRefGoogle Scholar
Le Bihan, D., Mangin, J. F., Poupon, C., Clark, C. A., Pappata, S., Molko, N., & Chabriat, H. (2001). Diffusion tensor imaging: Concepts and applications. Journal of Magnetic Resonance Imaging, 13(4), 534546.CrossRefGoogle ScholarPubMed
LeDoux, J., (2003). Synaptic self. New York: Penguin Books.Google Scholar
LeDoux, J. (2012). Rethinking the emotional brain. Neuron, 73(4), 653676.CrossRefGoogle ScholarPubMed
Lee, J. (2012). A mixed-methods study investigating the relationship between media multitasking orientation and grade point average. Doctoral dissertation, University of North Texas. Denton, Texas. Available at http://digital.library.unt.edu/ark:/67531/metadc177221/m1/1/.Google Scholar
Lenartowicz, A., Kalar, D. J., Congdon, E., & Poldrack, R. A. (2010). Towards an ontology of cognitive control. Topics in Cognitive Science, 2(4), 678692.CrossRefGoogle ScholarPubMed
Lessiter, J., Freeman, J., Keogh, E., & Davidoff, J. (2001). A cross-media presence questionnaire: The ITC-Sense of Presence Inventory. Presence, 10(3), 282297.CrossRefGoogle Scholar
Lewis, P., Rezaie, R., Brown, R., Roberts, N., Dunbar, R.I.M. (2011). Ventromedial prefrontal volume predicts understanding of others and social network size. NeuroImage, 57(4), 16241629.CrossRefGoogle ScholarPubMed
Lezak, M.D. (2004). Neuropsychological assessment (4th edn.), New York: Oxford University Press.Google Scholar
Lezak, M. D., Howieson, D. B., & Loring, D. W. (1983). Neuropsychology assessment. New York: Oxford University Press.Google Scholar
Li, B., Friston, K. J., Liu, J., Liu, Y., Zhang, G., Cao, F., … & Hu, D. (2014). Impaired frontal-basal ganglia connectivity in adolescents with Internet addiction. Scientific Reports, 4.CrossRefGoogle Scholar
Li, W., Mai, X., & Liu, C. (2014). The default mode network and social understanding of others: What do brain connectivity studies tell us. Frontiers in Human Neuroscience, 8, 74.CrossRefGoogle ScholarPubMed
Li, R., Polat, U., Makous, W., & Bavelier, D. (2009). Enhancing the contrast sensitivity function through action video game training. Nature Neuroscience, 12, 549551.CrossRefGoogle ScholarPubMed
Li, R., Polat, U., Scalzo, F., Bavelier, D. (2010). Reducing backward masking through action game training. Journal of Vision, 10, 113.CrossRefGoogle ScholarPubMed
Li, W., Li, Y., Yang, W., Zhang, Q., Wei, D., Li, W., … & Qiu, J. (2015). Brain structures and functional connectivity associated with individual differences in Internet tendency in healthy young adults. Neuropsychologia, 70, 134144.CrossRefGoogle ScholarPubMed
Lieberman, M. (2013). Social: Why our brains are wired to connect. New York, NY: Crown.Google Scholar
Lieberman, M. D. (2007). The X-and C-systems. In Harmon-Jones, E. & Winkielman, P. (Eds.), Social neuroscience: Integrating biological and psychological explanations of social behavior (pp. 290315). New York: Guilford Press.Google Scholar
Lieberman, M. D., & Eisenberger, N. I. (2009). Neuroscience. Pains and pleasures of social life. Science, 323, 890891.CrossRefGoogle ScholarPubMed
Lim, M. Y. (2012). Memory models for intelligent social companions. In Human-computer interaction: The agency perspective (pp. 241262). Berlin Heidelberg: Springer.CrossRefGoogle Scholar
Lim, M. Y., Aylett, R., Ho, W. C., Enz, S., & Vargas, P. (2009, January). A socially-aware memory for companion agents. In Intelligent virtual agents (pp. 2026). Berlin Heidelberg: Springer.CrossRefGoogle Scholar
Lin, A., & Vasilyeva, O. (2011). Envisioning the concept of emotions for theory development and testing in information systems research: A study of one positive emotion – enjoyment. In Proceedings of JAIS theory development workshop. Sprouts: Working Papers on Information Systems, 11(155), 11155.Google Scholar
Lin, L. (2009). Breadth-biased versus focused cognitive control in media multitasking behaviors. Proceedings of the National Academy of Sciences, 106(37), 1552115522.CrossRefGoogle ScholarPubMed
Lin, L., Robertson, T., & Lee, J. (2009). Reading performances between novices and experts in different media multitasking environments. Computers in the Schools, 26(3), 169186.CrossRefGoogle Scholar
Lindquist, K. A., Wager, T. D., Kober, H., Bliss-Moreau, E., & Barrett, L. F. (2012). The brain basis of emotion: A meta-analytic review. Behavioral and Brain Sciences, 35(03), 121143.CrossRefGoogle ScholarPubMed
Liotti, M., Woldorff, M. G., Perez, R., & Mayberg, H. S. (2000). An ERP study of the temporal course of the Stroop color-word interference effect. Neuropsychologia, 38(5), 701711.CrossRefGoogle ScholarPubMed
Littel, M., Berg, I., Luijten, M., Rooij, A. J., Keemink, L., & Franken, I. H. (2012). Error processing and response inhibition in excessive computer game players: An event-related potential study. Addiction Biology, 17(5), 934947.CrossRefGoogle ScholarPubMed
Liu, T., & Pelowski, M. (2014). Clarifying the interaction types in two-person neuroscience research. Frontiers in Human Neuroscience, 8.CrossRefGoogle ScholarPubMed
Llorens, R., Noé, E., Ferri, J., & Alcañiz, M. (2015). Videogame-based group therapy to improve self-awareness and social skills after traumatic brain injury. Journal of Neuroengineering and Rehabilitation, 12(1), 37.CrossRefGoogle ScholarPubMed
Logie, R. H., Law, A., Trawley, S., Nissan, J. (2010). Multitasking, working memory and remembering intentions. Psychologica Belgica, 50(3–4), 309326.CrossRefGoogle Scholar
Logie, R. H., Trawley, S., & Law, A. (2011). Multitasking: Multiple, domain-specific cognitive functions in a virtual environment. Memory & Cognition, 39(8), 15611574.CrossRefGoogle Scholar
Loh, K. K., & Kanai, R. (2014). Higher media multi-tasking activity is associated with smaller gray-matter density in the anterior cingulate cortex. PLoS One. 9, e106698.CrossRefGoogle ScholarPubMed
Lomanowska, A. M., & Guitton, M. J. (2012). Spatial proximity to others determines how humans inhabit virtual worlds. Computers in Human Behavior, 28(2), 318323.CrossRefGoogle Scholar
Long, C. J. (1996). Neuropsychological tests: A look at our past and the impact that ecological issues may have on our future. In Sbordone, R. J. & Long, C. J. (Eds.), Ecological validity of neuropsychological testing (pp. 114). Delray Beach, FL: GR Press/St. Lucie Press.Google Scholar
Loomis, J. M. (1992). Distal attribution and presence. Presence: Teleoperators & Virtual Environments, 1(1), 113119.CrossRefGoogle Scholar
Lorenz, R. C., Krüger, J. K., Neumann, B., Schott, B. H., Kaufmann, C., Heinz, A., & Wüstenberg, T. (2013). Cue reactivity and its inhibition in pathological computer game players. Addiction Biology, 18(1), 134146.CrossRefGoogle ScholarPubMed
Luck, S. J., & Kappenman, E. S. (Eds.). (2011). The Oxford handbook of event-related potential components. Oxford University Press.Google Scholar
Lui, K. F., & Wong, A. C. N. (2012). Does media multitasking always hurt? A positive correlation between multitasking and multisensory integration. Psychonomic Bulletin & Review, 19(4), 647653.CrossRefGoogle Scholar
Lysaker, P., Bell, M., & Bean-Goulet, J. (1995). Wisconsin Card Sorting Test and work performance in schizophrenia. Psychiatry Research, 56, 4551.CrossRefGoogle ScholarPubMed
MacDorman, K. F., Green, R. D., Ho, C. C., & Koch, C. T. (2009). Too real for comfort? Uncanny responses to computer generated faces. Computers in Human Behavior, 25(3), 695710.CrossRefGoogle ScholarPubMed
Macedonio, M. F., Parsons, T. D., Digiuseppe, R. A., Weiderhold, B. A., & Rizzo, A. A. (2007). Immersiveness and physiological arousal within panoramic video-based virtual reality. Cyberpsychology & Behavior, 10(4), 508515.CrossRefGoogle ScholarPubMed
Maclean, N., et al. (2002). The concept of patient motivation: A qualitative analysis of stroke professionals’ attitudes. Stroke, 33(2), 444448.CrossRefGoogle ScholarPubMed
Magina, C. A. (1997). Some recent applications of clinical psychophysiology. International Journal of Psychophysiology, 25(1), 16.CrossRefGoogle Scholar
Maillot, P., Perrot, A., & Hartley, A. (2012). Effects of interactive physicalactivity video-game training on physical and cognitive function in older adults. Psychology and Aging, 27(3), 589600.CrossRefGoogle ScholarPubMed
Maister, L., Sebanz, N., Knoblich, G., and Tsakiris, M. (2013). Experiencing ownership over a dark-skinned body reduces implicit racial bias. Cognition, 128, 170178.CrossRefGoogle Scholar
Maister, L., Slater, M., Sanchez-Vives, M. V., and Tsakiris, M. (2015). Changing bodies changes minds: Owning another body affects social cognition. Trends in Cognitive Sciences, 19, 612.CrossRefGoogle ScholarPubMed
Mak, J. N., & Wolpaw, J. R. (2009). Clinical applications of brain-computer interfaces: Current state and future prospects. IEEE Reviews in Biomedical Engineering, 2, 187199.CrossRefGoogle ScholarPubMed
Makatura, T. J., Lam, C. S., Leahy, B. J., Castillo, M. T., & Kalpakjian, C. Z. (1999). Standardized memory tests and the appraisal of everyday memory. Brain Injury, 13(5), 355367.Google ScholarPubMed
Malhotra, N. K., Kim, S. S., & Agarwal, J. (2004). Internet users’ information privacy concerns (IUIPC): The construct, the scale, and a causal model. Information Systems Research, 15(4), 336355.CrossRefGoogle Scholar
Malinen, S., Vartiainen, N., Hlushchuk, Y., Koskinen, M., Ramkumar, P., Forss, N., … & Hari, R. (2010). Aberrant temporal and spatial brain activity during rest in patients with chronic pain. Proceedings of the National Academy of Sciences, 107(14), 64936497.CrossRefGoogle ScholarPubMed
Malloy, K.M., & Milling, L.S. (2010). The effectiveness of virtual reality distraction for pain reduction: A systematic review. Clinical Psychology Review, 30(8), 10111018.CrossRefGoogle ScholarPubMed
Manchester, D., Priestley, N., and Howard, J. (2004). The assessment of executive functions: Coming out of the office. Brain Injury, 18, 10671081.CrossRefGoogle ScholarPubMed
Manes, F., Sahakian, B., Clark, L., Rogers, R., Antoun, N., Aitken, M., & Robbins, T. (2002). Decision-making processes following damage to the prefrontal cortex. Brain, 125(3), 624639.CrossRefGoogle ScholarPubMed
Mannino, M., & Bressler, S. L. (2015). Foundational perspectives on causality in large-scale brain networks. Physics of Life Reviews, 15, 107123.CrossRefGoogle ScholarPubMed
Mantovani, G., & Riva, G. (1999). “Real” presence: How different ontologies generate different criteria for presence, telepresence, and virtual presence. Presence: Teleoperators and Virtual Environments, 8(5), 540550.CrossRefGoogle Scholar
Mapou, R. L., (1988). Testing to detect brain damage: An alternative to what may no longer be useful. Journal of Clinical and Experimental Neuropsychology, 10(2), 1988.CrossRefGoogle ScholarPubMed
Marcotte, T. D., & Grant, I. (Eds.). (2009). Neuropsychology of everyday functioning. New York: Guilford Press.Google Scholar
Maria, K. A., & Zitar, R. A. (2007). Emotional agents: A modeling and an application. Information and Software Technology, 49(7), 695716.CrossRefGoogle Scholar
Mars, R. B., Neubert, F. X., Noonan, M. P., Sallet, J., Toni, I., & Rushworth, M. F. (2012). On the relationship between the “default mode network” and the “social brain.” Frontiers in Human Neuroscience, 6.CrossRefGoogle Scholar
Marsella, S., Gratch, J., & Petta, P. (2010). Computational models of emotion. In A blueprint for affective computing – A sourcebook and manual (pp. 2146), Oxford University Press.Google Scholar
Marston, H. R., & Smith, S. T. (2012). Interactive videogame technologies to support independence in the elderly: A narrative review. GAMES FOR HEALTH: Research, Development, and Clinical Applications, 1(2), 139152.CrossRefGoogle ScholarPubMed
Marusan, M., Kulistak, P., & Zara, J. (2006). Virtual reality in neurorehabilitation: Mental rotation. Proceedings of the third Central European Multimedia and Virtual Reality Conference (pp. 7783). Veszprém: Pannonian University Press.Google Scholar
Maskey, M., Lowry, J., Rodgers, J., McConachie, H., & Parr, J. R. (2014). Reducing specific phobia/fear in young people with autism spectrum disorders (ASDs) through a virtual reality environment intervention. PLoS ONE, 9(7), e100374. doi: 10.1371/journal.pone.0100374.CrossRefGoogle ScholarPubMed
Masmoudi, S., Dai, D. Y., & Naceur, A. (Eds.). (2012). Attention, representation, and human performance: Integration of cognition, emotion, and motivation. New York: Psychology Press.CrossRefGoogle Scholar
Massar, S. A. A., Kenemans, J. L., & Schutter, D. J. L. G. (2013). Resting-state EEG theta activity and risk learning: Sensitivity to reward or punishment? International Journal of Psychophysiology.CrossRefGoogle Scholar
Massar, S. A. A., Rossi, V., Schutter, D. J. L. G., & Kenemans, J. L. (2012). Baseline EEG theta/beta ratio and punishment sensitivity as biomarkers for feedback-related negativity (FRN) and risk-taking. Clinical Neurophysiology, 123(10), 19581965.CrossRefGoogle ScholarPubMed
Masur, E. F., & Flynn, V. (2008). Infant and mother-infant play and the presence of television. Journal of Applied Developmental Psychology, 29, 7683.CrossRefGoogle Scholar
Matheis, R. J., Schultheis, M. T., Tiersky, L. A., DeLuca, J., Millis, S. R., & Rizzo, A. (2007). Is learning and memory different in a virtual environment? Clinical Neuropsychology, 21, 146161.CrossRefGoogle Scholar
Matsuda, G., & Hiraki, K. (2006). Sustained decrease in oxygenated hemoglobin during video games in the dorsal prefrontal cortex: A NIRS study of children. Neuroimage, 29(3), 706711.CrossRefGoogle ScholarPubMed
McCaul, K.D., Malott, J.M. (1984). Distraction and coping with pain. Psychological Bulletin, 95(3), 516533.CrossRefGoogle ScholarPubMed
McCracken, L.A., & Eccleston, C. (2003). Coping or acceptance: What to do about chronic pain? Pain, 105(1–2), 197204.CrossRefGoogle ScholarPubMed
McDougall, S., & House, B. (2012). Brain training in older adults: Evidence of transfer to memory span performance and pseudo-Matthew effects. Neuropsychology, Development, and Cognition. Section B, Aging, Neuropsychology and Cognition, 19(1–2), 195221.CrossRefGoogle ScholarPubMed
McDuff, D., Kaliouby, R., Senechal, T., Amr, M., Cohn, J., & Picard, R. (2013). Affectiva-mit facial expression dataset (am-fed): Naturalistic and spontaneous facial expressions collected. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops (pp. 881888).CrossRefGoogle Scholar
McEneaney, J. E. (2013). Agency effects in human–computer interaction. International Journal of Human-Computer Interaction, 29(12), 798813.CrossRefGoogle Scholar
McGeorge, P., Phillips, L. H., Crawford, J. R., Garden, S. E., Sala, S. D., and Milne, A. B. (2001). Using virtual environments in the assessment of executive dysfunction. Presence Teleoperators Virtual Environ., 10, 375383.CrossRefGoogle Scholar
McGurk, S. R., & Mueser, K. T. (2006). Cognitive and clinical predictors of work outcomes in clients with schizophrenia receiving supported employment services: 4-year follow-up. Administration and Policy in Mental Health and Mental Health Services Research, 33(5), 598606.CrossRefGoogle ScholarPubMed
McLuhan, M. (1964). Understanding media: The extensions of man. New York: McGraw Hill.Google Scholar
McMahan, T., Parberry, I., & Parsons, T. D. (2015a). Modality specific assessment of video game player’s experience using the emotiv. Entertainment Computing, 7, 16.CrossRefGoogle Scholar
McMahan, T., Parberry, I., & Parsons, T.D. (2015b). Evaluating player task engagement and arousal using electroencephalography. Procedia Manufacturing, 3, 23032310.CrossRefGoogle Scholar
McMahan, T., Parberry, I., & Parsons, T.D. (2015c). Evaluating electroencephalography engagement indices during video game play. Proceedings of the Foundations of Digital Games Conference, June 22 – June 25, 2015.Google Scholar
Meacham, J. A. (1982). A note on remembering to execute planned actions. Journal of Applied Developmental Psychology, 3, 121133.CrossRefGoogle Scholar
Meehan, M., Insko, B., Whitton, M. & Brooks, F.P. (2002). Physiological measures of presence in stressful virtual environments. Acm Transactions on Graphics, 21, 645652.CrossRefGoogle Scholar
Meehan, M., Razzaque, S., Insko, B., Whitton, M., & Jr Brooks, F. P. (2005). Review of four studies on the use of physiological reaction as a measure of presence in stressful virtual environments. Applied Psychophysiology and Biofeedback, 30(3), 239258.CrossRefGoogle ScholarPubMed
Mega, M. S., & Cummings, J. L. (1994). Frontal–subcortical circuits and neuropsychiatric disorders. Journal of Neuropsychiatry and Clinical Neurosciences, 6(4), 358370.Google ScholarPubMed
Mehler, B., Reimer, B., Coughlin, J.F., & Dusek, J.A. (2009). Impact of incremental increases in cognitive workload on physiological arousal and performance in young adult drivers. Journal of the Transportation Research Board, 2138, 612.CrossRefGoogle Scholar
Meikle, S. R., Beekman, F. J., & Rose, S. E. (2006). Complementary molecular imaging technologies: High resolution SPECT, PET and MRI. Drug Discovery Today: Technologies, 3(2), 187194.CrossRefGoogle ScholarPubMed
Menon, V. (2011). Large-scale brain networks and psychopathology: A unifying triple network model. Trends in Cognitive Sciences, 15(10), 483506.CrossRefGoogle ScholarPubMed
Menon, V., & Uddin, L. Q. (2010). Saliency, switching, attention and control: A network model of insula function. Brain Structure & Function, 214, 655667.CrossRefGoogle ScholarPubMed
Meshi, D., Morawetz, C., & Heekeren, H. R. (2013). Nucleus accumbens response to gains in reputation for the self relative to gains for others predicts social media use. Frontiers in Human Neuroscience, 7.CrossRefGoogle ScholarPubMed
Meshi, D., Tamir, D. I., & Heekeren, H. R. (2015). The emerging neuroscience of social media. Trends in Cognitive Sciences, 19(12), 771782.CrossRefGoogle ScholarPubMed
Mesulam, M. M. (1985). Patterns in behavioral neuroanatomy: Association areas, the limbic system, and hemispheric specialization. In Behavioral neurology (pp. 170). Philadelphia: Davis.Google Scholar
Mesulam, M. M. (1990). Large-scale neurocognitive networks and distributed processing for attention, language, and memory. Annals of Neurology, 28, 597613.CrossRefGoogle ScholarPubMed
Mesulam, M. M. (2000). Behavioral neuroanatomy: Large-scale networks, association cortex, frontal syndromes, the limbic system, and hemispheric specializations. In Mesulam, M. M. (Ed.), Principles of behavioral and cognitive neurology (2nd Edition) (pp. 1120). New York: Oxford University Press.CrossRefGoogle Scholar
Meyer, D. E., & Kieras, D. E. (1997). A computational theory of executive cognitive processes and multiple-task performance: Part 1. Basic mechanisms. Psychological Review, 104, 365.CrossRefGoogle ScholarPubMed
Meyerbröker, K., & Emmelkamp, P. M. (2011). Virtual reality exposure therapy for anxiety disorders: The state of the art. In Advanced computational intelligence paradigms in healthcare 6. Virtual reality in psychotherapy, rehabilitation, and assessment (pp. 4762). Berlin, Heidelberg; Springer.Google Scholar
Middendorf, M., McMillan, G., Calhoun, G., & Jones, K. S. (2000). Brain-computer interfaces based on the steady-state visual-evoked response. IEEE Transactions on Rehabilitation Engineering, 8, 211214.CrossRefGoogle ScholarPubMed
Millan, J. D., Rupp, R., Muller-Putz, G. R., Murray-Smith, R., Giugliemma, C., Tangermann, M., … & Mattia, D. (2010). Combining brain-computer interfaces and assistive technologies: State-of-the-art and challenges. Frontiers in Neuroscience, 4, 10.Google ScholarPubMed
Miller, D. C., & Thorpe, J. A. (1995). SIMNET: The advent of simulator networking. Proceedings of the IEEE, 83(8), 11141123.CrossRefGoogle Scholar
Miller, E., Seppa, C., Kittur, A., Sabb, F., & Poldrack, R. A. (2010). The cognitive atlas: Employing interaction design processes to facilitate collaborative ontology creation. Nature Proceedings. http://dx.doi.org/10.1038/npre.2010.4532.1.CrossRefGoogle Scholar
Miller, G. A. (2003). The cognitive revolution: A historical perspective. Trends in Cognitive Sciences, 7(3), 141144.CrossRefGoogle ScholarPubMed
Mills, K. L. (2014). Effects of Internet use on the adolescent brain: Despite popular claims, experimental evidence remains scarce. Trends in Cognitive Sciences, 18(8), 385387.CrossRefGoogle ScholarPubMed
Milner, B. (1963). Effects of different brain lesions on card sorting: The role of the frontal lobes. Archives of Neurology, 9(1), 90100.CrossRefGoogle Scholar
Minas, R. K., Potter, R. F., Dennis, A. R., Bartelt, V., & Bae, S. (2014). Putting on the thinking cap: Using neuroIS to understand information processing biases in virtual teams. Journal of Management Information Systems, 30(4), 4982.CrossRefGoogle Scholar
Minear, M., Brasher, F., McCurdy, M., Lewis, J., & Younggren, A. (2013). Working memory, fluid intelligence, and impulsiveness in heavy media multitaskers. Psychonomic Bulletin & Review, 20(6), 12741281.CrossRefGoogle ScholarPubMed
Mishra, J., Zinni, M., Bavelier, D., & Hillyard, S. A. (2011). Neural basis of superior performance of action videogame players in an attention-demanding task. The Journal of Neuroscience, 31(3), 992998.CrossRefGoogle Scholar
Mitrushina, M., Boone, K. B., Razani, J., & D’Elia, L. F. (2005). Handbook of normative data for neuropsychological assessment., 2nd edition. New York: Oxford University Press.Google Scholar
Montag, C., & Reuter, M. (Eds.). (2015). Internet addiction: Neuroscientific approaches and therapeutical interventions. Springer.CrossRefGoogle Scholar
Montag, C., Weber, B., Trautner, P., Newport, B., Markett, S., Walter, N. T., … & Reuter, M. (2012). Does excessive play of violent first-person-shooter-video-games dampen brain activity in response to emotional stimuli? Biological Psychology, 89(1), 107111.CrossRefGoogle ScholarPubMed
Montague, P. R., Berns, G. S., Cohen, J. D., McClure, S. M., Pagnoni, G., Dhamala, M., et al. (2002). Hyperscanning: Simultaneous fMRI during linked social interactions. Neuroimage, 16, 11591164.CrossRefGoogle ScholarPubMed
Montgomery, C., Ashmore, K., & Jansari, A. (2011). The effects of a modest dose of alcohol on executive functioning and prospective memory. Human Psychopharmacology, 26, 208215.CrossRefGoogle ScholarPubMed
Moor, B. G., Crone, E. A., & van der Molen, M. W. (2010). The heartbreak of social rejection heart rate deceleration in response to unexpected peer rejection. Psychological Science, 21, 13261333.CrossRefGoogle Scholar
Mori, M. (1970). The valley of eeriness (Japanese). Energy, 7(4), 3335.Google Scholar
Mori, M., MacDorman, K. F., & Kageki, N. (2012). The uncanny valley [from the field]. Robotics & Automation Magazine, IEEE, 19(2), 98100.Google Scholar
Morris, J. S., Frith, C. D., Perrett, D. I., Rowland, D., Young, A. W., Calder, A. J., et al. (1996). A differential neural response in the human amygdala to fearful and happy facial expressions. Nature, 383, 812815.CrossRefGoogle ScholarPubMed
Morris, R. G., Kotitsa, M., Bramham, J., Brooks, B. M., & Rose, F. D. (2002). Virtual reality investigation of strategy formation, rule breaking and prospective memory in patients with focal prefrontal neurosurgical lesions. In Proceedings of the 4th International Conference on Disability, Virtual Reality and Associated Technologies.Google Scholar
Mühlberger, A., Bülthoff, H., Wiedemann, G., & Pauli, P. (2007). Virtual reality for the psychophysiological assessment of phobic fear: Responses during virtual tunnel driving. Psychological Assessment, 19, 340346. doi: 10.1037/1040-3590.19.3.340.CrossRefGoogle ScholarPubMed
Mühlberger, A., Wieser, M. J., & Pauli, P. (2008). Darkness-enhanced startle responses in ecologically valid environments: A virtual tunnel driving experiment. Biological Psychology, 77, 4752.CrossRefGoogle ScholarPubMed
Muir, B.M. (1988). Trust between humans and machines, and the design of decision aids. In Hollnagel, E., Mancini, G., & Woods, D. D. (Eds.), Cognitive engineering in complex dynamic worlds (pp. 7183). London. UK: Academic.Google Scholar
Murphy, R. R., Lisetti, C. L., Tardif, R., Irish, L., & Gage, A. (2002). Emotion-based control of cooperating heterogeneous mobile robots. Robotics and Automation, IEEE Transactions on, 18(5), 744757.CrossRefGoogle Scholar
Murthy, V. N., & Fetz, E. E. (1992). Coherent 25- to 35-Hz oscillations in the sensorimotor cortex of awake behaving monkeys. Proceedings of the National Academy of Sciences, USA, 89, 56705674.CrossRefGoogle ScholarPubMed
Muusses, L. D., Finkenauer, C., Kerkhof, P., & Righetti, F. (2013). Partner effects of compulsive Internet use: A self-control account. Communication Research, 0093650212469545.Google Scholar
Nacke, L. E. (2013). An introduction to physiological player metrics for evaluating games. In Game analytics (pp. 585619). London: Springer.CrossRefGoogle Scholar
Nacke, L. E., Grimshaw, M. N., & Lindley, C. A. (2010). More than a feeling: Measurement of sonic user experience and psychophysiology in a first-person shooter game. Interacting with Computers, 22 (5), 336343. doi: 10.1016/j.intcom.2010.04.005.CrossRefGoogle Scholar
Nacke, L. E., Stellmach, S., & Lindley, C. A. (2011). Electroencephalographic assessment of player experience a pilot study in affective ludology. Simulation & Gaming, 42(5), 632655.CrossRefGoogle Scholar
Nacke, L., & Lindley, C. A. (2008a). Flow and immersion in first-person shooters: Measuring the player’s gameplay experience. In Proceedings of the 2008 conference on future play: Research, Play, Share (Future Play ’08) (pp. 8188). Toronto: ACM. doi: 10.1145/1496984.1496998.CrossRefGoogle Scholar
Nacke, L., Lindley, C., & Stellmach, S. (2008b). Log who’s playing: Psychophysiological game analysis made easy through event logging. In Markopoulos, P., Ruyter, B. D., Ijsselsteijn, W., & Rowland, D. (Eds.), Proceedings of Fun and Games, Second International Conference (Lecture Notes in Computer Science) (pp. 150157). Dordrecht: Springer. doi: 10.1007/978-3-540-88322-7_15.Google Scholar
Naglieri, J. A., & Das, J. P. (1987). Construct and criterion-related validity of planning, simultaneous, and successive cognitive processing tasks. Journal of Psychoeducational Assessment, 4, 353363.CrossRefGoogle Scholar
Nahab, F. B., Kundu, P., Gallea, C., Kakareka, J., Pursley, R., Pohida, T., … & Hallett, M. (2011). The neural processes underlying self-agency. Cerebral Cortex, 21(1), 4855.CrossRefGoogle ScholarPubMed
Navarrete, C. D., McDonald, M. M., Mott, M. L., & Asher, B. (2012). Virtual morality: Emotion and action in a simulated three-dimensional “trolley problem.” Emotion, 12(2), 364.CrossRefGoogle Scholar
Neisser, U. (1978). Memory: What are the important questions? In Gruneberg, M. M., Morris, P. E., & Sykes, R. N. (Eds.), Practical aspects of memory (pp. 324). San Diego, CA: Academic Press.Google Scholar
Neisser, U. (1980). On “social knowing.” Personality and Social Psychology Bulletin, 6, 601605.CrossRefGoogle Scholar
Neisser, U. (1982). Memory: What are the important questions? In Neisser, U. (Ed.), Memory observed: Remembering in natural contexts (pp. 319). San Francisco, CA: Freeman.Google Scholar
Neisser, U. (1985). Toward an ecologically oriented cognitive science. In Shlechter, T. M. & Toglia, M. P. (Eds.), New directions in cognitive science (pp. 1732). Norwood, New Jersey: Ablex.Google Scholar
Nelson, R. A., & Strachan, I. (2009). Action and puzzle video games prime different speed/accuracy tradeoffs. Perception 38, 16781687. doi: 10.1068/p6324.CrossRefGoogle ScholarPubMed
Nelson, S. M., Dosenbach, N. U. F., Cohen, A. L., Wheeler, M. E., Schlaggar, B. L., & Petersen, S. E. (2010). Role of the anterior insula in task-level control and focal attention. Brain Structure and Function, 214, 669680.doi:10.1007/s00429-010-0260-2.CrossRefGoogle ScholarPubMed
Newman-Norlund, R. D., Bosga, J., Meulenbroek, R. G., & Bekkering, H. (2008). Anatomical substrates of cooperative joint-action in a continuous motor task: Virtual lifting and balancing. Neuroimage, 41, 169177.CrossRefGoogle Scholar
Nicholas, C. (2008). Is Google making us stupid? The Atlantic Monthly, July-August.Google Scholar
Nicholas, D., Huntington, P., & Jamali, H. (2008). In Nicholas, D. & Rowlands, I. (Eds.), The virtual scholar in digital consumers (pp. 113158), London: Facet Publishing.CrossRefGoogle Scholar
Nigg, J. T. (2003). Response inhibition and disruptive behaviors. Annals Of the New York Academy Of Sciences, 1008, 170182.CrossRefGoogle ScholarPubMed
Nigg, J. T. (2006). Temperament and developmental psychopathology. Journal of Child Psychology & Psychiatry, 47, 395422.CrossRefGoogle ScholarPubMed
Nigg, J.T. (2000). On inhibition/disinhibition in developmental psychopathology: Views from cognitive and personality psychology and a working inhibition taxonomy. Psychological Bulletin, 126, 220246.CrossRefGoogle Scholar
Noonan, M. P., Kolling, N., Walton, M. E., & Rushworth, M. F. S. (2012). Re-evaluating the role of the orbitofrontal cortex in reward and reinforcement. European Journal of Neuroscience, 35(7), 9971010.CrossRefGoogle ScholarPubMed
Norman, K. L. (2008). Cyberpsychology: An introduction to human-computer interaction (Vol. 1). New York, NY: Cambridge University Press.Google Scholar
Normand, J. M., Giannopoulos, E., Spanlang, B., & Slater, M. (2011). Multisensory stimulation can induce an illusion of larger belly size in immersive virtual reality. PLoS One, 6:e16128. doi: 10.1371/journal.pone.0016128.CrossRefGoogle ScholarPubMed
Northoff, G, Grimm, S, Boeker, H, Schmidt, C, Bermpohl, F, Heinzel, A, et al. (2006). Affective judgment and beneficial decision making: Ventromedial prefrontal activity correlates with performance in the Iowa Gambling Task. Human Brain Mapping, 27, 572587.CrossRefGoogle ScholarPubMed
Nouchi, R., Taki, Y., Takeuchi, H., Hashizume, H., Akitsuki, Y., Shigemune, Y., et al. (2012). Brain training game improves executive functions and processing speed in the elderly: A randomized controlled trial. PLoS One, 7(1), e29676.CrossRefGoogle ScholarPubMed
Nouchi, R., Taki, Y., Takeuchi, H., Hashizume, H., Nozawa, T., Kambara, T., et al. (2013). Brain training game boosts executive functions, working memory and processing speed in the young adults: A randomized controlled trial. PLoS One, 8(2), e55518.CrossRefGoogle Scholar
Novak, D., Mihelj, M., & Munih, M. (2012). A survey of methods for data fusion and system adaptation using autonomic nervous system responses in physiological computing. Interacting with Computers, 24(3), 154172.CrossRefGoogle Scholar
Nyhus, E., & Barceló, F. (2009). The Wisconsin Card Sorting Test and the cognitive assessment of prefrontal executive functions: A critical update. Brain and Cognition, 71(3), 437451.CrossRefGoogle ScholarPubMed
Obdržálek, Š., Kurillo, G., Ofli, F., Bajcsy, R., Seto, E., Jimison, H., & Pavel, M. (2012). Accuracy and robustness of Kinect pose estimation in the context of coaching of elderly population. In Proceedings of the 34th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (pp. 11881193).CrossRefGoogle Scholar
Ochsner, K. N. (2004). Current directions in social cognitive neuroscience. Current Opinion in Neurobiology, 14(2), 254258.CrossRefGoogle ScholarPubMed
Ochsner, K. N., & Lieberman, M. D. (2001). The emergence of social cognitive neuroscience. American Psychologist, 56, 717734.CrossRefGoogle ScholarPubMed
Oei, A. C., & Patterson, M. D. (2013). Enhancing cognition with video games: A multiple game training study. PLoS One, 8(3), e58546.CrossRefGoogle ScholarPubMed
Ohman, A. (1992). Orienting and attention: Preferred preattentive processing of potentially phobic stimuli. In Campbell, B. A., Hayne, H., & Richardson, R. (Eds.), Attention and information processing in infants and adults: Perspectives from human and animal research, pp. 263–95. Hillsdale, NJ: Erlbaum.Google Scholar
Öhman, A., & Soares, J. J. (1994). “Unconscious anxiety”: phobic responses to masked stimuli. Journal of Abnormal Psychology, 103(2), 231.CrossRefGoogle ScholarPubMed
Okagaki, L., & Frensch, P. A. (1994). Effects of video game playing on measures of spatial performance: Gender effects in late adolescence. Journal of Applied Developmental Psychology, 15, 3358.CrossRefGoogle Scholar
O’Loughlin, E. K., Dugas, E. N., Sabiston, C. M., & O’Loughlin, J. L. (2012). Prevalence and correlates of exergaming in youth. Pediatrics, 130, 806814.CrossRefGoogle ScholarPubMed
Ophir, E., Nass, C., & Wagner, A. D. (2009). Cognitive control in media multitaskers. Proceedings of the National Academy of Sciences of the United States of America, 106(37), 1558315587. doi:10.1073/pnas.0903620106.CrossRefGoogle ScholarPubMed
Opris, D., Pintea, S., García-Palacios, A., Botella, C., Szamosközi, S., & David, D. (2012). Virtual reality exposure therapy in anxiety disorders: A quantitative meta-analysis. Depression and Anxiety, 29, 8593. doi:10.1002/da.20910 PMID:22065564.CrossRefGoogle ScholarPubMed
Ord, J. S., Greve, K. W., Bianchini, K. J., & Aguerrevere, L. E. (2010). Executive dysfunction in traumatic brain injury: The effects of injury severity and effort of the Wisconsin card sorting test. J. Clin. Exp. Neuropsychol., 32, 132140.CrossRefGoogle ScholarPubMed
O’Reilly, T. (2007). What is Web 2.0: Design patterns and business models for the next generation of software. Communications & Strategies, (1), 17.Google Scholar
Orne, M. T., & Whitehouse, W. G. (2000). Relaxation techniques. Encyclopedia of Stress, 3, 341348.Google Scholar
Otto, T., Zijlstra, F. R., & Goebel, R. (2014). Neural correlates of mental effort evaluation – involvement of structures related to self-awareness. Social Cognitive and Affective Neuroscience, 9(3), 307315.CrossRefGoogle ScholarPubMed
Owens, M. E., & Beidel, D. C. (2014). Can virtual reality effectively elicit distress associated with social anxiety disorder?. Journal of Psychopathology and Behavioral Assessment, 37(2), 296305.CrossRefGoogle Scholar
Pan, X., & Slater, M. (2011). Confronting a moral dilemma in virtual reality: A pilot study. In Proceedings of the 25th BCS Conference on Human-Computer Interaction (pp. 4651). Swinton: British Computer Society.Google Scholar
Panksepp, J. (1998). Affective neuroscience. Oxford: Oxford University Press.CrossRefGoogle Scholar
Panksepp, J. (2005). On the embodied neural nature of core emotional affects. Journal of Consciousness Studies, 12, 158184.Google Scholar
Panksepp, J. (2006). The core emotional systems of the mammalian brain: The fundamental substrates of human emotions. In Corrigall, J., Payne, H., & Wilkinson, H., (Eds.), About a body: Working with the embodied mind in psychotherapy, (pp. 1432). London: Routledge.Google Scholar
Panksepp, J. (2007). Affective consciousness. In Velmans, M. & Schneider, S. (Eds.), The Blackwell companion to consciousness (pp. 114129). Malden, MA: Wiley-Blackwell.CrossRefGoogle Scholar
Panksepp, J. (2009b). Brain emotional systems and qualities of mental life: From animal models of affect to implications for psychotherapeutics. In Fosha, D., Siegel, D. J., & Solomon, M. F. (Eds.), The healing power of emotion: Affective neuroscience, development, and clinical practice. New York: W. W. Norton.Google Scholar
Panksepp, J. (2009). Primary process affects and brain oxytocin. Biological Psychiatry, 65, 725727. doi: 10.1016/j.biopsych.2009.02.004.CrossRefGoogle ScholarPubMed
Panksepp, J. (2010). Affective neuroscience of the emotional brainmind: Evolutionary perspectives and implications for understanding depression. Dialogues in Clinical Neuroscience, 12, 533545.CrossRefGoogle ScholarPubMed
Parasuraman, R., & Rizzo, M. (Eds.) (2006). Neuroergonomics: The brain at work. Oxford University Press.CrossRefGoogle Scholar
Parasuraman, R., & Wilson, G. F. (2008). Putting the brain to work: Neuroergonomics past, present, and future. Human Factors: The Journal of the Human Factors and Ergonomics Society, 50(3), 468474.CrossRefGoogle ScholarPubMed
Pardo, J. V., Pardo, P. J., Janer, K. W., & Raichle, M. E. (1990). The anterior cingulate cortex mediates processing selection in the Stroop attentional conflict paradigm. Proceedings of the National Academy of Sciences, 87(1), 256259.CrossRefGoogle ScholarPubMed
Park, H. S., Kim, S. H., Bang, S. A., Yoon, E. J., Cho, S. S., & Kim, S. E. (2010). Altered regional cerebral glucose metabolism in Internet game overusers: A 18F-fluorodeoxyglucose positron emission tomography study. CNS Spectrums, 15(3), 159166.CrossRefGoogle ScholarPubMed
Parkinson, B. (2014). Emotions in interpersonal life: Computer mediation, modeling, and simulation. The Oxford handbook of affective computing (pp. 68).Google Scholar
Parsey, C. M., & Schmitter-Edgecombe, M. (2013). Applications of technology in neuropsychological assessment. The Clinical Neuropsychologist, 27(8), 13281361.CrossRefGoogle ScholarPubMed
Parsons, S., & Cobb, S. (2014). Reflections on the role of the “users”: challenges in a multi-disciplinary context of learner-centred design for children on the autism spectrum. International Journal of Research & Method in Education, 37(4), 421441.CrossRefGoogle Scholar
Parsons, T. D. (2012). Virtual simulations and the Second Life metaverse: Paradigm shift in neuropsychological assessment. In Zagalo, V., Morgado, T., & Boa-Ventura, A. (Eds.), Virtual worlds, Second Life and metaverse platforms: New communication and identity paradigms (pp. 234250). Hershey: IGI Global.CrossRefGoogle Scholar
Parsons, T. D. (2015). Virtual reality for enhanced ecological validity and experimental control in the clinical, affective and social neurosciences. Frontiers in Human Neuroscience, 9, 660.CrossRefGoogle ScholarPubMed
Parsons, T. D. (2016). Clinical neuropsychology and technology: What’s new and how we can use it. New York: Springer Press.CrossRefGoogle Scholar
Parsons, T. D., Bowerly, T., Buckwalter, J. G., & Rizzo, A. A. (2007). A controlled clinical comparison of attention performance in children with ADHD in a virtual reality classroom compared to standard neuropsychological methods. Child Neuropsychology, 13, 363381.CrossRefGoogle Scholar
Parsons, T. D., & Carlew, A.R. (2016). Bimodal virtual reality Stroop for assessing distractor inhibition in autism spectrum disorders. Journal of Autism and Developmental Disorders, 46(4), 12551267.CrossRefGoogle ScholarPubMed
Parsons, T. D., Carlew, A. R., Magtoto, J., & Stonecipher, K. (2015). The potential of function-led virtual environments for ecologically valid measures of executive function in experimental and clinical neuropsychology. Neuropsychological Rehabilitation, 131.Google Scholar
Parsons, T. D., & Courtney, C. (2011). Neurocognitive and psychophysiological interfaces for adaptive virtual environments. In Röcker, C. & Ziefle, M. (Eds.), Human centered design of e-health technologies (pp. 208233). Hershey: IGI Global.CrossRefGoogle Scholar
Parsons, T. D., & Courtney, C. (2014). An initial validation of the Virtual Reality Paced Auditory Serial Addition Test in a college sample. Journal of Neuroscience Methods, 222, 1523.CrossRefGoogle Scholar
Parsons, T. D., & Courtney, C. (in press). Interactions between threat and executive control in a virtual reality Stroop task. IEEE Transactions on Affective Computing.Google Scholar
Parsons, T. D., Courtney, C., Arizmendi, B., & Dawson, M. (2011). Virtual Reality Stroop Task for neurocognitive assessment. Studies in Health Technology and Informatics, 143, 433439.Google Scholar
Parsons, T. D., Courtney, C., Cosand, L., Iyer, A., Rizzo, A. A., & Oie, K. (2009b). Assessment of psychophysiological differences of West Point cadets and civilian controls immersed within a virtual environment. Lecture Notes in Artificial Intelligence, 5638, 514523.Google Scholar
Parsons, T. D., Courtney, C., & Dawson, M. (2013). Virtual Reality Stroop Task for assessment of supervisory attentional processing. Journal of Clinical and Experimental Neuropsychology, 35, 812826.CrossRefGoogle ScholarPubMed
Parsons, T. D., Courtney, C., Dawson, M., Rizzo, A., & Arizmendi, B. (2013). Visuospatial processing and learning effects in virtual reality based mental rotation and navigational tasks. Lecture Notes in Artificial Intelligence, 8019, 7583.Google Scholar
Parsons, T. D., Courtney, C., Rizzo, A. A., Edwards, J., & Reger, G. (2012). Virtual reality paced serial assessment tests for neuropsychological assessment of a military cohort. Studies in Health Technology and Informatics, 173, 331337.Google ScholarPubMed
Parsons, T. D., Iyer, A., Cosand, L., Courtney, C., & Rizzo, A. A. (2009a). Neurocognitive and psychophysiological analysis of human performance within virtual reality environments. Studies in Health Technology and Informatics, 142, 247252.Google ScholarPubMed
Parsons, T. D., McPherson, S., & Interrante, V. (2013). Enhancing neurocognitive assessment using immersive virtual reality. Proceedings of the 17th IEEE Virtual Reality Conference: Workshop on Virtual and Augmented Assistive Technology (VAAT) (pp. 17).Google Scholar
Parsons, T. D., & Phillips, A. (2016). Virtual reality for psychological assessment in clinical practice. Practice Innovations, 1, 197217.CrossRefGoogle Scholar
Parsons, T. D., & Reinebold, J. (2012). Adaptive virtual environments for neuropsychological assessment in serious games. IEEE Transactions on Consumer Electronics, 58, 197204.CrossRefGoogle Scholar
Parsons, T. D., & Rizzo, A. A. (2008a). Affective outcomes of virtual reality exposure therapy for anxiety and specific phobias: A meta-analysis. Journal of Behavior Therapy and Experimental Psychiatry, 39, 250261.CrossRefGoogle ScholarPubMed
Parsons, T. D., & Rizzo, A. A. (2008b). Initial validation of a virtual environment for assessment of memory functioning: Virtual reality cognitive performance assessment test. Cyberpsychology and Behavior, 11, 1725.CrossRefGoogle ScholarPubMed
Parsons, T. D., & Rizzo, A. A. (2008c). Neuropsychological assessment of attentional processing using virtual reality. Annual Review of CyberTherapy and Telemedicine, 6, 2328.Google Scholar
Parsons, T. D., Rizzo, A. A., & Buckwalter, J. G. (2004). Backpropagation and regression: comparative utility for neuropsychologists. Journal of Clinical and Experimental Neuropsychology, 26, 95104.CrossRefGoogle ScholarPubMed
Parsons, T. D., Rizzo, A. A., Courtney, C., & Dawson, M. (2012). Psychophysiology to assess impact of varying levels of simulation fidelity in a threat environment. Advances in Human-Computer Interaction, 5, 19.CrossRefGoogle Scholar
Parsons, T. D., Rizzo, A. A., Rogers, S. A., & York, P. (2009a). Virtual reality in pediatric rehabilitation: A review. Developmental Neurorehabilitation, 12, 224238.CrossRefGoogle Scholar
Parsons, T. D., & Trost, Z. (2014). Virtual reality graded exposure therapy as treatment for pain-related fear and disability in chronic pain. In Ma, M., (Ed.), Virtual and augmented reality in healthcare (pp. 523546). Germany: Springer-Verlag.Google Scholar
Partala, T., & Surakka, V. (2003). Pupil size variation as an indication of affective processing. International Journal of Human-Computer Studies, 59, 185198.CrossRefGoogle Scholar
Partala, T. (2011). Psychological needs and virtual worlds: Case Second Life. International Journal of Human-Computer Studies, 69, 787800.CrossRefGoogle Scholar
Parvizi, J. (2009). Corticocentric myopia: Old bias in new cognitive sciences. Trends in Cognitive Sciences, 13(8), 354359.CrossRefGoogle ScholarPubMed
Pasek, J., More, E., & Hargittai, E. (2009). Facebook and academic performance: Reconciling a media sensation with data. First Monday, 14, 5.Google Scholar
Patil, I., Cogoni, C., Zangrando, N., Chittaro, L., & Silani, G. (2014). Affective basis of judgment-behavior discrepancy in virtual experiences of moral dilemmas. Social Neuroscience, 9(1), 94107.CrossRefGoogle ScholarPubMed
Paulhus, D. L. (1991). Measurement and control of response bias. In Robinson, J. P., Shaver, P. R., & Wrightsman, L. S. (Eds.), Measures of personality and social psychological attitudes. San Diego: Academic Press.Google Scholar
Paulhus, D. L., & Vazire, S. (2007). The self-report method. In Robins, R. W., Fraley, R. C., & Krueger, R. (Eds.), Handbook of research methods in personality psychology (pp. 224239). New York, NY: Guilford Press.Google Scholar
Pavlou, P., Davis, F., & Dimoka, A. (2007). Neuro IS: The potential of cognitive neuroscience for information systems research. ICIS 2007 Proceedings, 122.Google Scholar
Pea, R., Nass, C., Meheula, L., Rance, M., Kumar, A., Bamford, H., Nass, M., Simha, A., Stillerman, B., Yang, S., & Zhou, M. (2012). Media use, face-to-face communication, media multitasking, and social well-being among 8- to 12-year-old girls. Developmental Psychology, 48(2), 327.CrossRefGoogle ScholarPubMed
Peck, T. C., Seinfeld, S., Aglioti, S. M., & Slater, M. (2013). Putting yourself in the skin of a black avatar reduces implicit racial bias. Consciousness and Cognition, 22, 779787.CrossRefGoogle Scholar
Pellicano, E., & Stears, M. (2011). Bridging autism, science and society: Moving toward an ethically informed approach to autism research. Autism Research, 4(4), 271282.CrossRefGoogle ScholarPubMed
Pelphrey, K. A., Singerman, J. D., Allison, T., & McCarthy, G. (2003). Brain activation evoked by perception of gaze shifts: The influence of context. Neuropsychologia, 41, 156170. doi: 10.1016/s0028-3932(03)00111-8.CrossRefGoogle ScholarPubMed
Pelphrey, K. A., Viola, R. J., & McCarthy, G. (2004). When strangers pass: Processing of mutual and averted social gaze in the superior temporal sulcus. Psychological Science, 15, 598603. doi: 10.1111/j.0956-7976.2004.00726.x.CrossRefGoogle ScholarPubMed
Penn, P. R., Rose, F. D., & Johnson, D. A. (2009). Virtual enriched environments in paediatric neuropsychological rehabilitation following traumatic brain injury: Feasibility, benefits and challenges. Developmental Neurorehabilitation, 12(1), 3243.CrossRefGoogle ScholarPubMed
Pennington, B. F., Bennetto, L., McAleer, O. K., & Roberts, R. J. (1996). Executive functions and working memory: Theoretical and measurement issues. In Lyon, G.R. & Krasnegor, N. A. (Eds.), Attention, memory and executive function. Baltimore: Brookes.Google Scholar
Pessoa, L. (2008). On the relationship between emotion and cognition. Nature Reviews Neuroscience, 9(2), 148158.CrossRefGoogle ScholarPubMed
Pessoa, L. (2013). The cognitive-emotional brain: From interactions to integration. Cambridge: MIT Press.CrossRefGoogle Scholar
Pfeifer, J. H., Dapretto, M., & Lieberman, M. D. (2010). The neural foundations of evaluative self-knowledge in middle childhood, early adolescence and adulthood. Developmental Social Cognitive Neuroscience, 141163.Google Scholar
Pfeifer, R. (1988). Artificial intelligence models of emotion. In Cognitive Perspectives on Emotion and Motivation (pp. 287320). Netherlands: Springer.CrossRefGoogle Scholar
Pfeiffer, U. J., Timmermans, B., Vogeley, K., Frith, C. D., & Schilbach, L. (2013). Towards a neuroscience of social interaction. Frontiers in Human Neuroscience, 7.CrossRefGoogle ScholarPubMed
Pham, T., & Tran, D. (2012). Emotional recognition using the Emotiv EPOC device. Neural Information Processing, 7667, 394399.Google Scholar
Phelps, E. A., Lempert, K. M., & Sokol-Hessner, P. (2014). Emotion and decision making: Multiple modulatory neural circuits. Annual Review of Neuroscience, 37, 263287.CrossRefGoogle ScholarPubMed
Picard, R. W. (1997). Affective computing (Vol. 252). Cambridge: MIT Press.CrossRefGoogle Scholar
Picard, R. W. (2003). Affective computing: challenges. International Journal of Human-Computer Studies, 59(1), 5564.CrossRefGoogle Scholar
Picard, R. W. (2014). The promise of affective computing. The Oxford handbook of affective computing, 11.Google Scholar
Picard, R. W., Vyzas, E., & Healey, J. (2001). Toward machine emotional intelligence: Analysis of affective physiological state. Pattern analysis and machine intelligence, IEEE Transactionson, 23(10), 11751191.CrossRefGoogle Scholar
Plutchik, R., & Ax, A. F. (1967). A critique of determinants of emotional state by Schachter and Singer (1962). Psychophysiology, 4(1), 7982.CrossRefGoogle ScholarPubMed
Podsakoff, P. M., MacKenzie, S. B., Lee, J. Y., & Podsakoff, N. P. (2003). Common method biases in behavioral research: A critical review of the literature and recommended remedies. Journal of Applied Psychology, 88(5), 879.CrossRefGoogle ScholarPubMed
Podzebenko, K., Egan, G. F., & Watson, J. D. G. (2005). Real and imaginary rotary motion processing: Functional parcellation of the human parietal lobe revealed by fMRI. Journal of Cognitive Neuroscience, 17(1), 2436.CrossRefGoogle ScholarPubMed
Pohl, C., Kunde, W., Ganz, T., Conzelmann, A., Pauli, P., & Kiesel, A. (2014). Gaming to see: Action video gaming is associated with enhanced processing of masked stimuli. Frontiers in Psychology, 5, 70.CrossRefGoogle ScholarPubMed
Poldrack, R. A. (2010). Mapping mental function to brain structure: How can cognitive neuroimaging succeed?. Perspectives on Psychological Science, 5(6), 753761.CrossRefGoogle ScholarPubMed
Poldrack, R. A., & Foerde, K (2007) Category learning and the memory systems debate. Neuroscience and Biobehavioral Reviews, 32, 197205.CrossRefGoogle ScholarPubMed
Pollak, Y., Shomaly, H. B., Weiss, P. L., Rizzo, A. A., & Gross-Tsur, V. (2010). Methylphenidate effect in children with ADHD can be measured by an ecologically valid continuous performance test embedded in virtual reality. CNS Spectrums, 15(2), 125130.CrossRefGoogle ScholarPubMed
Pomplun, M., & Sunkara, S. (2003). Pupil dilation as an indicator of cognitive workload in human-computer interaction. In Harris, V.D.D., Smith, M., & Stephanidis, C. (Eds.), Proceedings of the 10th International Conference on Human-Computer Interaction.Google Scholar
Pontius, A. A., & Yudowitz, B. S. (1980). Frontal lobe system dysfunction in some criminal actions as shown in the narratives test. Journal of Nervous and Mental Disease, 168, 111117.CrossRefGoogle ScholarPubMed
Pool, M. M., Koolstra, C. M., & Van der Voort, Tom H. A. (2003a). Distraction effects of background soap operas on homework performance: An experimental study enriched with observational data. Educational Psychology, 23(4), 361380.CrossRefGoogle Scholar
Pool, M. M., Koolstra, C. M., & Voort, T. H. (2003b). The impact of background radio and television on high school students’ homework performance. Journal of Communication, 53(1), 7487.CrossRefGoogle Scholar
Pool, M. M., Van der Voort, Tom HA, Beentjes, J. W., & Koolstra, C. M. (2000). Background television as an inhibitor of performance on easy and difficult homework assignments. Communication Research, 27(3), 293326.CrossRefGoogle Scholar
Pope, A. T., Bogart, E. H., & Bartolome, D. S. (1995). Biocybernetic system evaluates indices of operator engagement in automated task. Biological Psychology, 40, 187195.CrossRefGoogle ScholarPubMed
Porter, G., Troscianko, T., & Gilchrist, D. (2002). Pupil size as a measure of task difficulty in vision. Perception, 31, 170171.Google Scholar
Potenza, M., & De Wit, H. (2010). Control yourself: Alcohol and impulsivity. Alcoholism: Clinical and Experimental Research, 34, 13031305.CrossRefGoogle ScholarPubMed
Powell, J., Lewis, P., Roberts, N., García-Fi˜nana, M., & Dunbar, R. (2012). Orbital prefrontal cortex volume predicts social network size: An imaging study of individual differences in humans. Proceedings Of the Royal Society, London, 279B, 21572162.Google Scholar
Power, A., & Kirwan, G. (2013). Cyberpsychology and new media: A thematic reader. New York: Psychology Press.CrossRefGoogle Scholar
Powers, M. B., & Emmelkamp, P. M. (2008). Virtual reality exposure therapy for anxiety disorders: A meta-analysis. Journal of Anxiety Disorders, 22(3), 561569.CrossRefGoogle ScholarPubMed
Prado, J., & Weissman, D. H. (2011). Heightened interactions between a key default-mode region and a key task-positive region are linked to suboptimal current performance but to enhanced future performance. Neuroimage, 56(4), 22762282.CrossRefGoogle Scholar
Prensky, M. (2001). Digital natives, digital immigrants part 1. On the Horizon, 9, 16.Google Scholar
Preston, C., & Ehrsson, H. H. (2014). Illusory changes in body size modulate body satisfaction in a way that is related to non-clinical eating disorder psychopathology. PLoS One, 9:e85773. doi: 10.1371/journal.pone.0085773.CrossRefGoogle Scholar
Price, M., & Anderson, P. (2007). The role of presence in virtual reality exposure therapy. Journal of Anxiety Disorders, 21(5), 742751.CrossRefGoogle ScholarPubMed
Price, M., Mehta, N., Tone, E. B., & Anderson, P. L. (2011). Does engagement with exposure yield better outcomes? Components of presence as a predictor of treatment response for virtual reality exposure therapy for social phobia. Journal of anxiety disorders, 25(6), 763770.CrossRefGoogle Scholar
Primack, B. A., Carroll, M. V., McNamara, M., et al. (2012). Role of video games in improving health-related outcomes: A systematic review. American Journal of Preventative Medicine, 42, 630638.CrossRefGoogle ScholarPubMed
Probosz, K., Wcislo, R., Otfinoski, J. Slota, R., Kitowski, J., Pisula, M., & Sobczyk, A. (2009). A multimedia holistic rehabilitation method for patients after stroke. Annual Review of Cybertherapy and Telemedicine, 7, 261263.Google Scholar
Pugnetti, L., Meehan, M., & Mendozzi, L. (2001). Psychophysiological correlates of virtual reality: A review. Presence, 10, 384400.CrossRefGoogle Scholar
Pugnetti, L., Mendozzi, L., Attree, E. A., Barbieri, E., Brooks, B. M., Cazzullo, C. L., et al. (1998). Probing memory and executive functions with virtual reality: Past and present studies. Cyberpsychology and Behavior, 1, 151161.CrossRefGoogle Scholar
Pugnetti, L., Mendozzi, L., Motta, A., Cattaneo, A., Barbieri, E., & Brancotti, S. (1995). Evaluation and retraining of adults’ cognitive impairments: Which role for virtual reality technology? Computers in Biology and Medicine, 25, 213227.CrossRefGoogle Scholar
Qin, P., & Northoff, G. (2011). How is our self related to midline regions and the default-mode network?. Neuroimage, 57(3), 12211233.CrossRefGoogle Scholar
Rabbitt, P. (1997). Introduction: Methodologies and models in the study of executive function. In Rabbitt, P. (Ed.), Methodology of frontal executive function (pp. 138). East Sussex, UK: Psychology.Google Scholar
Rabin, L. A., Burton, L. A., & Barr, W. B. (2007). Utilization rates of ecologically oriented instruments among clinical neuropsychologists. The Clinical Neuropsychologist, 5, 727743.CrossRefGoogle Scholar
Raichle, M. E. (2015). The brain’s default mode network. Annual Review of Neuroscience, 38, 433447.CrossRefGoogle ScholarPubMed
Raichle, M. E., & Snyder, A.Z. (2007). A default mode of brain function: A brief history of an evolving idea. Neuroimage, 37, 10831099.CrossRefGoogle ScholarPubMed
Rainville, P., Bechara, A., Naqvi, N., & Damasio, A. R. (2006). Basic emotions are associated with distinct patterns of cardiorespiratory activity. International Journal of Psychophysiology, 61, 518.CrossRefGoogle ScholarPubMed
Ralph, B. C., Thomson, D. R., Seli, P., Carriere, J. S., & Smilek, D. (2015). Media multitasking and behavioral measures of sustained attention. Attention, Perception, & Psychophysics, 77(2), 390401.CrossRefGoogle ScholarPubMed
Rand, D., Rukan, S. B. A., Weiss, P. L., & Katz, N. (2009). Validation of the Virtual MET as an assessment tool for executive functions. Neuropsychological Rehabilitation, 19(4), 583602.CrossRefGoogle ScholarPubMed
Rand, D. G., Arbesman, S., & Christakis, N. A. (2011). Dynamic social networks promote cooperation in experiments with humans. Proceedings of the National Academy of Sciences, 108(48), 1919319198.CrossRefGoogle ScholarPubMed
Ravaja, N., Turpeinen, M., Saari, T., Puttonen, S., & Keltikangas-Järvinen, L. (2008). The psychophysiology of James Bond: Phasic emotional responses to violent video game events. Emotion, 8(1), 114.CrossRefGoogle Scholar
Raz, S., Bar-Haim, Y., Sadeh, A., & Dan, O. (2014). Reliability and validity of the online continuous performance test among young adults. Assessment, 21(1), 108118.CrossRefGoogle ScholarPubMed
Reeves, B., & Nass, C. (1996). How people treat computers, television, and new media like real people and places (p. 119). CSLI Publications and Cambridge University Press.Google Scholar
Regenbogen, C., Herrmann, M., & Fehr, T. (2010). The neural processing of voluntary completed, real and virtual violent and nonviolent computer game scenarios displaying predefined actions in gamers and nongamers. Social Neuroscience, 5(2), 221240.CrossRefGoogle ScholarPubMed
Renaud, P., Bouchard, S., & Proulx, R. (2002). Behavioral avoidance dynamics in the presence of a virtual spider. IEEE Transactions on Information Technology in Biomedicine, 6, 235243.CrossRefGoogle ScholarPubMed
Renison, B., Ponsford, J., Testa, R., Richardson, B., & Brownfield, K. (2012). The ecological and construct validity of a newly developed measure of executive function: The virtual library task. Journal of the International Neuropsychological Society, 18, 440450.CrossRefGoogle ScholarPubMed
Ridderinkhof, K. R., Ullsperger, M., Crone, E. A., & Nieuwenhuis, S. (2004). The role of the medial frontal cortex in cognitive control. Science, 306, 443447.CrossRefGoogle ScholarPubMed
Rideout, V. (2011). Zero to eight: Children’s media use in America. Retrieved from www.commonsensemedia.org.Google Scholar
Rideout, V. J. (2015). The Common Sense census: Media use by tweens and teens. Retrieved from www.commonsensemedia.org.Google Scholar
Rideout, V. J., Foehr, U. G., & Roberts, D. F. (2010). Generation M2 Media in the lives of 8- to 18-year-olds. Henry J. Kaiser Family Foundation.Google Scholar
Riedl, R., Banker, R. D., Benbasat, I., Davis, F. D., Dennis, A. R., & Dimoka, A., et al. (2010). On the foundations of NeuroIS: Reflections on the Gmunden Retreat 2009. Communications of the Association for Information Systems, 27, 243264.CrossRefGoogle Scholar
Riedl, R., Hubert, M., & Kenning, P. (2010). Are there neural gender differences in online trust? An fMRI study on the perceived trustworthiness of eBay offers. MIS Quarterly, 34, 397428.CrossRefGoogle Scholar
Riedl, R., & Léger, P. M. (2016). Fundamentals of NeuroIS: Information systems and the brain. Springer Berlin.CrossRefGoogle Scholar
Riedl, R., Mohr, P. N., Kenning, P. H., Davis, F. D., & Heekeren, H. R. (2014). Trusting humans and avatars: A brain imaging study based on evolution theory. Journal of Management Information Systems, 30(4), 83114.CrossRefGoogle Scholar
Ring, C., Carroll, D., Willemsen, G., Cooke, J., Ferraro, A., & Drayson, M. (1999). Secretory immunoglobulin A and cardiovascular activity during mental arithmetic and paced breathing. Psychophysiology, 36, 602609.CrossRefGoogle ScholarPubMed
Risko, E. F., Laidlaw, K. E., Freeth, M., Foulsham, T., & Kingstone, A. (2012). Social attention with real versus reel stimuli: Toward an empirical approach to concerns about ecological validity. Frontiers in Human Neuroscience, 6, 143.CrossRefGoogle ScholarPubMed
Riva, G. (1999). Virtual reality as communication tool: A sociocognitive analysis. Presence: Teleoperators and Virtual Environments, 8(4), 462468.CrossRefGoogle Scholar
Riva, G. (2011). The key to unlocking the virtual body: Virtual reality in the treatment of obesity and eating disorders. Journal of Diabetes Science and Technology, 5(2), 283292.CrossRefGoogle ScholarPubMed
Riva, G. (2014). Out of my real body: Cognitive neuroscience meets eating disorders. Frontiers in Human Neuroscience, 8. doi: 10.3389/fnhum.2014.00236.CrossRefGoogle Scholar
Riva, G., Botella, C., Baños, R., Mantovani, F., García-Palacios, A., Quero, S., et al. (2015). Presence-inducing media for mental health applications. In Lombard, M., Biocca, F., Freeman, J., Ijsselsteijn, W., & Schaevitz, R. J. (Eds.), Immersed in media (pp. 283332). New York: Springer International Publishing.CrossRefGoogle Scholar
Riva, G., & Galimberti, C. (2001). Towards cyberpsychology: Mind, cognition, and society in the internet age. IOS Press.Google Scholar
Riva, G., Mantovani, F., & Gaggioli, A. (2004). Presence and rehabilitation: Toward second-generation virtual reality applications in neuropsychology. Journal of NeuroEngineering and Rehabilitation, 1, 9.CrossRefGoogle ScholarPubMed
Riva, G., Mantovani, F., Capideville, C. S., Preziosa, A., Morganti, F., Villani, D., … & Alcañiz, M. (2007). Affective interactions using virtual reality: The link between presence and emotions. CyberPsychology & Behavior, 10(1), 4556.CrossRefGoogle ScholarPubMed
Rivero, T. S., Covre, P., Reyes, M. B., & Bueno, O. F. (2013). Effects of chronic video game use on time perception: Differences between sub- and multisecond intervals. Cyberpsychology Behavior and Social Networking, 16(2), 140144.CrossRefGoogle Scholar
Rizzolatti, G., & Sinigaglia, C. (2010). The functional role of the parieto-frontal mirror circuit: Interpretations and misinterpretations. Nature Reviews Neuroscience, 11, 264274. doi: 10.1038/nrn2805.CrossRefGoogle ScholarPubMed
Robertson, I. H., Ward, T., Ridgeway, V., & Nimmo-Smith, I. (1994). The test of everyday attention. Bury St. Edmunds, England: Thames Valley Test Company.Google Scholar
Robillard, G., Bouchard, S., Fournier, T., & Renaud, P. (2003). Anxiety and presence during VR immersion: A comparative study of the reactions of phobic and non-phobic participants in therapeutic virtual environments derived from computer games. CyberPsychology & Behavior, 6(5), 467476.CrossRefGoogle ScholarPubMed
Robison, A. J., & Nestler, E. J. (2011). Transcriptional and epigenetic mechanisms of addiction. Nature Reviews Neuroscience, 12(11), 623637.CrossRefGoogle ScholarPubMed
Roelofs, J., et al. (2004). Does fear of pain moderate the effects of sensory focusing and distraction on cold pressor pain in pain-free individuals? Journal of Pain, 5(5), 250256.CrossRefGoogle ScholarPubMed
Rogoff, B. E., & Lave, J. E. (1984). Everyday cognition: Its development in social context. Harvard University Press.Google Scholar
Rosas-Cholula, G., Ramírez-Cortes, J. M., Alarcón-Aquino, V., Martinez-Carballido, J., & Gomez-Gil, P. (2010). On signal P-300 detection for BCI applications based on wavelet analysis and ICA preprocessing. In Electronics, Robotics and Automotive Mechanics Conference (CERMA), 2010 (pp. 360365). IEEE.CrossRefGoogle Scholar
Rosen, L. D., Carrier, L. M., & Cheever, N. A. (2013). Facebook and texting made me do it: Media-induced task-switching while studying. Computers in Human Behavior, 29(3), 948958.CrossRefGoogle Scholar
Ross, E. D. (2010). Cerebral localization of functions and the neurology of language: Fact versus fiction or is it something else? The Neuroscientist, 16(3), 222–243.CrossRefGoogle Scholar
Rotge, J. Y., Lemogne, C., Hinfray, S., Huguet, P., Grynszpan, O., Tartour, E., et al. (2014). A meta-analysis of the anterior cingulate contribution to social pain. Social Cognitive and Affective Neuroscience, 10, 1927.CrossRefGoogle ScholarPubMed
Rothbaum, B. O., & Schwartz, A. C. (2002). Exposure therapy for posttraumatic stress disorder. American Journal of Psychotherapy, 56(1), 59.CrossRefGoogle ScholarPubMed
Rourke, B. P. (1982). Central processing deficiencies in children: Toward a developmental neuropsychological model. Journal of Clinical and Experimental Neuropsychology, 4(1), 118.CrossRefGoogle Scholar
Roy, S., Klinger, E., Légeron, P., Lauer, F., Chemin, I., & Nugues, P. (2003). Definition of a VR-based protocol to treat social phobia. Cyberpsychology & Behavior., 6, 411420.CrossRefGoogle ScholarPubMed
Rubia, K. (2011). “Cool” inferior frontostriatal dysfunction in attention-deficit/hyperactivity disorder versus “hot” ventromedial orbitofrontal-limbic dysfunction in conduct disorder: A review. Biological Psychiatry, 69, e69e87.CrossRefGoogle ScholarPubMed
Rubia, K., Smith, A. B., Taylor, E., & Brammer, M. (2007). Linear age-correlated functional development of right inferior fronto-striato-cerebellar networks during response inhibition and anterior cingulate during error related processes. Human Brain Mapping, 28, 11631177.CrossRefGoogle ScholarPubMed
Rubia, K., Smith, A. B., Woolley, J., Nosarti, C., Heyman, I., Taylor, E., & Brammer, M. (2006). Progressive increase of frontostriatal brain activation from childhood to adulthood during event-related tasks of cognitive control. Human Brain Mapping, 27, 973993.CrossRefGoogle ScholarPubMed
Rupp, R. (2014). Challenges in clinical applications of brain computer interfaces in individuals with spinal cord injury. Frontiers in Neuroengineering, 7.CrossRefGoogle ScholarPubMed
Russell, J. A. (2003). Core affect and the psychological construction of emotion. Psychological Review, 110(1), 145.CrossRefGoogle ScholarPubMed
Ruthruff, E., Van Selst, M., Johnston, J. C., & Remington, R. (2006). How does practice reduce dual-task interference: Integration, automatization, or just stage-shortening?. Psychological Research, 70(2), 125142.CrossRefGoogle ScholarPubMed
Sacheli, L. M., Christensen, A., Giese, M. A., Taubert, N., Pavone, E. F., Aglioti, S. M., & Candidi, M. (2015). Prejudiced interactions: Implicit racial bias reduces predictive simulation during joint action with an out-group avatar. Scientific Reports, 5. doi:10.1038/srep08507CrossRefGoogle ScholarPubMed
Salisbury, D., Driver, S., & Parsons, T. D. (2015). Brain-computer interface targeting non-motor functions after spinal cord injury. Spinal Cord, 53, S25S26.CrossRefGoogle ScholarPubMed
Sallet, J., Mars, R. B., Noonan, M. P., Andersson, J. L., O’Reilly, J. X., Jbabdi, S., et al. (2011). Social network size affects neural circuits in macaques. Science, 334, 697700.CrossRefGoogle ScholarPubMed
Salminen, M., & Ravaja, N. (2007). Oscillatory brain responses evoked by video game events: The case of supermonkey ball 2. CyberPsychology & Behavior, 10(3), 330338.CrossRefGoogle ScholarPubMed
Sampasa-Kanyinga, H., & Lewis, R. F. (2015). Frequent use of social networking sites is associated with poor psychological functioning among children and adolescents. Cyberpsychology, Behavior, and Social Networking, 18(7), 380385.CrossRefGoogle ScholarPubMed
Sanbonmatsu, D. M., Strayer, D. L., Medeiros-Ward, N., & Watson, J. M. (2013). Who multi-tasks and why? Multi-tasking ability, perceived multi-tasking ability, impulsivity, and sensation seeking. PLoS One, January 23. Available at http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0054402.Google Scholar
Sanchez, J. (2009). A social history of virtual worlds. Library Technology Reports, 45(2), 913.Google Scholar
Sanchez-Vives, M. V., & Slater, M. (2005). From presence to consciousness through virtual reality. Nature Reviews Neuroscience, 6(4), 332339.CrossRefGoogle ScholarPubMed
Sarter, M., Gehring, W. J., & Kozak, R. (2006). More attention must be paid: The neurobiology of attentional effort. Brain Research Reviews, 51(2), 145160.CrossRefGoogle ScholarPubMed
Saur, D., Kreher, B. W., Schnell, S., Kümmerer, D., Kellmeyer, P., Vry, M. S., … & Huber, W. (2008). Ventral and dorsal pathways for language. Proceedings of the National Academy of Sciences, 105(46), 1803518040.CrossRefGoogle ScholarPubMed
Saxe, R., & Kanwisher, N. (2003). People thinking about thinking people: The role of the temporo-parietal junction in “theory of mind.” Neuroimage, 19(4), 18351842.CrossRefGoogle ScholarPubMed
Sbordone, R. J. (1996). Ecological validity: Some critical issues for neuropsychologist. In Sbordone, R. J. & Long, C. J. (Eds.), Ecological validity of neuropsychological testing (pp. 1541). Delray Beach, FL: GR Press/St. Lucie Press.Google Scholar
Sbordone, R.J. (2008). Ecological validity of neuropsychological testing: Critical issues. The Neuropsychology Handbook, 367, 394.Google Scholar
Scallen, S. F., & Hancock, P. A. (2001). Implementing adaptive function allocation. International Journal of Aviation Psychology, 11, 197221.CrossRefGoogle Scholar
Scerbo, M. W., Freeman, F. G., Mikulka, P. J., Parasuraman, R., Di Nocero, F., & Prinzel, L. J. (2001). The efficacy of psychophysiological measures for implementing adaptive technology (NASA TP-2001–211018). Hampton, VA: NASA Langley Research Center.Google Scholar
Schacter, D. L. (1983). Amnesia observed: Remembering and forgetting in a natural environment. Journal of Abnormal Psychology, 92, 236242.CrossRefGoogle Scholar
Schachter, S., & Singer, J. (1962). Cognitive, social, and physiological determinants of emotional state. Psychological Review, 69(5), 379.CrossRefGoogle ScholarPubMed
Schaefer, T., Ferguson, J. B., Klein, J. A., & Rawson, E. B. (1968). Pupillary responses during mental activities. Psychonomic Science, 12, 137138.CrossRefGoogle Scholar
Schaie, K. W., Dutta, R., & Willis, S. L. (1991). Relationship between rigidity-flexibility and cognitive abilities in adulthood. Psychology and Aging, 6, 371378.CrossRefGoogle ScholarPubMed
Scherer, K. R. (2005). What are emotions? And how can they be measured? Social Science Information, 44(4), 695729.CrossRefGoogle Scholar
Scheutz, M. (2004, July). Useful roles of emotions in artificial agents: A case study from artificial life. AAAI, 4, 4248.Google Scholar
Scheutz, M., & Schermerhorn, P. (2004). The role of signaling action tendencies in conflict resolution. Journal of Artificial Societies and Social Simulation, 7, 1.Google Scholar
Schilbach, L. (2010). A second-person approach to other minds. Nature Reviews Neuroscience, 11, 449. doi: 10.1038/nrn2805-c1.CrossRefGoogle ScholarPubMed
Schilbach, L. (2014). On the relationship of online and offline social cognition. Frontiers In Human Neuroscience, 8(278), 18.CrossRefGoogle ScholarPubMed
Schilbach, L. (2015). Eye to eye, face to face and brain to brain: Novel approaches to study the behavioral dynamics and neural mechanisms of social interactions. Current Opinion in Behavioral Sciences, 3, 130135.CrossRefGoogle Scholar
Schilbach, L., Bzdok, D., Timmermans, B., Fox, P. T., Laird, A. R., Vogeley, K., & Eickhoff, S. B. (2012). Introspective minds: Using ALE meta-analyses to study commonalities in the neural correlates of emotional processing, social & unconstrained cognition. PloS One, 7(2), e30920.CrossRefGoogle ScholarPubMed
Schilbach, L., Eickhoff, S. B., Rotarska-Jagiela, A., Fink, G. R., & Vogeley, K. (2008). Minds at rest? Social cognition as the default mode of cognizing and its putative relationship to the “default system” of the brain. Consciousness and Cognition, 17(2), 457467.CrossRefGoogle Scholar
Schilbach, L., Eickhoff, S. B., Schultze, T., Mojzisch, A., & Vogeley, K. (2013). To you I am listening: Perceived competence of advisors influences judgment and decision-making via recruitment of the amygdala. Social Neuroscience, 8(3), 189202.CrossRefGoogle Scholar
Schilbach, L., Wohlschläger, A. M., Newen, A., Krämer, N., Shah, N. J., Fink, G. R., et al. (2006). Being with others: Neural correlates of social interaction. Neuropsychologia, 44, 718730.CrossRefGoogle ScholarPubMed
Schneider, W., & Shiffrin, R. M. (1977). Controlled and automatic human information processing: I. Detection, search, and attention. Psychological Review, 84(1), 166.CrossRefGoogle Scholar
Schoenbaum, G., Takahashi, Y., Liu, T., & McDannald, M. (2011). Does the orbitofrontal cortex signal value? Annals of the New York Academy of Sciences, 1239, 8799.CrossRefGoogle ScholarPubMed
Schomer, D. L., & Da Silva, F. L. (2012). Niedermeyer’s electroencephalography: Basic principles, clinical applications, and related fields. Philadelphia, PA: Lippincott Williams & Wilkins.Google Scholar
Schreiber, D., Fonzo, G., Simmons, A. N., Dawes, C. T., Flagan, T., Fowler, J. H., & Paulus, M. P. (2013). Red brain, blue brain: Evaluative processes differ in Democrats and Republicans. PLoS ONE, 8:e52970. 10.1371/journal.pone.0052970.CrossRefGoogle ScholarPubMed
Schreuder, M., Riccio, A., Risetti, M., Dähne, S., Ramsay, A., Williamson, J., … & Tangermann, M. (2013). User-centered design in brain–computer interfaces – A case study. Artificial Intelligence in Medicine, 59(2), 7180.CrossRefGoogle ScholarPubMed
Schultheis, M. T., Rebimbas, J., Mourant, R., & Millis, S. R. (2007). Examining the usability of a virtual reality driving simulator. Assistive Technology, 19.CrossRefGoogle ScholarPubMed
Schwark, J. D. (2015). Toward a taxonomy of affective computing. International Journal of Human-Computer Interaction, 31(11), 761768.CrossRefGoogle Scholar
Schwartz, J. M. (1998). Neuroanatomical aspects of cognitive-behavioural therapy response in obsessive–compulsive disorder. An evolving perspective on brain and behaviour. The British Journal of Psychiatry (Suppl.), 3844.CrossRefGoogle Scholar
Schwartz, M. F. (2006). The cognitive neuropsychology of everyday action and planning. Cognitive Neuropsychology, 23, 202221.CrossRefGoogle ScholarPubMed
Schwartz, M. S. & Andrasik, F. (2003). Biofeedback: A practitioner’s guide. New York: Guilford Press.Google Scholar
Schwarz, N. (1999). Self-reports: How the questions shape the answers. American Psychologist, 54(2), 93.CrossRefGoogle Scholar
Scott, J. C., Woods, S. P., Vigil, O., Heaton, R. K., Schweinsburg, B. C., Ellis, R. J., … & Marcotte, T. D. (2011). A neuropsychological investigation of multitasking in HIV infection: Implications for everyday functioning. Neuropsychology, 25(4), 511.CrossRefGoogle ScholarPubMed
Sebanz, N., Bekkering, H., & Knoblich, G. (2006). Joint action: bodies and minds moving together. Trends in Cognitive Sciences, 10, 7076.CrossRefGoogle ScholarPubMed
Sebastian, C. L., Fontaine, N. M., Bird, G., Blakemore, S. J., De Brito, S. A., McCrory, E. J., & Viding, E. (2012). Neural processing associated with cognitive and affective theory of mind in adolescents and adults. Social Cognitive and Affective Neuroscience, 7(1), 5363.CrossRefGoogle ScholarPubMed
Seeley, W. W., Menon, V., Schatzberg, A. F., Keller, J., Glover, G. H., Kenna, H., et al. (2007). Dissociable intrinsic connectivity networks for salience processing and executive control. The Journal of Neuroscience, 27, 23492356.CrossRefGoogle ScholarPubMed
Seery, M. D., Weisbuch, M., & Blascovich, J. (2009). Something to gain, something to lose: The cardiovascular consequences of outcome framing. International Journal of Psychophysiology, 73, 308312.CrossRefGoogle ScholarPubMed
Seguin, J. R., Arseneault, L., & Tremblay, R. E. (2007). The contribution of “cool” and “hot” components of decision-making in adolescence: Implications for developmental psychopathology. Cognitive Development, 22, 530543.CrossRefGoogle Scholar
Senecal, S., Léger, P. M., Fredette, M., & Riedl, R. (2012). Consumers’ online cognitive scripts: A neurophysiological approach. Proceedings of the International Conference on Information Systems, Orlando, Florida.Google Scholar
Seraglia, B., Gamberini, L., Priftis, K., Scatturin, P., Martinelli, M., & Cutini, S. (2011). An exploratory fNIRS study with immersive virtual reality: A new method for technical implementation. Frontiers in Human Neuroscience, 5(176), 19.CrossRefGoogle ScholarPubMed
Seth, A. K., Suzuki, K., & Critchley, H. D. (2011). An interoceptive predictive coding model of conscious presence. Frontiers in Psychology, 2.Google ScholarPubMed
Sexton, J. A., Deshpande, G., Li, Z., Glielmi, C. B., & Hu, X. P. (2013). Functional magnetic resonance imaging. In neural engineering (pp. 473497). New York: Springer US.Google Scholar
Shafir, R., Schwartz, N., Blechert, J., & Sheppes, G. (2015). Emotional intensity influences pre-implementation and implementation of distraction and reappraisal. Social Cognitive and Affective Neuroscience, nsv022.CrossRefGoogle Scholar
Shallice, T., & Burgess, P. W. (1991). Deficits in strategy application following frontal lobe damage in man. Brain, 114, 727741.CrossRefGoogle ScholarPubMed
Shallice, T., & Burgess, P. (1996). The domain of supervisory processes and temporal organization of behaviour. Philosophical Transactions of the Royal Society, London. B: Biological Sciences, 351, 14051412.Google ScholarPubMed
Shepard, R. N. (1980). Multidimensional scaling, tree-fitting, and clustering. Science, 210, 390398.CrossRefGoogle ScholarPubMed
Shiffrin, R. M., & Schneider, W. (1977). Controlled and automatic human information processing: II. Perceptual learning, automatic attending and a general theory. Psychological Review, 84(2), 127190.CrossRefGoogle Scholar
Shih, J. J., Krusienski, D. J., & Wolpaw, J. R. (2012). Brain-computer interfaces in medicine. Mayo Clinic Proceedings, 87(3), 268279.CrossRefGoogle ScholarPubMed
Shin, H., & Kim, K. (2015). Virtual reality for cognitive rehabilitation after brain injury: A systematic review. Journal of Physical Therapy Science, 27(9), 2999.CrossRefGoogle ScholarPubMed
Short, J., Williams, E., & Christie, B. (1976). The social psychology of telecommunications. London: John Wiley & Sons.Google Scholar
Sijtsema, J. J., Shoulberg, E. K., & Murray-Close, D. (2011). Physiological reactivity and different forms of aggression in girls: Moderating roles of rejection sensitivity and peer rejection. Biological Psychology, 86(3), 181192.CrossRefGoogle ScholarPubMed
Singhal, S., & Zyda, M. (1999). Networked virtual environments: Design and implementation. New York: ACM Press/Addison-Wesley Publishing Co.Google Scholar
Sinnott, J. D. (Ed.). (1989). Everyday problem solving: Theory mid applications. New York: Praeger.Google Scholar
Sitzmann, T. (2011). A meta-analytic examination of the instructional effectiveness of computer-based simulation games. Personnel Psychology, 64, 489528.CrossRefGoogle Scholar
Skowronski, J. J., & Lawrence, M. A. (2001). A comparative study of the implicit and explicit gender attitudes of children and college students. Psychology of Women Quarterly, 25(2), 155165.CrossRefGoogle Scholar
Skulmowski, A., Bunge, A., Kaspar, K., & Pipa, G. (2014). Forced-choice decision-making in modified trolley dilemma situations: A virtual reality and eye tracking study. Frontiers in Behavioral Neuroscience, 8, 426.CrossRefGoogle ScholarPubMed
Slagter van Tryon, P. J., & Bishop, M. J. (2012). Evaluating social connectedness online: The design and development of the Social Perceptions in Learning Contexts Instrument. Distance Education, 33(3), 347364.CrossRefGoogle Scholar
Slater, M. (1999). Measuring presence: A response to the Witmer and Singer presence questionnaire. Presence-Teleoperators and Virtual Environments, 8, 560565.CrossRefGoogle Scholar
Slater, M. (Ed.) (2005). Presence 2005: The 8th international workshop on presence. London. University College London: Department of Computer Science.Google Scholar
Slater, M., Brogni, A., & Steed, A. (2003). Physiological responses to breaks in presence: A pilot study. The 6th Annual International Workshop on Presence Vol. 2003 (Aalborg, Denmark, 2003).Google Scholar
Slater, M., Khanna, P., Mortensen, J., & Yu, I. (2009). Visual realism enhances realistic response in an immersive virtual environment. IEEE Computer Graphics and Applications, 29, 7684.CrossRefGoogle Scholar
Slater, M., & Sanchez-Vives, M. V. (2014). Transcending the self in immersive virtual reality. Computer, 47, 2430.CrossRefGoogle Scholar
Slater, M., Spanlang, B., Sanchez-Vives, M. V., & Blanke, O. (2010). First person experience of body transfer in virtual reality. PloS One, 5:e10564. doi: 10.1371/journal.pone.0010564.CrossRefGoogle ScholarPubMed
Slater, M., & Wilbur, S. (1997). A framework for immersive virtual environments (FIVE): Speculations on the role of presence in virtual environments. Presence-Teleoperators and Virtual Environments, 6, 603616.CrossRefGoogle Scholar
Slater, M., Rovira, A., Southern, R., Swapp, D., Zhang, J. J., Campbell, C., & Levine, M. (2013). Bystander responses to a violent incident in an immersive virtual environment. PloS one, 8(1), e52766.CrossRefGoogle Scholar
Sloan, R. P., Korten, J. B., & Myers, M. M. (1991). Components of heart rate reactivity during mental arithmetic with and without speaking. Physiology & Behavior, 50, 10391045.CrossRefGoogle ScholarPubMed
Sloman, A., Chrisley, R., & Scheutz, M. (2005). The architectural basis of affective states and processes. In Who needs emotions. New York: Oxford University Press.Google Scholar
Sloman, A., & Croucher, M. (1981). Why robots will have emotions. In Dean, T. (Ed.), Proceedings of the Seventh International Joint Conference on Artificial Intelligence (Vol. I). San Francisco, CA: Morgan Kaufman.Google Scholar
Slovic, P. (1987). Perception of risk. Science, 236(4799), 280285.CrossRefGoogle ScholarPubMed
Small, G, & Vorgan, G. (2008). Meet your iBrain. Sci Am Mind, 19, 42–9.CrossRefGoogle Scholar
Small, G. W., Moody, T. D., Siddarth, P., & Bookheimer, S. Y. (2009). Your brain on Google: Patterns of cerebral activation during Internet searching. American Journal of Geriatric Psychiatry, 17, 116126.CrossRefGoogle ScholarPubMed
Smart, P. R. (2012). The web-extended mind. Metaphilosophy, 43(4), 446463.CrossRefGoogle Scholar
Smith, L., & Gasser, M. (2005). The development of embodied cognition: Six lessons from babies. Artificial Life, 11(1–2), 1329.CrossRefGoogle ScholarPubMed
Sobczyk, B., Dobrowolski, P., Skorko, M., Michalak, J., & Brzezicka, A. (2015). Issues and advances in research methods on video games and cognitive abilities. Frontiers in Psychology, 6.CrossRefGoogle Scholar
Sonuga-Barke, E.J., & Castellanos, F.X. (2007). Spontaneous attentional fluctuations in impaired states and pathological conditions: A neurobiological hypothesis. Neuroscience and Biobehavioral Reviews, 31, 977986.CrossRefGoogle ScholarPubMed
Sparrow, B., & Chatman, L. (2013). Social cognition in the Internet age: Same as it ever was?. Psychological Inquiry, 24(4), 273292.CrossRefGoogle Scholar
Sparrow, B., Liu, J., & Wegner, D. M. (2011). Google effects on memory: Cognitive consequences of having information at our fingertips. Science, 333(6043), 776778.CrossRefGoogle ScholarPubMed
Spence, I., & Feng, J. (2010). Video games and spatial cognition. Review of General Psychology, 14, 92. doi: 10.1037/a0019491.CrossRefGoogle Scholar
Spence, I., & Pratt, J. (2007). Playing an action video game reduces gender differences in spatial cognition. Psychological Science, 18(37), 850855.Google Scholar
Spence, I., Yu, J. J., Feng, J., & Marshman, J. (2009). Women match men when learning a spatial skill. Journal of Experimental Psychology: Learning, Memory, and Cognition, 35, 1097.Google ScholarPubMed
Spooner, D. M., & Pachana, N. A. (2006). Ecological validity in neuropsychological assessment: A case for greater consideration in research with neurologically intact populations. Archives of Clinical Neuropsychology, 21(4), 327337.CrossRefGoogle ScholarPubMed
Sporns, O. (2011). The human connectome: A complex network. Annals of the New York Academy of Sciences, 1224(1), 109125.CrossRefGoogle ScholarPubMed
Sporns, O., Chialvo, D. R., Kaiser, M., & Hilgetag, C. C. (2004). Organization, development and function of complex brain networks. Trends in Cognitive Sciences, 8(9), 418425.CrossRefGoogle ScholarPubMed
Spreij, L. A., Visser-Meily, J. M., van Heugten, C. M., & Nijboer, T. C. (2014). Novel insights into the rehabilitation of memory post acquired brain injury: A systematic review. Frontiers in Human Neuroscience, 8.CrossRefGoogle ScholarPubMed
Spreng, R. N., Mar, R. A., & Kim, A. S. (2009). The common neural basis of autobiographical memory, prospection, navigation, theory of mind, and the default mode: A quantitative meta-analysis. Journal of Cognitive Neuroscience, 21(3), 489510.CrossRefGoogle Scholar
Spunt, R. P., Satpute, A. B., & Lieberman, M. D. (2011). Identifying the what, why, and how of an observed action: An fMRI study of mentalizing and mechanizing during action observation. Journal of Cognitive Neuroscience, 23(1), 6374.CrossRefGoogle ScholarPubMed
Sridharan, D., Levitin, D. J., & Menon, V. (2008). A critical role for the right fronto-insular cortex in switching between central-executive and default-mode networks. Proceedings of the National Academy of Sciences, 105(34), 1256912574.CrossRefGoogle ScholarPubMed
Stanley, D. A., & Adolphs, R. (2013). Toward a neural basis for social behavior. Neuron, 80(3), 816826.CrossRefGoogle Scholar
Stanney, K. M. (Ed.). (2002). Handbook of virtual environment: Design, implementation, and applications. Mahwah, NJ: Lawrence Erlbaum Associates.Google Scholar
Starcevic, V. (2013). Is Internet addiction a useful concept? Australian and New Zealand Journal of Psychiatry, 47, 1619.CrossRefGoogle ScholarPubMed
Steers, M. L. N., Wickham, R. E., & Acitelli, L. K. (2014). Seeing everyone else’s highlight reels: How Facebook usage is linked to depressive symptoms. Journal of Social and Clinical Psychology, (33), 701731.CrossRefGoogle Scholar
Steriade, M. (1993). Cellular substrates of brain rhythms. In Niedermeyer, E. & Lopes da Silva, F. (Eds.), Electroencephalography: Basic principles, clinical applications, and related fields (3rd edn., pp. 2762). Baltimore: Williams & Wilkins.Google Scholar
Sternberg, R. J., & Wagner, R. K. (Eds.). (1986). Practical intelligence: Nature and origins of competence in the everyday world. Cambridge University Press Archive.Google Scholar
Stichter, J. P., Laffey, J., Galyen, K., & Herzog, M. (2014). iSocial: Delivering the social competence intervention for adolescents (SCI-A) in a 3D virtual learning environment for youth with high functioning autism. Journal of Autism and Developmental Disorders, 44(2), 417430.CrossRefGoogle Scholar
Strauss, E., Sherman, E., & Spreen, O. (Eds.). (2006). A compendium of neuropsychological tests. Administration, norms and commentary, 3rd edn. New York: Oxford University Press.Google Scholar
Strobach, T., Frensch, P. A., &Schubert, T. (2012). Video game practice optimizes executive control skills in dual-task and task switching situations. Acta Psychologica, 140, 1324. doi: 10.1016/j.actpsy.2012.02.001. pmid:22426427.CrossRefGoogle ScholarPubMed
Stuss, D. T. (2007). New approaches to prefrontal lobe testing. The Human Frontal Lobes: Functions and Disorders, 2, 292305.Google Scholar
Stuss, D. T., Benson, D. F., Weir, W. S., Naeser, M. A., Lieberman, I., & Ferrill, D. (1983). The involvement of orbitofrontal cerebrum in cognitive tasks. Neuropsychologia, 21(3), 235248.CrossRefGoogle ScholarPubMed
Stuss, D. T., Binns, M. A., Murphy, K. J., & Alexander, M. P. (2002). Dissociations within the anterior attentional system: Effects of task complexity and irrelevant information on reaction time speed and accuracy. Neuropsychologia, 16, 500513.CrossRefGoogle ScholarPubMed
Stuss, D. T., Floden, D., Alexander, M. P., Levine, B., & Katz, D. (2001). Stroop performance in focal lesion patients: Dissociation of processes and frontal lobe lesion location. Neuropsychologia, 39, 771786.CrossRefGoogle ScholarPubMed
Stuss, D. T., & Levine, B. (2002). Adult clinical neuropsychology: Lessons from studies of the frontal lobes. Annual Review of Psychology, 53(1), 401433.CrossRefGoogle ScholarPubMed
Suchy, Y. (2011). Clinical neuropsychology of emotion. New York: Guilford Press.Google Scholar
Sun, D. L., Chen, Z. J., Ma, N., Zhang, X. C., Fu, X. M., & Zhang, D. R. (2009). Decision-making and prepotent response inhibition functions in excessive Internet users. CNS spectrums, 14(2), 7581.CrossRefGoogle ScholarPubMed
Sun, Y., Ying, H., Seetohul, R. M., Xuemei, W., Ya, Z., Qian, L., … & Ye, S. (2012). Brain fMRI study of crave induced by cue pictures in online game addicts (male adolescents). Behavioural Brain Research, 233(2), 563576.CrossRefGoogle ScholarPubMed
Sungur, H., & Boduroglu, A. (2012). Action video game players form more detailed representation of objects. Acta Psychologica, 139, 327334. doi:10.1016/j.actpsy.2011.12.002.CrossRefGoogle ScholarPubMed
Sutton, S. K., & Davidson, R. J. (1997). Prefrontal brain asymmetry: A biological substrate of the behavioral approach and inhibition systems. Psychological Science, 8, 204210.CrossRefGoogle Scholar
Suzuki, A., Hirota, A., Takasawa, N., & Shigemasu, K. (2003). Application of the somatic marker hypothesis to individual differences in decision making. Biological Psychology, 65(1), 8188.CrossRefGoogle ScholarPubMed
Sweeney, S., Kersel, D., Morris, R. G., Manly, T., & Evans, J. J. (2010). The sensitivity of a virtual reality task to planning and prospective memory impairments: Group differences and the efficacy of periodic alerts on performance. Neuropsychological Rehabilitation, 20, 239263.CrossRefGoogle ScholarPubMed
Synofzik, M., Schatton, C., Giese, M., Wolf, J., Schöls, L., & Ilg, W. (2013). Videogame-based coordinative training can improve advanced, multisystemic early-onset ataxia. Journal of Neurology, 260(10), 26562658.CrossRefGoogle ScholarPubMed
Tamietto, M., & De Gelder, B. (2010). Neural bases of the non-conscious perception of emotional signals. Nature Reviews Neuroscience, 11(10), 697709.CrossRefGoogle ScholarPubMed
Tamir, D. I., & Mitchell, J. P. (2012). Disclosing information about the self is intrinsically rewarding. Proceedings of the National Academy of Sciences, 109 (21), 80388043.CrossRefGoogle ScholarPubMed
Tan, D., & Nijholt, A. (2010). Brain-computer interfaces and human-computer interaction. In Brain-computer interfaces (pp. 319). London: Springer.CrossRefGoogle Scholar
Tanabek, H. C., Kosaka, H., Saito, D. N., Koike, T., Hayashi, M. J., Izuma, K., et al. (2012). Hard to “tune in”: neural mechanisms of live face-to-face interaction with high-functioning autistic spectrum disorder. Frontiers In Human Neuroscience, 6, 268. doi: 10.3389/fnhum.2012.00268.Google Scholar
Tanaka, S., Ikeda, H., Kasahara, K., Kato, R., Tsubomi, H., Sugawara, S. K., … & Watanabe, K. (2013). Larger right posterior parietal volume in action video game experts: A behavioral and voxel-based morphometry (VBM) study. PLoS One, 8(6), e66998.CrossRefGoogle Scholar
Tangney, J. P., Baumeister, R. F., & Boone, A. L. (2004). High self-control predicts good adjustment, less pathology, better grades, and interpersonal success. Journal of Personality, 72(2), 271324.CrossRefGoogle ScholarPubMed
Tao, J., & Tan, T. (2005). Affective computing: A review. In Affective computing and intelligent interaction (pp. 981995). Berlin, Heidelberg: Springer.CrossRefGoogle Scholar
Tate, D. G., Kalpakjian, C. Z., & Forchheimer, M. B. (2002). Quality of life issues in individuals with spinal cord injury. Archives of Physical Medicine and Rehabilitation, 83(12), S18S25.CrossRefGoogle ScholarPubMed
Tate, D. G., Boninger, M. L., & Jackson, A. B. (2011). Future directions for spinal cord injury research: Recent developments and model systems contributions. Archives of Physical Medicine and Rehabilitation, 92(3), 509515.CrossRefGoogle ScholarPubMed
Taylor, S. F., Kornblum, S., Lauber, E. J., Minoshima, S., & Koeppe, R. A. (1997). Isolation of specific interference processing in the Stroop task: PET activation studies. Neuroimage, 6(2), 8192.CrossRefGoogle ScholarPubMed
Tenenbaum, J. B. (1999). Bayesian modeling of human concept learning. In Kearns, M. S., Solla, S. A., & Cohn, D. A. (Eds.), Advances in neural information processing systems (pp. 5965). Cambridge, MA: MIT Press.Google Scholar
Theorell, T., & Hasselhorn, H. M. (2005). On cross-sectional questionnaire studies of relationships between psychosocial conditions at work and health – are they reliable?. International Archives of Occupational and Environmental Health, 78(7), 517522.CrossRefGoogle ScholarPubMed
Thomson, J. J. (1985). Double effect, triple effect and the trolley problem: Squaring the circle in looping cases. Yale Law Journal, 94(6), 13951415.CrossRefGoogle Scholar
Tian, M., Chen, Q., Zhang, Y., Du, F., Hou, H., Chao, F., & Zhang, H. (2014). PET imaging reveals brain functional changes in internet gaming disorder. European Journal of Nuclear Medicine and Molecular Imaging, 41(7), 13881397.CrossRefGoogle ScholarPubMed
Tikka, P., Väljamäe, A., de Borst, A. W., Pugliese, R., Ravaja, N., Kaipainen, M., et al. (2012). Enactive cinema paves way for understanding complex real-time social interaction in neuroimaging experiments. Frontiers in Human Neuroscience, 6, 298. 10.3389/fnhum.2012.00298.CrossRefGoogle ScholarPubMed
Tindell, D. R., & Bohlander, R. W. (2012). The use and abuse of cell phones and text messaging in the classroom: A survey of college students. College Teaching, 60(1), 19.CrossRefGoogle Scholar
Tomb, I., Hauser, M., Deldin, P., & Caramazza, A. (2004). Do Somatic markers mediate decisions on the gambling task? Nature Neuroscience, 5, 11031104.CrossRefGoogle Scholar
Townsend, D. W., Valk, P. E., & Maisey, M. N. (2005). Positron emission tomography. Springer-Verlag London Limited.Google Scholar
Treder, M. S., & Blankertz, B. (2010). Research covert attention and visual speller design in an ERP-based brain-computer interface. Behavioral & Brain Functions, 6.CrossRefGoogle Scholar
Trick, L. M., Jaspers-Fayer, F., & Sethi, N. (2005). Multiple-object tracking in children: The “Catch the Spies” task. Cognitive Development, 20, 373387.CrossRefGoogle Scholar
Trost, Z., & Parsons, T. D. (2014). Beyond distraction: Virtual reality graded exposure therapy as treatment for pain-related fear and disability in chronic pain. Journal of Applied Biobehavioral Research, 19, 106126.CrossRefGoogle Scholar
Troyer, A. K., Rowe, G., Murphy, K. J., Levine, B., Leach, L., & Hasher, L. (2014). Development and evaluation of a self-administered on-line test of memory and attention for middle-aged and older adults. Frontiers in Aging Neuroscience, 6.CrossRefGoogle ScholarPubMed
Tupper, D. E., & Cicerone, K. D. (Eds.) (1990). The neuropsychology of everyday life: Assessment and basic competencies (Vol. 2). Boston, MA: Kluwer Academic.CrossRefGoogle Scholar
Tupper, D. E., & Cicerone, K. D. (1991). The neuropsychology of everyday life: Issues in development and rehabilitation (Vol. 3). Boston, MA: Kluwer Academic.Google Scholar
Turel, O., & Serenko, A. (2012). The benefits and dangers of enjoyment with social networking websites. European Journal of Information Systems, 21(5), 512528.CrossRefGoogle Scholar
Turel, O., He, Q., Xue, G., Xiao, L., & Bechara, A. (2014). Examination of neural systems sub-serving Facebook “addiction.” Psychological Reports, 115(3), 675695.CrossRefGoogle ScholarPubMed
Tversky, A. (1977). Features of similarity. Psychological Review, 84, 327352.CrossRefGoogle Scholar
Uddin, L. Q., & Menon, V. (2009). The anterior insula in autism: Under-connected and under-examined. Neuroscience & Biobehavioral Reviews, 33(8), 11981203.CrossRefGoogle ScholarPubMed
Uncapher, M. R., Thieu, M. K., & Wagner, A. D. (2015). Media multitasking and memory: Differences in working memory and long-term memory. Psychonomic Bulletin & Review, 18.Google Scholar
Ursu, C. (2012). Techniques for securing web content. Journal of Mobile, Embedded and Distributed Systems, 4(2), 6379.Google Scholar
Usakli, A. B., & Gurkan, S. (2010). Design of a novel efficient human–computer interface: An electrooculagram based virtual keyboard. Instrumentation and Measurement, IEEE Transactions on, 59(8), 20992108.CrossRefGoogle Scholar
Usoh, M., Catena, E., Arman, S., & Slater, M. (2000). Using presence questionnaires in reality. Presence, 9(5), 497503.CrossRefGoogle Scholar
Van Damme, S., Crombez, G., & Eccleston, C. (2004). Disengagement from pain: The role of catastrophic thinking about pain. Pain, 107(1–2), 7076.CrossRefGoogle ScholarPubMed
Van Damme, S., et al.: Keeping pain in mind (2010). A motivational account of attention to pain. Neuroscience and Biobehavioral Reviews, 34(2), 204213.CrossRefGoogle ScholarPubMed
van der Hoort, B., Guterstam, A., & Ehrsson, H. H. (2011). Being Barbie: The size of one’s own body determines the perceived size of the world. PLoS One, 6, e20195. doi: 10.1371/journal.pone.0020195.CrossRefGoogle ScholarPubMed
Van Gorp, W. G., Rabkin, J. G., Ferrando, S. J., Mintz, J., Ryan, E., Borkowski, T., & Mcelhiney, M. (2007). Neuropsychiatric predictors of return to work in HIV/AIDS. Journal of the International Neuropsychological Society, 13(01), 8089.CrossRefGoogle ScholarPubMed
van Holst, R. J., Lemmens, J. S., Valkenburg, P. M., Peter, J., Veltman, D. J., & Goudriaan, A. E. (2012). Attentional bias and disinhibition toward gaming cues are related to problem gaming in male adolescents. Journal of Adolescent Health, 50(6), 541546.CrossRefGoogle ScholarPubMed
Van Overwalle, F., & Baetens, K. (2009). Understanding others’ actions and goals by mirror and mentalizing systems: A meta-analysis. Neuroimage, 48(3), 564584.CrossRefGoogle ScholarPubMed
Van Oyen Witvliet, C., & Vrana, S.R. (1995). Psychophysiological responses as indices of affective dimensions. Psychophysiology, 32, 436443.CrossRefGoogle Scholar
Van Rooij, A. J., Schoenmakers, T. M., Vermulst, A. A., Van Den Eijnden, R. J., & Van De Mheen, D. (2011). Online video game addiction: Identification of addicted adolescent gamers. Addiction, 106(1), 205212.CrossRefGoogle ScholarPubMed
Vance, A., Anderson, B. B., Kirwan, C. B., & Eargle, D. (2014). Using measures of risk perception to predict information security behavior: Insights from electroencephalography (EEG). J. Assoc. Inf. Syst, 15(10), 679722.Google Scholar
Verdejo-García, A., & Bechara, A. (2009). A somatic marker theory of addiction. Neuropharmacology, 56, 4862.CrossRefGoogle ScholarPubMed
Vi, C., & Subramanian, S. (2012, May). Detecting error-related negativity for interaction design. In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems (pp. 493502). ACM.CrossRefGoogle Scholar
Vingilis, E., Seeley, J., Wiesenthal, D. L., Wickens, C. M., Fischer, P., & Mann, R. E. (2013). Street racing video games and risk-taking driving: An Internet survey of automobile enthusiasts. Accident Analysis & Prevention, 50, 17.CrossRefGoogle ScholarPubMed
Vlaeyen, J., et al. (2012). Pain-related fear: Exposure-based treatment for chronic pain. Seattle: IASP Press.Google Scholar
Vogel, J. J., Vogel, D. S., Cannon-Bowers, J., Bowers, C. A., Muse, K., & Wright, M. (2006). Computer gaming and interactive simulations for learning: A meta-analysis. Journal of Educational Computing Research, 34, 229243.CrossRefGoogle Scholar
vom Brocke, J., & Liang, T. P. (2014). Guidelines for neuroscience studies in information systems research. Journal of Management Information Systems, 30(4), 211234.CrossRefGoogle Scholar
Von Der Heide, R., Vyas, G., & Olson, I. R. (2014). The social network-network: Size is predicted by brain structure and function in the amygdala and paralimbic regions. Social Cognitive and Affective Neuroscience, 9(12), 19621972.CrossRefGoogle ScholarPubMed
Vossel, S., Geng, J. J., & Fink, G. R. (2014). Dorsal and ventral attention systems distinct neural circuits but collaborative roles. The Neuroscientist, 20(2), 150159.CrossRefGoogle ScholarPubMed
Vowles, K. E., & Thomson, M. (2011). Acceptance and commitment therapy for chronic pain. In McCracken, L. (Ed.), Mindfulness and acceptance in behavioral medicine (pp. 3160). Oakland: Context Press.Google Scholar
Vytal, K., & Hamann, S. (2010). Neuroimaging support for discrete neural correlates of basic emotions: A voxel-based meta-analysis. Journal of Cognitive Neuroscience, 22(12), 28642885.CrossRefGoogle ScholarPubMed
Waggett, J. L., & Lane, D. M. (1990). Sex differences in the personality and cognitive correlates of spatial ability. Journal of Personality and Social Psychology, 58, 10371039.CrossRefGoogle ScholarPubMed
Wagner, B., & Maercker, A. (2010). Internet-based intervention for posttraumatic stress disorder. In Internet use in the aftermath of trauma (255269). Amsterdam: IOS Press.Google Scholar
Wagner, D. D., Haxby, J. V., & Heatherton, T. F. (2012). The representation of self and person knowledge in the medial prefrontal cortex. Wiley Interdisciplinary Reviews: Cognitive Science, 3(4), 451470.Google ScholarPubMed
Waldzus, S., Schubert, T. W., & Paladino, M. P. (2012). Are attitudes the problem, and do psychologists have the answer? Relational cognition underlies intergroup relations. Behavioral and Brain Sciences, 35(06), 449450.CrossRefGoogle ScholarPubMed
Walter, H., Adenzato, M., Ciaramidaro, A., Enrici, I., Pia, L., & Bara, B. G. (2004). Understanding intentions in social interaction: The role of the anterior paracingulate cortex. Journal of Cognitive Neuroscience, 16, 18541863.CrossRefGoogle ScholarPubMed
Wang, H., Jin, C., Yuan, K., Shakir, T. M., Mao, C., Niu, X., … & Zhang, M. (2015). The alteration of gray matter volume and cognitive control in adolescents with Internet gaming disorder. Frontiers in Behavioral Neuroscience, 9.CrossRefGoogle ScholarPubMed
Wang, L., Zhu, C., He, Y., Zang, Y., Cao, Q., Zhang, H., … & Wang, Y. (2009). Altered small-world brain functional networks in children with attention-deficit/hyperactivity disorder. Human Brain Mapping, 30(2), 638649.CrossRefGoogle ScholarPubMed
Wang, Z., & Tchernev, J. M. (2012). The “myth” of media multitasking: Reciprocal dynamics of media multitasking, personal needs, and gratifications. Journal of Communication, 62(3), 493513.CrossRefGoogle Scholar
Ward, A. F. (2013). Supernormal: How the Internet is changing our memories and our minds. Psychological Inquiry, 24(4), 341348.CrossRefGoogle Scholar
Ware, M. P., McCullagh, P. J., McRoberts, A., Lightbody, G., Nugent, C., McAllister, G., … & Martin, S. (2010, December). Contrasting levels of accuracy in command interaction sequences for a domestic brain-computer interface using SSVEP. In Biomedical Engineering Conference (CIBEC), 2010 5th Cairo International (pp. 150153). IEEE.CrossRefGoogle Scholar
Watt, D. (1999). Consciousness and emotion: Review of Jaak Panksepp’s “Affective Neuroscience.” Journal of Consciousness Studies 6, 191200.Google Scholar
Weber, R., Ritterfeld, U., & Mathiak, K. (2006). Does playing violent video games induce aggression? Empirical evidence of a functional magnetic resonance imaging study. Media Psychology, 8(1), 3960.CrossRefGoogle Scholar
Wegner, D. M., Giuliano, T., & Hertel, P. T. (1985). Cognitive interdependence in close relationships. In Compatible and incompatible relationships (pp. 253276). New York: Springer.CrossRefGoogle Scholar
Weinstein, A. M. (2010). Computer and video game addiction – A comparison between game users and non-game users. The American Journal of Drug and Alcohol Abuse, 36(5), 268276.CrossRefGoogle ScholarPubMed
Welsh, M. C., & Pennington, B. F. (1988). Assessing frontal lobe functioning in children: Views from developmental psychology. Developmental Neuropsychology, 4(3), 199230.CrossRefGoogle Scholar
Welsh, M. C., Pennington, B. F., & Groisser, D. B. (1991). A normative-developmental study of executive function: A window on prefrontal function in children. Developmental Neuropsychology, 7(2), 131149.CrossRefGoogle Scholar
Weng, C. B., Qian, R. B., Fu, X. M., Lin, B., Han, X. P., Niu, C. S., & Wang, Y. H. (2013). Gray matter and white matter abnormalities in online game addiction. European Journal of Radiology, 82(8), 13081312.CrossRefGoogle ScholarPubMed
Wesselmann, E. D., Wirth, J. H., Mroczek, D. K., & Williams, K. D. (2012). Dial a feeling: Detecting moderation of affect decline during ostracism. Personality and Individual Differences, 53, 580586.CrossRefGoogle Scholar
West, G. L., Stevens, S. A., Pun, C., & Pratt, J. (2008). Visuospatial experience modulates attentional capture: Evidence from action video game players. Journal of Vision, 8, 13. doi: 10.1167/8.16.13.CrossRefGoogle ScholarPubMed
Widyanto, L., & McMurran, M. (2004). The psychometric properties of the Internet addiction test. CyberPsychology & Behavior, 7(4), 443450.CrossRefGoogle ScholarPubMed
Wiederhold, B. K. (2014). The role of psychology in enhancing cybersecurity. Cyberpsychology, Behavior, and Social Networking, 17(3), 131132.CrossRefGoogle ScholarPubMed
Wiederhold, B. K., & Rizzo, A. S. (2005). Virtual reality and applied psychophysiology. Applied Psychophysiology and Biofeedback, 30(3), 183185.CrossRefGoogle ScholarPubMed
Wilhelm, F. H., Pfaltz, M. C., Gross, J. J., Mauss, I. B., Kim, S. I., & Wiederhold, B. K. (2005). Mechanisms of virtual reality exposure therapy: The role of the behavioral activation and behavioral inhibition systems. Applied Psychophysiology and Biofeedback, 30(3), 271284.CrossRefGoogle ScholarPubMed
Wilhelm, F. H., & Roth, W. T. (1998). Taking the laboratory to the skies: Ambulatory assessment of self-report, autonomic, and respiratory responses in flying phobia. Psychophysiology, 5, 596606.CrossRefGoogle Scholar
Willcutt, E. G., Doyle, A. E., Nigg, J. T., Faraone, S. V., & Pennington, B. F. (2005). Validity of the executive function theory of attention-deficit/hyperactivity disorder: A meta-analytic review. Biological Psychiatry, 57(11), 13361346.CrossRefGoogle ScholarPubMed
Williams, J. M. (1988). Everyday cognition and the ecological validity of intellectual and neuropsychological tests. In Williams, J. M. & Long, C. J. (Eds.), Cognitive approaches to neuropsychology (pp. 123141). New York: Plenum.CrossRefGoogle Scholar
Williams, K. D. (2007). Ostracism. Annual Review of Psychology, 58, 425452.CrossRefGoogle ScholarPubMed
Williams, L. M., Phillips, M. L., Brammer, M. J., Skerrett, D., Lagopoulos, J., Rennie, C., … & Gordon, E. (2001). Arousal dissociates amygdala and hippocampal fear responses: Evidence from simultaneous fMRI and skin conductance recording. Neuroimage, 14(5), 10701079.CrossRefGoogle ScholarPubMed
Willison, R., & Warkentin, M. (2013). Beyond deterrence: An expanded view of employee computer abuse. MIS Quarterly, 37(1), 120.CrossRefGoogle Scholar
Wilms, M., Schilbach, L., Pfeiffer, U., Bente, G., Fink, G. R., & Vogeley, K. (2010). It’s in your eyes – Using gaze-contingent stimuli to create truly interactive paradigms for social cognitive and affective neuroscience. Social Cognitive and Affective Neuroscience, 5, 98107.CrossRefGoogle ScholarPubMed
Wilson, B., Cockburn, J., & Baddeley, A. (1985). The Rivermead Behavioral Memory Test. Thames Valley Test Co. Reading and National Rehabilitation Services, Gaylord.Google Scholar
Wilson, B. A. (1993). Ecological validity of neuropsychological assessment: Do neuropsychological indexes predict performance in everyday activities? Applied & Preventive Psychology, 2, 209215.CrossRefGoogle Scholar
Wilson, B. A. (2000). Compensating for cognitive deficits following brain injury. Neuropsychology Review, 10(4), 233243.CrossRefGoogle ScholarPubMed
Wilson, B. A. (2011). Cutting edge developments in neuropsychological rehabilitation and possible future directions. Brain Impairment, 12, 3342.CrossRefGoogle Scholar
Wilson, B. A. (2013). Neuropsychological rehabilitation: State of the science. South African Journal of Psychology, 43(3), 267277.CrossRefGoogle Scholar
Wilson, B. A., Alderman, N., Burgess, P. W., Emslie, H., & Evans, J. J. (1996). Behavioral Assessment of the Dysexecutive Syndrome. Bury St. Edmunds: Thames Valley Test Company.Google Scholar
Wilson, B. A., Shiel, A., Foley, J., Emslie, H., Groot, Y., Hawkins, K., et al. (2004). Cambridge Test of Prospective Memory. Bury St. Edmunds, England: Thames Valley Test Company.Google Scholar
Wilson, B., Cockburn, J., Baddeley, A., & Hiorns, R. (1989). The development and validation of a test battery for detecting and monitoring everyday memory problems. Journal of Clinical and Experimental Neuropsychology, 11(6), 855870.CrossRefGoogle ScholarPubMed
Wilson, R. E., Gosling, S. D., & Graham, L. T. (2012). A review of Facebook research in the social sciences. Perspectives on Psychological Science, 7, 203220.CrossRefGoogle ScholarPubMed
Wilson-Mendenhall, C. D., Barrett, L. F., & Barsalou, L. W. (2013). Neural evidence that human emotions share core affective properties. Psychological Science, 24(6), 947956.CrossRefGoogle ScholarPubMed
Windmann, S., Kirsch, P., Mier, D., Stark, R., Walter, B., Gunturkun, O., et al. (2006). On framing effects in decision making: Linking lateral versus medial orbitofrontal cortex activation to choice outcome processing. Journal of Cognitive Neuroscience, 18(7), 11981211.CrossRefGoogle ScholarPubMed
Wirth, J. H., Sacco, D. F., Hugenberg, K., & Williams, K. D. (2010). Eye gaze as relational evaluation: Averted eye gaze leads to feelings of ostracism and relational devaluation. Personality and Social Psychology Bulletin, 36, 869882.CrossRefGoogle ScholarPubMed
Wirth, W., Hartmann, T., et al. (2007). Process model of the formation of spatial presence experiences. Media Psychology, 9(3), 493493.CrossRefGoogle Scholar
Wise, K., Alhabash, S., & Park, H. (2010). Emotional responses during social information seeking on Facebook. Cyberpsychology, Behavior, and Social Networking, 13(5), 555562.CrossRefGoogle ScholarPubMed
Wise, R. A. (2008). Dopamine and reward: The anhedonia hypothesis 30 years on. Neurotoxicity Research, 14(2–3), 169183.CrossRefGoogle Scholar
Witmer, B. G., & Singer, M. J. (1998). Measuring presence in virtual environments: A presence questionnaire. Presence: Teleoperators and Virtual Environments, 7(3), 225240.CrossRefGoogle Scholar
Wixted, J. T., & Ebbesen, E. B. (1997). Genuine power curves in forgetting: A quantitative analysis of individual subject forgetting functions. Memory & Cognition, 25, 731739.CrossRefGoogle ScholarPubMed
Wood, E., Zivcakova, L., Gentile, P., Archer, K., De Pasquale, D., & Nosko, A. (2012). Examining the impact of off-task multi-tasking with technology on real-time classroom learning. Computers & Education, 58(1), 365374.CrossRefGoogle Scholar
Wood, J. N., Romero, S. G., Knutson, K. M., & Grafman, J. (2005). Representation of attitudinal knowledge: Role of prefrontal cortex, amygdala and parahippocampal gyrus. Neuropsychologia, 43(2), 249259.CrossRefGoogle ScholarPubMed
Woodward, A. L., Sommerville, J. A., Gerson, S., Henderson, A. M., & Buresh, J. (2009). The emergence of intention attribution in infancy. Psychology of Learning and Motivation, 51, 187222.CrossRefGoogle ScholarPubMed
Wouters, P., Van Nimwegen, C., Van Oostendorp, H., & Van Der Spek, E. D. (2013). A meta-analysis of the cognitive and motivational effects of serious games. Journal of Educational Psychology, 105(2), 249.CrossRefGoogle Scholar
Wu, D., Lance, B., & Parsons, T. D. (2013). Collaborative filtering for brain-computer interaction using transfer learning and active class selection. PloS One, 118.CrossRefGoogle Scholar
Wu, D., & Parsons, T. D. (2011a). Inductive transfer learning for handling individual differences in affective computing. Lecture Notes in Computer Science, 6975, 142151.CrossRefGoogle Scholar
Wu, D., & Parsons, T. D. (2011b). Active class selection for arousal classification. Lecture Notes in Computer Science, 6975, 132141.CrossRefGoogle Scholar
Wu, D., Parsons, T. D., & Narayanan, S. S. (2010). Acoustic feature analysis in speech emotion primitives estimation. In INTERSPEECH (pp. 785788).CrossRefGoogle Scholar
Wu, S., & Spence, I. (2013). Playing shooter and driving videogames improves top-down guidance in visual search. Attention, Perception and Psychophysics, 75, 673686.CrossRefGoogle ScholarPubMed
Xing, L., Yuan, K., Bi, Y., Yin, J., Cai, C., Feng, D., … & Xue, T. (2014). Reduced fiber integrity and cognitive control in adolescents with Internet gaming disorder. Brain Research, 1586, 109117.CrossRefGoogle ScholarPubMed
Xu, H., Luo, X. R., Carroll, J. M., & Rosson, M. B. (2011). The personalization privacy paradox: An exploratory study of decision making process for location-aware marketing. Decision Support Systems, 51(1), 4252.CrossRefGoogle Scholar
Xu, S. (2012). Internet addicts’ behavior impulsivity: Evidence from the Iowa Gambling Task. Acta Psychologica Sinica, 44, 15231534.CrossRefGoogle Scholar
Xu, S., Wang, Z. J., & David, P. (2016). Media multitasking and well-being of university students. Computers in Human Behavior, 55, 242250.CrossRefGoogle Scholar
Yang, H., Yang, S., & Isen, A. M. (2013). Positive affect improves working memory: Implications for controlled cognitive processing. Cognition & Emotion, 27(3), 474482.CrossRefGoogle ScholarPubMed
Yap, J. Y., & Lim, S. W. H. (2013). Media multitasking predicts unitary versus splitting visual focal attention. Journal of Cognitive Psychology, 25(7), 889902.CrossRefGoogle Scholar
Yarkoni, T., Poldrack, R. A., Nichols, T. E., Van Essen, D. C., & Wager, T. D. (2011). Large-scale automated synthesis of human functional neuroimaging data. Nat. Methods, 8, 665670.doi:10.1038/nmeth.1635.CrossRefGoogle ScholarPubMed
Ybarra, M. L., Huesmann, L. R., Korchmaros, J. D., & Reisner, S. L. (2014). Cross-sectional associations between violent video and computer game playing and weapon carrying in a national cohort of children. Aggressive Behavior, 40(4), 345358.CrossRefGoogle Scholar
Ybarra, O., Burnstein, E., Winkielman, P., Keller, M. C., Manis, M., Chan, E., & Rodriguez, J. (2008). Mental exercising through simple socializing: Social interaction promotes general cognitive functioning. Personality and Social Psychology Bulletin, 34(2), 248259.CrossRefGoogle ScholarPubMed
Ybarra, O., & Winkielman, P. (2012). On-line social interactions and executive functions. Frontiers in Human Neuroscience, 6.CrossRefGoogle ScholarPubMed
Yee, N., Bailenson, J. N., Urbanek, M., Chang, F., & Merget, D. (2007). The unbearable likeness of being digital: The persistence of nonverbal social norms in online virtual environments. The Journal of CyberPsychology and Behavior, 10, 115121. doi:10.1089/cpb.2006.9984.CrossRefGoogle ScholarPubMed
Yen, J. Y., Ko, C. H., Yen, C. F., Wu, H. Y., & Yang, M. J. (2007). The comorbid psychiatric symptoms of Internet addiction: Attention deficit and hyperactivity disorder (ADHD), depression, social phobia, and hostility. Journal of Adolescent Health, 41(1), 9398.CrossRefGoogle ScholarPubMed
Yerkes, R.M., & Dodson, J.D. (1908). The relation of strength of stimulus to rapidity of habit-formation. Journal of Comparative Neurology and Psychology, 18, 459482.CrossRefGoogle Scholar
Ylvisaker, M., Szekeres, S. F., & Feeney, T. (2001). Communication disorders associated with traumatic brain injury. In Chapey, R. (Ed.), Language intervention strategies in aphasia and related neurogenic communication disorders (pp. 745800). Philadelphia: Lippincott, Williams & Wilkins.Google Scholar
Young, K. S. (1998a). Caught in the net. New York: John Wiley.Google Scholar
Young, K. S. (1998b). Internet addiction: The emergence of a new clinical disorder. CyberPsychology & Behavior, 1(1), 237244.CrossRefGoogle Scholar
Young, K. S. (1999). The research and controversy surrounding internet addiction. CyberPsychology & Behavior, 2, 381383.CrossRefGoogle ScholarPubMed
Young, K. (2015). The evolution of Internet addiction. Addictive Behaviors. Advance online publication. Retrieved from www.sciencedirect.com/science/article/pii/ S0306460315001884.Google Scholar
Young, K. S. (2016). The evolution of Internet addiction disorder. In Internet addiction (pp. 317). Switzerland: Springer International Publishing.Google Scholar
Yuan, K., Cheng, P., Dong, T., Bi, Y., Xing, L., Yu, D., … & Qin, W. (2013). Cortical thickness abnormalities in late adolescence with online gaming addiction. PloS One, 8(1), e53055.CrossRefGoogle ScholarPubMed
Yuan, K., Qin, W., Wang, G., Zeng, F., Zhao, L., Yang, X., … & Gong, Q. (2011). Microstructure abnormalities in adolescents with Internet addiction disorder. PloS One, 6(6), e20708.CrossRefGoogle ScholarPubMed
Yuan, K., Qin, W., Yu, D., Bi, Y., Xing, L., Jin, C., & Tian, J. (2015). Core brain networks interactions and cognitive control in Internet gaming disorder individuals in late adolescence/early adulthood. Brain Structure and Function, 116.Google Scholar
Yuste, R. (2015). From the neuron doctrine to neural networks. Nature Reviews Neuroscience, 16(8), 487497.CrossRefGoogle ScholarPubMed
Zadro, L., Williams, K. D., & Richardson, R. (2004). How low can you go? Ostracism by a computer lowers belonging, control, self-esteem and meaningful existence. Journal of Experimental Social Psychology, 40, 560567.CrossRefGoogle Scholar
Zaki, J., & Ochsner, K. (2009). The need for a cognitive neuroscience of naturalistic social cognition. Annals of the New York Academy of Sciences, 1167(1), 1630.CrossRefGoogle ScholarPubMed
Zakzanis, K. K., & Azarbehi, R. (2014). Introducing BRAIN screen: Web-based real-time examination and interpretation of cognitive function. Applied Neuropsychology: Adult, 21(2), 7786.CrossRefGoogle Scholar
Zald, D. H., & Kim, S. W. (1996). Anatomy and function of the orbital frontal cortex: II. Function and relevance to obsessive–compulsive disorder. Journal of Neuropsychiatry and Clinical Neurosciences, 8(3), 249261.Google ScholarPubMed
Zanon, M., Novembre, G., Zangrando, N., Chittaro, L., & Silani, G. (2014). Brain activity and prosocial behavior in a simulated life-threatening situation. Neuroimage, 98, 134146.CrossRefGoogle Scholar
Zappala, G., Thiebaut de Schotten, M., & Eslinger, P. J. (2012). What can we gain with diffusion tensor imaging? Cortex, 48(2): 156165.CrossRefGoogle ScholarPubMed
Zelazo, P. D., Müller, U., Frye, D., Marcovitch, S., Argitis, G., Boseovski, J., … & Carlson, S. M. (2003). The development of executive function in early childhood. Monographs of the Society for Research in Child Development, 68, i151.CrossRefGoogle ScholarPubMed
Zhou, Y., Lin, F. C., Du, Y. S., Zhao, Z. M., Xu, J. R., & Lei, H. (2011). Gray matter abnormalities in Internet addiction: A voxel-based morphometry study. European Journal of Radiology, 79(1), 9295.CrossRefGoogle ScholarPubMed
Zhou, Z., Yuan, G., & Yao, J. (2012). Cognitive biases toward Internet game-related pictures and executive deficits in individuals with an Internet game addiction. PloS One, 7(11), e48961.CrossRefGoogle ScholarPubMed
Zickefoose, S., Hux, K., Brown, J., & Wulf, K. (2013). Let the games begin: A preliminary study using attention process training-3 and Lumosity brain games to remediate attention deficits following traumatic brain injury. Brain Injury 27(6), 707716.CrossRefGoogle Scholar
Zwolinski, J. (2012). Psychological and neuroendocrine reactivity to ostracism. Aggressive Behavior, 38, 108125CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • References
  • Thomas D. Parsons, University of North Texas
  • Book: Cyberpsychology and the Brain
  • Online publication: 13 July 2017
  • Chapter DOI: https://doi.org/10.1017/9781316151204.017
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • References
  • Thomas D. Parsons, University of North Texas
  • Book: Cyberpsychology and the Brain
  • Online publication: 13 July 2017
  • Chapter DOI: https://doi.org/10.1017/9781316151204.017
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • References
  • Thomas D. Parsons, University of North Texas
  • Book: Cyberpsychology and the Brain
  • Online publication: 13 July 2017
  • Chapter DOI: https://doi.org/10.1017/9781316151204.017
Available formats
×