Skip to main content Accessibility help
×
Hostname: page-component-77c89778f8-5wvtr Total loading time: 0 Render date: 2024-07-17T14:46:42.817Z Has data issue: false hasContentIssue false

14 - Time-Optimal Control in the Phase Plane

Published online by Cambridge University Press:  06 July 2010

A. C. King
Affiliation:
University of Birmingham
J. Billingham
Affiliation:
University of Birmingham
S. R. Otto
Affiliation:
University of Birmingham
Get access

Summary

Many physical systems that are amenable to mathematical modelling do not exist in isolation from human intervention. A good example is the British economy, for which the Treasury has a complicated mathematical model. The state of the system (the economy) is given by values of the dependent variables (for example, unemployment, foreign exchange rates, growth, consumer spending and inflation), and the government attempts to control the state of the system to a target state (low inflation, high employment, high growth) by varying several control parameters (most notably taxes and government spending). There is also a cost associated with any particular action, which the government tries to minimize (some function of, for example, government borrowing and, one would hope, the environmental cost of any government action or inaction). The optimal control leads to the economy reaching the target state with the smallest possible cost.

Another system, for which we have studied a simple mathematical model, consists of two populations of different species coexisting on an isolated island. For the case of two herbivorous species, which we studied in Chapter 9, we saw that one species or the other will eventually die out. If the island is under human management, this may well be undesirable, and we would like to know how to intervene to maintain the island close to a state of equilibrium, which we know, if left uncontrolled, is unstable. We could choose between either continually culling the more successful species, continually introducing animals of the less successful species or some combination of these two methods of control. Each of these actions has a cost associated with it.

Type
Chapter
Information
Differential Equations
Linear, Nonlinear, Ordinary, Partial
, pp. 417 - 446
Publisher: Cambridge University Press
Print publication year: 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×