Skip to main content Accessibility help
×
Hostname: page-component-77c89778f8-n9wrp Total loading time: 0 Render date: 2024-07-16T12:11:31.781Z Has data issue: false hasContentIssue false

14 - Diatoms as indicators of environmental change in Antarctic and subantarctic freshwaters

from Part III - Diatoms as indicators in Arctic, Antarctic, and alpine lacustrine environments

Published online by Cambridge University Press:  05 June 2012

Sarah A. Spaulding
Affiliation:
University of Colorado
Bart Van de Vijver
Affiliation:
National Botanic Garden of Belgium
Dominic A. Hodgson
Affiliation:
British Antarctic Survey
Diane M. McKnight
Affiliation:
University of Colorado
Elie Verleyen
Affiliation:
Ghent University
Lee Stanish
Affiliation:
University of Colorado
John P. Smol
Affiliation:
Queen's University, Ontario
Eugene F. Stoermer
Affiliation:
University of Michigan, Ann Arbor
Get access

Summary

Introduction

The polar regions, both Arctic and Antarctic, show strong evidence of climate change affecting freshwater species, communities, and ecosystems, and are expected to undergo rapid and continued change in the future (IPCC, 2007). Diatoms in the freshwater and brackish habitats of inland waters of the Antarctic provide valuable records of their historic and modern environmental status. Antarctic habitats also contain a unique biodiversity of species many of which are found nowhere else on Earth. In this chapter, we review investigations using diatoms as indicators of environmental change in Antarctic and subantarctic island habitats, including lakes and ponds, streams and seepage areas, mosses and soils, cryoconite holes, brine lakes, and remarkable subsurface glacial lakes.

The Antarctic continent holds the vast majority of the Earth's freshwater, but the water is largely inaccessible because it is in the form of ice. Life is dependent upon liquid water, a substance scarce in Antarctica. Less than 0.4% of the continent is ice free, and it is within these ice-free regions that freshwater lakes and ephemeral streams form, fed by the melting of snow and glacial ice and occasional precipitation. These ice-free regions are located primarily near the Antarctic coastline (Figure 14.1). Of these regions, the “desert oases” of East Antarctica are considered to be the coldest, driest regions on Earth. In the limited parts of these oases where liquid water is available, even if present for only a few short weeks of the year, there is life (McKnight et al., 1999).

Type
Chapter
Information
The Diatoms
Applications for the Environmental and Earth Sciences
, pp. 267 - 284
Publisher: Cambridge University Press
Print publication year: 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abyzov, S. S., Mitskevich, I. N., & Poglazova, M. N. (1998). Microflora of the deep glacial horizons of central Antarctica. Microbiology, 67, 66–73.Google Scholar
Alger, A. S., McKnight, D. M., Spaulding, S. A., et al. (1997). Ecological Processes in a Cold Desert Ecosystem: the Abundance and Species Distribution of Algal Mats in Glacial Meltwater Streams in Taylor Valley, Antarctica. Boulder, CO: Institute of Arctic and Alpine Research Occasional Paper, no. 51.Google Scholar
Andrássy, I. (1998). Nematodes in the sixth continent. Journal of Nematode Systematics and Morphology, 1, 107–86.Google Scholar
Bard, E., Rostek, F. & Sonzogni, C. (1997). Interhemispheric synchrony of the last deglaciation inferred from alkenone palaeothermometry. Nature, 385, 707–10.CrossRefGoogle Scholar
Bentley, M. J., Hodgson, D. A., Smith, J. A., & Cox, N. J. (2005). Relative sea level curves for the South Shetland Islands and Marguerite Bay, Antarctic Peninsula. Quaternary Science Reviews, 24, 1203–16.CrossRefGoogle Scholar
Birks, H. J. B. (1994). The importance of pollen and diatom taxonomic precision in quantitative palaeoenvironmental reconstructions. Review of Palaeobotany and Palynology, 83, 107–17.CrossRefGoogle Scholar
Björck, S., Håkansson, H., Olsson, S., Barnekow, L., & Janssens, J. (1993). Palaeoclimatic studies in South Shetland Islands, Antarctica, based on numerous stratigraphic variables in lake sediments. Journal of Paleolimnology, 8, 233–72.CrossRefGoogle Scholar
Björck, S., Olsson, S., Ellis-Evans, C., et al. (1996). Late Holocene palaeoclimatic records from lake sediments on James Ross Island, Antarctica. Palaeogeography, Palaeoclimatology, Palaeoecology, 121, 195–220.CrossRefGoogle Scholar
Bourrelly, P. & Manguin, E. (1954). Contribution à la flore algale d'eau douce des îles Kerguelen. Mémoires de l'Institut Scientifique de Madagascar, 5, 7–58.Google Scholar
Broady, P. A. (1989). Survey of algae and other terrestrial biota at Edward VII Peninsula, Marie Byrd Land. Antarctic Science, 1, 215–24.CrossRefGoogle Scholar
Broecker, W. (1996). Paleoclimatology. Geotimes, 41, 40–1.Google Scholar
Bunt, J. S. (1954). A comparative account of the terrestrial diatoms of Macquarie Island. Proceedings of the Linnean Society of New South Wales, LXXIX, parts 1–2, 34–57.Google Scholar
Burckle, L. H., Gayley, R. I., Ram, M., & Petit, J. R. (1988). Diatoms in Antarctic ice cores: some implications for the glacial history of Antarctica. Geology, 16, 326–9.2.3.CO;2>CrossRefGoogle Scholar
Burckle, L. H. & Potter, N. Jr. (1996). Pliocene–Pleistocene diatoms in Paleozoic and Mesozoic sedimentary and igneous rocks from Antarctica: a Sirius problem solved. Geology, 24, 235–8.2.3.CO;2>CrossRefGoogle Scholar
Carlson, G. W. (1913). Süsswasseralgen aus der Antarktis, Süd-Georgien und den Falkland Inseln. Wissenshafliche Ergebnisse schwedische Süd-Polar-Expedition 1901–1903. Botanik, 4, 1–94.Google Scholar
Chalmers, M. O., Harper, M. A., & Marshall, W. A. (1996). An Illustrated Catalogue of Airborne Microbiota from the Maritime Antarctic. Cambridge: British Antarctic Survey.Google Scholar
Chinn, T. H. (1993). Physical hydrology of the Dry Valley lakes. In Physical and Biogeochemical Processes in Antarctic Lakes, Antarctic Research Series Vol. 59, ed. Green, W. J. & Friedmann, E. I.. Washington DC: American Geophysical Union, pp. 1–51.Google Scholar
Chipev, N. & Temniskova-Topalova, D. (1999). Diversity dynamics and distribution of diatom assemblages in land habitats on Livingston Island (Antarctica). In Bulgarian Antarctic Research. Life Sciences, ed. Golemansky, V. and Chipev, N., vol. 2, pp. 32–42.
Christner, B. C., Kvitko, B. H., & Reeve, J. N. (2003). Molecular identification of bacteria and eukarya inhabiting an Antarctic cryoconite hole. Extremophiles, 7, 177–83.Google ScholarPubMed
Conovitz, P. A., McKnight, D. M., MacDonald, L. H., Fountain, A. G. & House, H. R. (1998). Hydrologic processes influencing streamflow variation in Fryxell Basin, Antarctica. In Ecosytem Processes in a Polar Desert: The McMurdo Dry Valleys, Antarctica, Antarctic Research Series, Vol. 72. ed. Priscu, J. C.. Washington DC: American Geophysical Union, pp. 93–108.Google Scholar
Convey, P., Gibson, J. A. E., Hillenbrand, C., Hodgson, D. A., Pugh, P. J. A., Smellie, J. L. & Stevens, M. I. (2008). Antarctic terrestrial life – challenging the history of the frozen continent? Biological Reviews, 83, 103–17.CrossRefGoogle ScholarPubMed
Cremer, H., Gore, D., Hultzsch, N., Melles, M., & Wagner, B. (2004). The diatom flora and limnology of lakes in the Amery Oasis, East Antarctica. Polar Biology, 27, 513–31.CrossRefGoogle Scholar
Denton, G. H. & Hughes, T. J. (2002). Reconstructing the Antarctic Ice Sheet at the last glacial maximum. Quaternary Science Review, 21, 193–202.CrossRefGoogle Scholar
Denton, D. H., Prentice, M. L. & Burkle, L. H. (1991). Cenozoic history of the Antarctic Ice Sheet. In The Geology of Antarctica, ed. Tingey, R. J.. Oxford: Oxford University Press, pp. 365–433.Google Scholar
Domack, E. W. & Mayewski, P. A. (1999). Bi-polar ocean linkages: evidence from late-Holocene Antarctic marine and Greenland ice-core records. The Holocene, 9, 247–51.CrossRefGoogle Scholar
Doran, P. T., Fritsen, C. H., McKay, C. P., Priscu, J. C., & Adams, E. E. (2003). Formation and character of an ancient 19 m ice cover and underlying trapped brine in an “ice-sealed” East Antarctic lake. Proceedings of National Academy of Sciences, 100, 26–31.CrossRefGoogle Scholar
Doran, P. T., McKay, C. P., Fountain, A. G., et al. (2008). Hydrologic response to extreme warm and cold summers in the McMurdo Dry Valleys, East Antarctica. Antarctic Science, 20, 499–509.CrossRefGoogle Scholar
Doran, P. T., Priscu, J. C., Berry Lyons, W., et al. (2004). Paleolimnology of ice-covered environments. In Long-term Environmental Change in Arctic and Antarctic Lakes, ed. Pienitz, R., Douglas, M. S. V., & Smol, J.. Dordrecht: Springer, pp. 475–508.CrossRefGoogle Scholar
Doran, P. T., Priscu, J. C., Lyons, W. B., et al. (2002). Antarctic climate cooling and terrestrial ecosystem response. Nature, 415, 517–20.CrossRefGoogle ScholarPubMed
Douglas, M. S. V., Hamilton, P. B., Pienitz, R., & Smol, J. P. (2004). Algal indicators of environmental change in Arctic and Antarctic lakes and ponds. In Long-term Environmental Change in Arctic and Antarctic Lakes, ed. Pienitz, R., Douglas, M., & Smol, J., Dordrecht: Springer, pp. 117–58.Google Scholar
Esposito, R. M. M., Horn, S. L., McKnight, D. M., et al. (2006). Antarctic climate cooling and response of diatoms in glacial meltwater streams. Geophysical Research Letters, 33, L07406.CrossRefGoogle Scholar
Esposito, R. M. M., Spaulding, S. A., McKnight, D. M., et al. (2008). Inland diatoms from the McMurdo Dry Valleys and James Ross Island, Antarctica. Botany, 86, 1378–92.CrossRefGoogle Scholar
Fermani, P., Mataloni, G., & Vijver, B. (2007). Soil microalgal communities on an Antarctic active volcano (Deception Island, South Shetlands). Polar Biology, 30, 1381–93.CrossRefGoogle Scholar
Foreman, C. M., Wolf, C. F., & Priscu, J. C. (2004). Impact of episodic warming events on the physical, chemical and biological relationships of lakes in the McMurdo Dry Valleys, Antarctica. Aquatic Geochemistry, 10, 239–68.CrossRefGoogle Scholar
Fountain, A. G., Tranter, M., Nylen, T. H., Lewis, K. J., & Mueller, D. R. (2004). Evolution of cryoconite holes and their contribution to meltwater runoff from glaciers in the McMurdo Dry Valleys, Antarctica. Journal of Glaciology, 50, 2004, 35–45.CrossRefGoogle Scholar
Frenguelli, J. (1924). Diatomeas de Tierra del Fuego. Anales de la Sociedad Cientifica Argentina, 97, 87–118, 231–66.Google Scholar
Fukushima, H. (1970). Notes on the diatom flora of Antarctic inland waters. In Antarctic Ecology, ed. Holdgate, M. W., London: Academic Press, pp. 628–31.Google Scholar
Gayley, R. I., Ram, M., & Stoermer, E. F. (1989). Seasonal variations in diatom abundance and provenance in Greenland ice. Journal of Glaciology, 35, 290–2.CrossRefGoogle Scholar
Gerdel, R. W. & Drouet, F. (1960). The cryoconite of the Thule area, Greenland. Transactions of the American Microscopic Society, 79, 256–72.CrossRefGoogle Scholar
Germain, H. (1937). Diatomées d'une tourbe de l'Ile Kerguelen. Bulletin de la Societé Française de Microscopie, 6, 11–16.Google Scholar
Germain, H. & LeCohu, R. (1981). Variability of some features in a few species of Gomphonema from France and the Kerguelen Islands (South Indian Ocean). In Proceedings of the 6th Symposium on Recent and Fossil Diatoms, ed. Ross, R., Königstein: Koeltz Scientific Books, pp. 167–77.Google Scholar
Gibson, J. A. E., Roberts, D., & Vijver, B. (2006). Salinity control of the distribution of diatoms in lakes of the Bunger Hills, East Antarctica. Polar Biology, 29, 694–704.CrossRefGoogle Scholar
Gibson, J. A. E., Wilmotte, A., Taton, A., et al. (2008). Biogeographical trends in Antarctic lakes. In Trends in Antarctic Terrestrial and Limnetic Ecosystems, ed. Bergstrom, D., Huiskes, A., & Convey, P., Amsterdam: Springer, pp. 71–99.Google Scholar
Gremmen, N. J. M., Vijver, B., Frenot, Y., & Lebouvier, M. (2007). Distribution of moss-inhabiting diatoms along an altitudinal gradient at sub-Antarctic Îles Kerguelen. Antarctic Science, 19, 17–24.CrossRefGoogle Scholar
Hall, B. L. & Denton, G. H. (2000). Radiocarbon chronology of Ross Sea drift, eastern Taylor Valley, Antarctica: evidence for a grounded ice sheet in the Ross Sea at the last glacial maximum. Geografiska Annaler, 82, 305–36.CrossRefGoogle Scholar
Hawes, I. & Schwarz, A. M. (2000). Absorption and utilization of irradiance by cyanobacterial mats in ice-covered Antarctic lakes with contrasting light climates. Journal of Phycology, 37, 5–15.CrossRefGoogle Scholar
Hearty, P. J., Kindler, P., Cheng, H., & Edwards, R. L. (1999). A +20 m middle Pleistocene sea-level highstand (Bermuda and the Bahamas) due to partial collapse of Antarctic ice. Geology, 27, 375–8.2.3.CO;2>CrossRefGoogle Scholar
Heywood, R. B. (1977). Antarctic freshwater ecosystems: review and synthesis. In Adaptations within Antarctic Ecosystems, ed. Llano, G. A., Washington, DC: Smithsonian Institution, pp. 801–28.Google Scholar
Hickman, M. & Vitt, D. H. (1973). The aerial ephytic diatom flora of moss species from subantarctic Campbell Island. Nova Hedwigia, 24, 443–58.Google Scholar
Hirano, M. (1965). Freshwater algae in the Antarctic regions. In Biogeography and Ecology in Antarctica, ed. Mieghem, J. & Oye, P., The Hague: Junk, pp. 28–191.Google Scholar
Hodson, A., Anesio, A. M., Ng, F., et al. (2007). A glacier respires: quantifying the distribution and respiration CO2 flux of cryoconite across an entire Arctic supraglacial ecosystem. Journal of Geophysical Research, 112, G04S36. DOI:10.1029/2007JG000452.CrossRef
Hodgson, D. A., Convey, P., Verleyen, E., et al. (2010). The limnology and biology of the Dufek Massif, Transantarctic Mountains 82° South. Polar Science, in press.CrossRef
Hodgson, D. A., Doran, P. T., Roberts, D., & McMinn, A. (2004). Paleolimnological studies from the Antarctic and subantarctic islands. In Long-Term Environmental Change in Arctic and Antarctic Lakes, ed. Pienitz, R., Douglas, M. S. V., & Smol, J. P., Dordrecht: Springer, pp. 419–74.CrossRefGoogle Scholar
Hodgson, D. A., Noon, P. E., Vyverman, W., et al. (2001a). Were the Larsemann Hills ice-free through the last glacial maximum? Antarctic Science, 13, 440–54.CrossRefGoogle Scholar
Hodgson, D. A., Roberts, D., McMinn, A., et al. (2006a). Recent rapid salinity rise in three East Antarctic lakes. Journal of Paleolimnology, 36, 385–406.Google Scholar
Hodgson, D. A. & Smol, J. P. (2008). High latitude paleolimnology. In Polar Lakes and Rivers – Limnology of Arctic and Antarctic Aquatic Ecosystems, ed. Vincent, W. F. & Laybourn-Parry, J., Oxford: Oxford University Press, pp. 43–64.Google Scholar
Hodgson, D. A., Verleyen, E., Sabbe, K., et al. (2005). Late Quaternary climate-driven environmental change in the Larsemann Hills, East Antarctica, multi-proxy evidence from a lake sediment core. Quaternary Research, 64, 83–99.CrossRefGoogle Scholar
Hodgson, D. A., Verleyen, E., Squier, A. H., et al. (2006b). Interglacial environments of coastal east Antarctica: comparison of MIS 1 (Holocene) and MIS 5e (last interglacial) lake-sediment records. Quaternary Science Reviews, 25, 179–97.CrossRefGoogle Scholar
Hodgson, D. A., Verleyen, E., Vyverman, W., et al. (2009). A geological constraint on relative sea level in Marine Isotope Stage 3 in the Larsemann Hills, Lambert Glacier region, East Antarctica (31 366–33 228 cal yr BP). Quaternary Science Reviews, 25, 2689–96.CrossRef
Hodgson, D. A., Vyverman, W., & Sabbe, K. (2001b). Limnology and biology of saline lakes in the Rauer Islands, eastern Antarctica. Antarctic Science, 13, 255–70.CrossRefGoogle Scholar
House, H. R., McKnight, D. M., & Guerard, P. (1995). The influence of stream channel characteristics on stream flow and annual water budgets for lakes in Taylor Valley. Antarctic Journal of the United States, 30, 284–7.Google Scholar
,IPCC (2007). Climate Change 2007: Impacts, Adaptation and Vulnerability. Contribution of Working Group II to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, ed. Parry, M. L., Canziani, O. F., Palutikof, J. P., Linden, P. J., & Hanson, C. E., Cambridge: Cambridge University Press.
Jansen, E., Overpeck, J., Briffa, K. R., et al. (2007). Palaeoclimate. In Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, ed. Solomon, S., Qin, D., Manning, M., et al. Cambridge: Cambridge University Press, pp. 433–97.Google Scholar
Jones, V. J. (1996). The diversity, distribution and ecology of diatoms from Antarctic inland waters. Biodiversity and Conservation, 5, 1433–49.CrossRefGoogle Scholar
Jones, V. J. & Juggins, S. (1995). The construction of a diatom-based chlorophyll a transfer function and its application at three lakes on Signy Island (maritime Antarctic) subject to differing degrees of nutrient enrichment. Freshwater Biology, 34, 433–45.CrossRefGoogle Scholar
Jones, V. J., Juggins, S., & Ellis-Evans, J. C. (1993). The relationship between water chemistry and surface sediment diatom assemblages in maritime Antarctic lakes. Antarctic Science, 5, 339–48.CrossRefGoogle Scholar
Kawecka, B. & Olech, M. (1993). Diatom communities in the Vanishing and Ornithologist Creek, King George Island, South Shetland Islands, Antarctica. Hydrobiologica, 269–270, 327–33.CrossRefGoogle Scholar
Kellogg, D. E. & Kellogg, T. B. (1996). Diatoms in South Pole ice: implications for eolian contamination of Sirius Group deposits. Geology, 24, 115–18.2.3.CO;2>CrossRefGoogle Scholar
Kellogg, T. B. & Kellogg, D. E. (2002). Non-Marine and Littoral Diatoms from Antarctic and Sub-Antarctic Locations. Distribution and Updated Taxonomy, Diatom Monographs, vol. 1, ed. Witkowski, A., Ruggell: A. R. Ganter Verlag.Google Scholar
Kociolek, J. P. & Jones, V. (1995). Gomphonema signyensis sp. nov., a freshwater diatom from maritime Antarctica. Diatom Research, 10, 269–76.CrossRefGoogle Scholar
Kociolek, J. P. & Spaulding, S. A. (2000). Freshwater diatom biogeography. Nova Hedwigia, 71, 223–41.Google Scholar
Kopalová, K., Elster, J., Nedbalová, L., & Vivjer, B. (2009). Three new terrestrial diatom species from seepage areas on James Ross Island (Antarctic Peninsula Region). Diatom Research, 24, 113–22.CrossRefGoogle Scholar
Krasske, G. (1939). Zur Kieselalgenflora Südchiles. Archiv für Hydrobiologie, 35, 349–468.Google Scholar
Lawrence, M. J. F. & Hendy, C. H. (1989). Carbonate deposition and Ross Sea Ice advance, Fryxell Basin, Taylor Valley, Antarctica. New Zealand Journal of Geology and Geophysics, 32, 267–77.CrossRefGoogle Scholar
Cohu, R. (1981). Les espèces endémiques de diatomées aux îles Kerguelen. Colloque sur les Ecosyèmes Subantarctiqes, 51, 35–42.Google Scholar
Cohu, R. & Maillard, R. (1983). Les diatomées monoraphidées des îles Kerguelen. Annales Limnologie, 19, 143–67.CrossRefGoogle Scholar
Cohu, R. & Maillard, R. (1986). Les diatomées d'eau douce des îles Kerguelen (l'exclusion des Monoraphidées). Annales Limnologie, 22, 99–118.CrossRefGoogle Scholar
LeMasurier, W. E., Harwood, D. M., & Rex, D. C. (1994). Geology of Mount Murphy Volcano; an 8 m.y. history of interaction between rift volcano and the West Antarctic ice sheet. Geological Survey of American Bulletin, 106, 265–80.2.3.CO;2>CrossRefGoogle Scholar
Lichti-Federovich, S. (1984). Investigation of diatoms found in surface snow from Sydkap Ice Cap, Ellesmere Island, Northwest Territories. Geological Survey of Canada Paper, 84–1A, 287–301.Google Scholar
Light, J. J., Ellis-Evans, J. C. & Priddle, J. (1981). Phytoplankton ecology in an Antarctic lake. Freshwater Biology, 11, 11–26.CrossRefGoogle Scholar
Lyons, W. B., Laybourn-Parry, J., Welch, K. A., & Priscu, J. C. (2006). Antarctic lake systems and climate change. In Trends in Antarctic Terrestrial and Limnetic Ecosystems: Antarctica as a Global Indicator, ed. Bergstrom, D. M., Convey, P., & Huiskes, A. H. L., Dordrecht: Springer, pp. 273–98.CrossRefGoogle Scholar
Mahood, A. D. & Barron, J. A. (1996). Comparative ultrastructure of two closely related Thalassiosira species: Thalassiosira vulnifica (Gombos) Fenner and T. fasiculata Harwood et Maruyuma. Diatom Research, 11, 284–95.CrossRefGoogle Scholar
Maynard, N. G. (1968). Significance of air-borne algae. Zeitschrift für Allgemeine Mikrobiologie, 8, 225–6.CrossRefGoogle ScholarPubMed
McIntyre, N. F. (1984). Cryoconite hole thermodynamics. Canadian Journal of Earth Sciences, 21, 152–6.CrossRefGoogle Scholar
McKnight, D. M. & Tate, C. M. (1997). Canada Stream: a glacial meltwater stream in Taylor Valley, South Victoria Land, Antarctica. Journal of the North American Benthological Society, 16, 14–17.CrossRefGoogle Scholar
McKnight, D. M., Niyogi, D. K., Alger, A. S., et al. (1999). Dry Valley streams in Antarctica: ecosystems waiting for water, Bioscience, 49, 985–95.CrossRefGoogle Scholar
Moorhead, D., Schmeling, J., & Hawes, I. (2005). Contributions of benthic microbial mats to net primary production in Lake Hoare, Antarctica. Antarctic Science, 17, 33–45.CrossRefGoogle Scholar
Mueller, D. R. & Pollard, W. H. (2004). Gradient analysis of cryoconite ecosystems from two polar glaciers. Polar Biology, 27, 66–74.CrossRefGoogle Scholar
Mueller, D. R., Vincent, W. F., Pollard, W. H., & Fritsen, C. H. (2001). Glacial cryoconite ecosystems: a bipolar comparison of algal communities and habitats. Nova Hedwigia, 123, 173–97.Google Scholar
Nordenskjöld, A. E. (1875). Cryoconite found 1870, July 19–25, on the inland ice, east of Auleitsivik Fjord, Disco Bay, Greenland. Geological Magazine, Decade 2, 2, 157–62.Google Scholar
Ochyra, R., Bednarek-Ochyra, G., & Lewis-Smith, R. (2008). Illustrated Moss Flora of Antarctica, Cambridge: Cambridge University Press.Google Scholar
Pankow, H., Haendel, D. & Richter, W. (1991). Die Algenfora der Schirmacheroase (Ostantarktika). Nova Hedwigia, Beiheft, 103, 1–197.Google Scholar
Porazinska, D. L., Fountain, A. G., Nylen, T. H., et al. (2004). The biodiversity and biogeochemistry of cryoconite holes from McMurdo Dry Valley glaciers, Antarctica. Arctic, Antarctic, and Alpine Research, 36, 84–91.CrossRefGoogle Scholar
Prescott, G. W. (1979). A contribution to a bibliography of Antarctic and subantarctic algae. Bibliotheca Phycologica, 45, 1–312.Google Scholar
Reinsch, P. E. (1890). Die Süsswasseralgenflora von Süd-Georgien. In Die deutschen Expeditionen und ihre Ergebnisse, 1882–1883, ed. Neumeyer, G., Berlin: A. Asher, pp. 329–65.Google Scholar
Riaux-Gobin, C. (1994). A check-list of the Cocconeis species (Bacillariophyceae) in Antarctic and Subantarctic areas, with special focus on Kerguelen Islands. Cryptogamie Algologie, 15, 135–46.Google Scholar
Roberts, D. & McMinn, A. (1998). A weighted-averaging regression and calibration model for inferring lake water salinity from fossil diatom assemblages in saline lakes of the Vestfold Hills: a new tool for interpreting Holocene lake histories in Antarctica. Journal of Paleolimnology, 19, 99–113.CrossRefGoogle Scholar
Roberts, D. & McMinn, A. (1999). A diatom-based palaeosalinity history of Ace Lake, Vestfold Hills, Antarctica. The Holocene, 9, 401–8.CrossRefGoogle Scholar
Roberts, D., McMinn, A., Cremer, H., Gore, D., & Melles, M. (2004). The Holocene evolution and palaeosalinity history of Beall Lake, Windmill Islands (East Antarctica) using an expanded diatom-based weighted averaging model. Palaeogeography, Palaeoclimatology, Palaeoecology, 208, 121–40.CrossRefGoogle Scholar
Roberts, D., McMinn, A., Johnston, N., et al. (2001). An analysis of the limnology and sedimentary diatom flora of fourteen lakes and ponds from the Windmill Islands, East Antarctica. Antarctic Science, 13, 410–19.CrossRefGoogle Scholar
Roberts, D., McMinn, A., & Zwartz, D. (2000). An initial palaeosalinity history of Jaw Lake, Bunger Hills based on a diatom-salinity transfer function applied to sediment cores. Antarctic Science, 12(2), 172–6.CrossRefGoogle Scholar
Rossiter, A. & Kawanabe, H. (2000). Ancient Lakes: Biodiversity, Ecology and Evolution, San Diego: Academic Press.Google Scholar
Sabbe, K., Verleyen, E., Hodgson, D. A., Vanhoutte, K., & Vyverman, W. (2003). Benthic diatom flora of freshwater and saline lakes in the Larsemann Hills and Rauer Islands, East Antarctica. Antarctic Science, 15, 227–48.CrossRefGoogle Scholar
Sabbe, K., Hodgson, D. A., Verleyen, E., et al. (2004). Salinity, depth and the structure and composition of microbial mats in continental Antarctic lakes. Freshwater Biology, 49, 296–319.CrossRefGoogle Scholar
Sancetta, C., Lyle, M., Heusser, L., Zahn, R., & Bradbury, J. P. (1992). Late-glacial to Holocene changes in winds, upwelling, and seasonal production of the Northern California current system. Quaternary Research, 38, 359–70.CrossRefGoogle Scholar
Saunders, K. M., Hodgson, D. A., & McMinn, A. (2008). Quantitative relationships between benthic diatom assemblages and water chemistry in Macquarie Island lakes and their potential to reconstruct past environmental changes. Antarctic Science, 21, 35–49.CrossRefGoogle Scholar
Säwström, C., Mumford, P., Marshall, W., Hodson, A., & Laybourn-Parry, J. (2002). The microbial communities and primary productivity of cryoconite holes in an Arctic glacier (Svalbard 79° N). Polar Biology, 25, 591–6.Google Scholar
Saxena, V. K., Curtin, T. B., & Parungo, F. P. (1985). Aerosol formation by wave action over the Ross Sea. Journal de Recherches Atmospheriques, 19, 213–24.Google Scholar
Scherer, R. P., Aldahan, A., Tulaczyk, S., et al. (1998). Pleistocene collapse of the West Antarctic Ice Sheet. Science, 281, 82–5.CrossRefGoogle ScholarPubMed
Schmidt, R., Mäusbacher, R., & Müller, J. (1990). Holocene diatom flora and stratigraphy from sediment cores of two Antarctic lakes (King George Islands). Journal of Paleolimnology, 3, 55–74.CrossRefGoogle Scholar
Seaburg, K. C., Parker, B. C., Prescott, G. W., & Whitford, L. A. (1979). The algae of southern Victorialand, Antarctica. A taxonomic and distributional study. Bibliotheca Phycologica, 46, 1–170.Google Scholar
Seppelt, R. D. (2004). The Moss Flora of Macquarie Island. Kingston, Tasmania: Australian Antarctic Division.Google Scholar
Shindell, D. T. & Schmidt, G. A. (2004). Southern hemisphere climate response to ozone changes and greenhouse gas increases. Geophysical Research Letters, 31, L18209, DOI:10.1029/2004GL020724.CrossRefGoogle Scholar
Smol, J. P. (1988). Paleoclimate proxy data from freshwater Arctic diatoms. Verhandlungen des Internationalen Verein Limnologogie, 23, 837–44.Google Scholar
Smol, J. P., Wolfe, A. P., Birks, H. J. B., et al. (2005). Climate-driven regime shifts in the biological communities of arctic lakes. Proceedings of the National Academy of Sciences of the USA, 102, 4397–402.CrossRefGoogle ScholarPubMed
Spaulding, S. A., Kociolek, J. P., & Wong, D. (1999). A taxonomic and systematic revision of the genus Muelleria (Bacillariophyta). Phycologia, 38, 314–41.CrossRefGoogle Scholar
Spaulding, S. A., McKnight, D. M., Stoermer, E. F., & Doran, P. T. (1997). Diatoms in sediments of perennially ice-covered Lake Hoare, and implications for interpreting lake history in the McMurdo Dry Valleys of Antarctica. Journal of Paleolimnology, 17, 403–20.CrossRefGoogle Scholar
Stibal, M., Šabacká, M., & Kaštovská, K. (2006). Microbial communities on glacier surfaces in Svalbard: impact of physical and chemical properties on abundance and structure of cyanobacteria and algae. Microbial Ecology, 52, 644–54.CrossRefGoogle ScholarPubMed
Stuiver, M., Denton, G. H., Hughes, T. J., & Fastook, J. L. (1981). History of the marine ice sheet in West Antarctica during the last glaciation: a working hypothesis. In The Last Great Ice Sheets, ed. Denton, G. H. & Hughes, T. J., New York, NY: John Wiley and Sons, pp. 319–436.Google Scholar
Theriot, E. C., Fritz, S. C., Whitlock, C., & Conley, D. J. (2006). Late Quaternary rapid morphological evolution of an endemic diatom in Yellowstone Lake, Wyoming. Paleobiology, 32, 38–54.CrossRefGoogle Scholar
Torinesi, O., Fily, M., & Genthion, C. (2003). Variability and trends of the summer melt period of Antarctic ice margins since 1980 from microwave sensors. Journal of Climatology, 16, 1047–60.2.0.CO;2>CrossRefGoogle Scholar
Tranter, M., Fountain, A. G., Fritsen, C. H., et al. (2004). Extreme hydrochemical conditions in natural microcosms entombed within Antarctic ice. Hydrological Processes, 18, 379–87.CrossRefGoogle Scholar
Vijver, B. (2008). Distribution of moss-inhabiting diatoms along an altitudinal gradient at sub-Antarctic Îles Kerguelen. Diatom Research, 22, 221–32.Google Scholar
Vijver, B. & Beyens, L. (1999). Moss diatom communities from Ile de la Possession (Crozet, sub-Antarctica) and their relationship with moisture. Polar Biology, 22, 232–40.Google Scholar
Vijver, B., Beyens, L., & Lange-Bertalot, H. (2004). The genus Stauroneis in the Arctic and Antarctic regions. Bibliotheca Diatomologica, 51, 1–317.Google Scholar
Vijver, B., Frenot, Y. & Beyens, L. (2002a). Freshwater diatoms from Ile de la Possession (Crozet archipelago, sub-Antarctica). Bibliotheca Diatomologica, 46, 1–412.Google Scholar
Vijver, B., Gremmen, N., & Smith, V. (2008). Diatom communities from the sub-Antarctic Prince Edward Islands: diversity and distribution patterns. Polar Biology, 7, 795–808.CrossRefGoogle Scholar
Vijver, B., Ledeganck, P., & Beyens, L. (2001). Habitat preference in freshwater diatom communities from sub-Antarctic Îles Kerguelen. Antarctic Science, 13, 28–36.CrossRefGoogle Scholar
Vijver, B., Ledeganck, P., & Beyens, L. (2002b). Three new species of Diadesmis from soils of Ile de la Possession (Crozet Archipelago, sub-Antarctic). Cryptogamie Algologie, 23, 333–41.Google Scholar
Vijver, B. & Mataloni, G. (2008). New and interesting species in the genus Luticola D. G. Mann (Bacillariophyta) from Deception Island (South Shetland Islands). Phycologia, 47, 451–67.CrossRefGoogle Scholar
Vijver, B., Mataloni, G., Stanish, L., & Spaulding, S. A. (2010). New and interesting species of the genus Muelleria (Bacillariophyta) from the Antarctic region and South Africa. Phycologia, 1, 22–41.CrossRefGoogle Scholar
Putten, N., Hébrard, J. P., Verbruggen, C., et al. (2009). An integrated palaeoenvironmental investigation of a 6200 year old peat sequence from Ile de la Possession, Iles Crozet, sub-Antarctica. Palaeogeography, Palaeoclimatology, Palaeoecology, 270, 179–95.CrossRefGoogle Scholar
Heurck, H. (1909). Diatomées. In Expédition Antarctique Belge, Résultats du Voyage du S. Y. Belgica en 1897–1899, Antwerp: Buschmann, pp. 1–126Google Scholar
Verkulich, S. R., Melles, M., Pushina, Z. V. & Hubberten, H. W. (2002). Holocene Environmental changes and development of Figurnoye Lake in the southern Bunger Hills, East Antarctica. Journal of Paleolimnology, 28, 253–67.CrossRefGoogle Scholar
Verleyen, E., Hodgson, D. A., Leavitt, P. R., Sabbe, K. & Vyverman, W. (2004a). Quantifying habitat-specific diatom production: a critical assessment using morphological and biochemical markers in Antarctic marine and lake sediments. Limnology and Oceanography, 49, 1528–39.CrossRefGoogle Scholar
Verleyen, E., Hodgson, D. A., Milne, G. A., Sabbe, K., & Vyverman, W. (2005). Relative sea level history from the Lambert Glacier region (East Antarctica) and its relation to deglaciation and Holocene glacier re-advance. Quaternary Research, 63, 45–52.CrossRefGoogle Scholar
Verleyen, E., Hodgson, D. A., Sabbe, K., Vanhoutte, K., & Vyverman, W. (2004c). Coastal oceanographic conditions in the Prydz Bay region (East Antarctica) during the Holocene recorded in an isolation basin. The Holocene, 14, 246–57.CrossRefGoogle Scholar
Verleyen, E., Hodgson, D. A., Sabbe, K. & Vyverman, W. (2004b). Late Quaternary deglaciation and climate history of the Larsemann Hills (East Antarctica). Journal of Quaternary Science, 19, 361–75.CrossRefGoogle Scholar
Verleyen, E., Hodgson, D. A., Vyverman, W., et al. (2003). Modelling diatom responses to climate induced fluctuations in the moisture balance in continental Antarctic lakes. Journal of Paleolimnology, 30, 195–215.CrossRefGoogle Scholar
Verleyen, E., Vyverman, W., Sterken, M., et al. (2009). The importance of regional and local factors in shaping the taxonomic structure of diatom metacommunities, Oikos, 118, 1239–49.CrossRefGoogle Scholar
Vyverman, W., Verleyen, E., Sabbe, K., et al. (2007). Historical processes constrain patterns in global diatom diversity. Ecology, 88, 1924–31.CrossRefGoogle ScholarPubMed
Wagner, B., Cremer, H., Hultzsch, N., Gore, D. B. & Melles, M. (2004). Late Pleistocene and Holocene history of Lake Terrasovoje, Amery Oasis, East Antarctica, and its climatic and environmental implications. Journal of Paleolimnology, 32, 321–39.CrossRefGoogle Scholar
Wasell, A. & Håkansson, H. (1992). Diatom stratigraphy in a lake on Horseshoe Island, Antarctica: a marine–brackish–fresh water transition with comments on the systematics and ecology of the most common diatoms. Diatom Research, 7, 157–94.CrossRefGoogle Scholar
Webb, P. N. & Harwood, D. M. (1991). Late Cenozoic glacial history of the Ross Embayment, Antarctica. Quaternary Science Reviews, 10, 215–23.CrossRefGoogle Scholar
Webb, P. N., Harwood, D. M.McKelvey, B. C., Mercer, J. C., & Stott, L. D. (1984). Cenozoic marine sedimentation and ice-volume variation on the East Antarctic craton. Geology, 12, 287–91.2.0.CO;2>CrossRefGoogle Scholar
West, W. & West, G. S. (1911). Freshwater algae. In Biology, Vol. 1 Reports on the Scientific Investigations, British Antarctic Expedition 1907–9, ed. Murray, J., London: Heinemann, pp. 264–87.Google Scholar
Wharton, R. A. Jr., McKay, C. P., Clow, G. D., & Anderson, D. T. (1993). Perennial ice covers and their influence on Antarctic lake ecosystems. In Physical and Biogeochemical Processes in Antarctic Lakes, Antarctic Research Series No 59, ed. Green, W. J. & Friedmann, E. I., Washington, DC: American Geophysical Union, pp. 53–70.CrossRefGoogle Scholar
Wharton, R. A., McKay, C. P., Simmons, G. M. Jr., & Parker, B. C. (1985). Cryoconite holes on glaciers. BioScience, 35, 499–503.CrossRefGoogle ScholarPubMed
Wharton, R. A. & Vinyard, W. C. (1983). Distribution of snow and ice algae in western North America. Madroño, 30, 201–9.Google Scholar
Wharton, R. A., Vinyard, W. C., Parker, B. C., Simmons, G. M., & Seaburg, K. G. (1981). Algae in cryoconite holes on Canada Glacier in Southern Victorialand, Antarctica. Phycologia, 20, 208–11.CrossRefGoogle Scholar
Whittaker, T. E., Hall, B. L., Hendy, C. H., & Spaulding, S. A. (2008). Holocene surface-level changes and depositional environments at Lake Fryxell, Antarctica. Holocene, 18, 775–86.CrossRefGoogle Scholar
Wilson, G. S., Barron, J. A., Ashworth, A. C., et al. (2002). The Mount Feather Diamicton of the Sirius Group: an accumulation of indicators of Neogene Antarctic glacial and climatic history. Palaeogeography, Palaeoclimatology, Palaeoecology, 182, 117–31.CrossRefGoogle Scholar
Zidarova, R. (2008). Algae from Livingston Island (S Shetland Islands): a checklist. Phytologia Balcanica, 14, 19–35.Google Scholar
Zwartz, D., Bird, M., Stone, J., & Lambeck, K. (1998). Holocene sea-level change and ice-sheet history in the Vestfold Hills, East Antarctica. Earth and Planetary Science Letters, 155, 131–45.CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×