Skip to main content Accessibility help
×
Hostname: page-component-77c89778f8-n9wrp Total loading time: 0 Render date: 2024-07-19T17:22:00.694Z Has data issue: false hasContentIssue false

19 - Relationship between amount of rhodopsin and sensitivity during dark adaptation

Published online by Cambridge University Press:  22 January 2010

Bjørn Stabell
Affiliation:
Universitetet i Oslo
Ulf Stabell
Affiliation:
Universitetet i Oslo
Get access

Summary

On the discoveries of Boll (1877) and Kühne (1877, 1878, 1879) that rhodopsin in rods is engaged in reversible cycles of bleaching and regeneration, Parinaud (1885) had suggested that changes in visual sensitivity were due to variation in the amount of rhodopsin. This view had a great impact. Thus, for a long period it became generally accepted that the alteration of visual sensitivity in light and dark adaptation reflected changes in the concentration of the visual pigments and hence their capacity to absorb light.

RESULTS OF TANSLEY

Tansley (1931) appears to be the first to measure quantitatively the change in rhodopsin concentration during dark adaptation. She light adapted albino rats almost completely and then measured the quantity of rhodopsin extracted after varying times (from 2.5 to 1140 min) in the dark. The results obtained could be explained both by bimolecular and monomolecular reactions, although the monomolecular reaction was found to fit slightly better. In accordance with Parinaud's (1885) assumption, she obtained a striking similarity between the regeneration curve of rhodopsin of the albino rat and the dark-adaptation curve measured in humans. Hence, she suggested that the sensitivity during dark adaptation was proportional to the amount of rhodopsin present in the retina.

RESULTS OF GRANIT

This simple photochemical theory of dark adaptation, however, eventually met with serious difficulties. Thus, evidence put forward by Granit et al. (1938, 1939) strongly suggested that the amount of rhodopsin played only a minor role in sensitivity regulation during light and dark adaptation.

Type
Chapter
Information
Duplicity Theory of Vision
From Newton to the Present
, pp. 147 - 156
Publisher: Cambridge University Press
Print publication year: 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×