Skip to main content Accessibility help
×
Hostname: page-component-84b7d79bbc-4hvwz Total loading time: 0 Render date: 2024-07-30T10:27:32.331Z Has data issue: false hasContentIssue false

4 - Photodiodes and other junction-based detectors

Published online by Cambridge University Press:  09 November 2009

George Rieke
Affiliation:
University of Arizona
Get access

Summary

A photodiode is based on a junction between two oppositely doped zones in a sample of semiconductor. These adjacent zones create a region depleted of charge carriers, producing a high impedance. In silicon and germanium, this arrangement permits construction of detectors that operate at high sensitivity even at room temperature. In semiconductors whose bandgaps permit intrinsic operation in the 1–15 μm region, a junction is often necessary to achieve good performance at any temperature. Because these detectors operate through intrinsic rather than extrinsic absorption, they can achieve high quantum efficiency in small volumes. However, high performance photodiodes are not available at wavelengths longer than about 15 μm because of the lack of high-quality intrinsic semiconductors with extremely small bandgaps. Standard techniques of semiconductor device fabrication allow photodiodes to be constructed in arrays with many thousands, even millions, of pixels. Photodiodes are usually the detectors of choice for 1–6 μm and are often useful not only at longer infrared wavelengths but also in the visible and near ultraviolet.

Other detectors use different types of junctions. Schottky diodes are based on the interface between a semiconductor and a metal. Quantum wells are the foundation for another class of detector — they are formed when thin layers of different, but similar, crystals are grown on top of one another.

Type
Chapter
Information
Detection of Light
From the Ultraviolet to the Submillimeter
, pp. 78 - 115
Publisher: Cambridge University Press
Print publication year: 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×