Skip to main content Accessibility help
×
Hostname: page-component-5c6d5d7d68-sv6ng Total loading time: 0 Render date: 2024-08-14T07:14:23.732Z Has data issue: false hasContentIssue false
This chapter is part of a book that is no longer available to purchase from Cambridge Core

29 - Carbon cycle–climate feedbacks

from Part VII - Terrestrial Forcings and Feedbacks

Gordon B. Bonan
Affiliation:
National Center for Atmospheric Research, Boulder, Colorado
Get access

Summary

Chapter summary

As discussed in the previous chapter, numerous climate model experiments have shown that vegetation exerts an important feedback on climate through energy and water cycles. In addition to these biogeophysical feedbacks, terrestrial ecosystems are coupled to climate through various biogeochemical cycles. Primary among these is the carbon cycle. Terrestrial ecosystems in the middle latitudes of the Northern Hemisphere are thought to absorb a significant portion of the annual emission of CO2 to the atmosphere by human activities. This may arise from enhanced photosynthesis as a result of climate change, an increasing concentration of CO2 in the atmosphere, or by increasing deposition of nitrogen on land from industrial pollution. It may also be caused by regrowth of forests following abandonment of farmland. At longer timescales, changes in the biogeography of ecosystems alter carbon storage on land. In addition, the mobilization of mineral aerosols into the atmosphere is regulated in part by vegetation. These aerosols affect climate directly by altering the radiative balance of the atmosphere and indirectly by altering biogeochemical cycles. In particular, the deposition of mineral aerosols on land and ocean can fertilize ecosystems and stimulate plant productivity. The global carbon cycle, dust emissions, and other biogeochemical processes are being added to the next generation of land surface models used with climate models. Climate model simulations show that the carbon cycle has positive feedback on climate. Biogeophysical processes can, in some regions, mitigate biogeochemical climate warming.

Type
Chapter
Information
Ecological Climatology
Concepts and Applications
, pp. 489 - 519
Publisher: Cambridge University Press
Print publication year: 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Adams, J. M., Faure, H., Faure-Denard, L., McGlade, J. M., and Woodward, F. I., 1990. Increases in terrestrial carbon storage from the Last Glacial Maximum to the present. Nature, 348, 711–14.CrossRefGoogle Scholar
Ainsworth, E. A. and Long, S. P., 2005. What have we learned from 15 years of free-air CO2 enrichment (FACE)? A meta-analytical review of the responses of photosynthesis, canopy properties and plant production to rising CO2. New Phytologist, 165, 351–72.CrossRefGoogle Scholar
Albani, M., Medvigy, D., Hurtt, G. C., and Moorcroft, P. R., 2006. The contributions of land-use change, CO2 fertilization, and climate variability to the Eastern US carbon sink. Global Change Biology, 12, 2370–90.CrossRefGoogle Scholar
Andersen, K. K., Armengaud, A., and Genthon, C., 1998. Atmospheric dust under glacial and interglacial conditions. Geophysical Research Letters, 25, 2281–4.CrossRefGoogle Scholar
Bala, G., Caldeira, K., Mirin, A., Wickett, M., and Delire, C., 2005. Multicentury changes to the global climate and carbon cycle: results from a coupled climate and carbon cycle model. Journal of Climate, 18, 4531–44.CrossRefGoogle Scholar
Bala, G., Caldeira, K., Wickett, M., et al., 2007. Combined climate and carbon-cycle effects of large-scale deforestation. Proceedings of the National Academy of Sciences, USA, 104, 6550–5.CrossRefGoogle ScholarPubMed
Bazzaz, F. A., 1990. The response of natural ecosystems to the rising global CO2 levels. Annual Review of Ecology and Systematics, 21, 167–96.CrossRefGoogle Scholar
Bazzaz, F. A., 1996. Plants in Changing Environments: Linking Physiological, Population, and Community Ecology. Cambridge University Press, 320 pp.Google Scholar
Bellamy, P. H., Loveland, P. J., Bradley, R. I., Lark, R. M., and Kirk, G. J. D., 2005. Carbon losses from all soils across England and Wales 1978–2003. Nature, 437, 245–8.CrossRefGoogle ScholarPubMed
Berthelot, M., Friedlingstein, P., Ciais, P., et al., 2002. Global response of the terrestrial biosphere to CO2 and climate change using a coupled climate–carbon cycle model. Global Biogeochemical Cycles, 16, 1084, doi:10.1029/2001GB001827.CrossRefGoogle Scholar
Berthelot, M., Friedlingstein, P., Ciais, P., Dufresne, J.-L., and Monfray, P., 2005. How uncertainties in future climate change predictions translate into future terrestrial carbon fluxes. Global Change Biology, 11, 959–70.CrossRefGoogle Scholar
Betts, R. A., 2000. Offset of the potential carbon sink from boreal forestation by decreases in surface albedo. Nature 408, 187–90.CrossRefGoogle ScholarPubMed
Betts, R. A., Cox, P. M., Collins, M., et al., 2004: The role of ecosystem–atmosphere interactions in simulated Amazonian precipitation decrease and forest dieback under global climate warming. Theoretical and Applied Climatology, 78, 157–75.CrossRefGoogle Scholar
Betts, R. A., Falloon, P. D., Goldewijk, K. Klein, and Ramankutty, N., 2007. Biogeophysical effects of land use on climate: model simulations of radiative forcing and large-scale temperature change. Agricultural and Forest Meteorology, 142, 216–33.CrossRefGoogle Scholar
Boehm, M., Junkins, B., Desjardins, R., Kulshreshtha, S., and Lindwall, W., 2004. Sink potential of Canadian agricultural soils. Climatic Change, 65, 297–314.CrossRefGoogle Scholar
Boisvenue, C. and Running, S. W., 2006. Impacts of climate change on natural forest productivity − evidence since the middle of the 20th century. Global Change Biology, 12, 862–82.CrossRefGoogle Scholar
Brovkin, V., Sitch, S., Bloh, W., et al., 2004. Role of land cover changes for atmospheric CO2 increase and climate change during the last 150 years. Global Change Biology, 10, 1253–66.CrossRefGoogle Scholar
Brown, S. L. and Schroeder, P. E., 1999. Spatial patterns of aboveground production and mortality of woody biomass for eastern U.S. forests. Ecological Applications, 9, 968–80.Google Scholar
Buermann, W., Anderson, B., Tucker, C. J., et al., 2003. Interannual covariability in Northern Hemisphere air temperatures and greenness associated with El Niño–Southern Oscillation and the Arctic Oscillation. Journal of Geophysical Research, 108D, 4396, doi:10.1029/2002JD002630.Google Scholar
Buermann, W., Lintner, B. R., Koven, C. D., et al., 2007. The changing carbon cycle at Mauna Loa Observatory. Proceedings of the National Academy of Sciences, USA, 104, 4249–54.CrossRefGoogle ScholarPubMed
Cao, M. and Woodward, F. I., 1998a. Net primary and ecosystem production and carbon stocks of terrestrial ecosystems and their responses to climate change. Global Change Biology, 4, 185–98.CrossRefGoogle Scholar
Cao, M. and Woodward, F. I. 1998b. Dynamic responses of terrestrial ecosystem carbon cycling to global climate change. Nature, 393, 249–52.CrossRefGoogle Scholar
Cao, M., Prince, S. D., and Shugart, H. H., 2002. Increasing terrestrial carbon uptake from the 1980s to the 1990s with changes in climate and atmospheric CO2. Global Biogeochemical Cycles, 16, 1069, doi:10.1029/2001GB001553.CrossRefGoogle Scholar
Cao, M., Prince, S. D., Tao, B., Small, J., and Li, K., 2005. Regional pattern and interannual variations in global terrestrial carbon uptake in response to changes in climate and atmospheric CO2. Tellus, 57B, 210–17.CrossRefGoogle Scholar
Caspersen, J. P., Pacala, S. W., Jenkins, J. C., et al., 2000. Contributions of land-use history to carbon accumulation in U.S. forests. Science 290, 1148–51.CrossRefGoogle ScholarPubMed
Chen, J., Chen, W., Liu, J., Cihlar, J., and Gray, S., 2000. Annual carbon balance of Canada's forests during 1895–1996. Global Biogeochemical Cycles, 14, 839–49.CrossRefGoogle Scholar
Chen, J. M., Ju, W., Cihlar, J., et al., 2003. Spatial distribution of carbon sources and sinks in Canada's forests. Tellus, 55B, 622–41.Google Scholar
Chiapello, I., Moulin, C., and Prospero, J. M., 2005. Understanding the long-term variability of African dust transport across the Atlantic as recorded in both Barbados surface concentrations and large-scale Total Ozone Mapping Spectrometer (TOMS) optical thickness. Journal of Geophysical Research, 110D, D18S10, doi:10.1029/2004JD005132.Google Scholar
Ciais, P., Tans, P. P., Trolier, M., White, J. W. C., and Francey, R. J., 1995. A large Northern Hemisphere terrestrial CO2 sink indicated by the 13C/12C ratio of atmospheric CO2. Science, 269, 1098–102.CrossRefGoogle ScholarPubMed
Ciais, P., Peylin, P., and Bousquet, P., 2000. Regional biospheric carbon fluxes as inferred from atmospheric CO2 measurements. Ecological Applications, 10, 1574–89.Google Scholar
Claussen, M., Brovkin, V., and Ganopolski, A., 2001. Biogeophysical versus biogeochemical feedbacks of large-scale land cover change. Geophysical Research Letters, 28, 1011–14.CrossRefGoogle Scholar
Conant, R. T., Paustian, K., and Elliott, E. T., 2001. Grassland management and conversion into grassland: effects on soil carbon. Ecological Applications, 11, 343–55.CrossRefGoogle Scholar
Cox, P. M., Betts, R. A., Jones, C. D., Spall, S. A., and Totterdell, I. J., 2000. Acceleration of global warming due to carbon-cycle feedbacks in a coupled climate model. Nature, 408, 184–7.CrossRefGoogle Scholar
Cox, P. M., Betts, R. A., Collins, M., et al., 2004. Amazonian forest dieback under climate–carbon cycle projections for the 21st century. Theoretical and Applied Climatology, 78, 137–56.CrossRefGoogle Scholar
Cramer, W., Bondeau, A., Woodward, F. I., et al., 2001. Global response of terrestrial ecosystem structure and function to CO2 and climate change: results from six dynamic global vegetation models. Global Change Biology, 7, 357–73.CrossRefGoogle Scholar
Curtis, P. S. and Wang, X., 1998. A meta-analysis of elevated CO2 effects on woody plant mass, form, and physiology. Oecologia, 113, 299–313.CrossRefGoogle ScholarPubMed
Dai, A. and Fung, I. Y., 1993. Can climate variability contribute to the “missing” CO2 sink?Global Biogeochemical Cycles, 7, 599–609.CrossRefGoogle Scholar
D'Arrigo, R., Jacoby, G. C., and Fung, I. Y., 1987. Boreal forests and atmosphere–biosphere exchange of carbon dioxide. Nature, 329, 321–3.CrossRefGoogle Scholar
Davidson, E. A. and Janssens, I. A., 2006. Temperature sensitivity of soil carbon decomposition and feedbacks to climate change. Nature, 440, 165–73.CrossRefGoogle ScholarPubMed
Davidson, E. A., Trumbore, S. E., and Amundson, R., 2000. Soil warming and organic carbon content. Nature, 408, 789–90.CrossRefGoogle ScholarPubMed
Graaff, M.-A., Groenigen, K.-J., Six, J., Hungate, B., and Kessel, C., 2006. Interactions between plant growth and soil nutrient cycling under elevated CO2: a meta-analysis. Global Change Biology, 12, 2077–91.CrossRefGoogle Scholar
Delire, C., Foley, J. A., and Thompson, S., 2003. Evaluating the carbon cycle of a coupled atmosphere–biosphere model. Global Biogeochemical Cycles, 17, 1012, doi:10.1029/2002GB001870.CrossRefGoogle Scholar
DeLucia, E. H., Hamilton, J. G., Naidu, S. L., et al., 1999. Net primary production of a forest ecosystem with experimental CO2 enrichment. Science, 284, 1177–9.CrossRefGoogle ScholarPubMed
DeLucia, E. H., Moore, D. J., and Norby, R. J., 2005. Contrasting responses of forest ecosystems to rising atmospheric CO2: implications for the global C cycle. Global Biogeochemical Cycles, 19, GB3006, doi:10.1029/2004GB002346.CrossRefGoogle Scholar
Denman, K. L., Brasseur, G., Chidthaisong, A., et al., 2007. Couplings between changes in the climate system and biogeochemistry. In Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, ed. Solomon, S., Qin, D., Manning, M., et al., Cambridge University Press, pp. 499–587.Google Scholar
Doney, S. C., Lindsay, K., Fung, I., and John, J., 2006. Natural variability in a stable, 1000-yr global coupled climate–carbon cycle simulation. Journal of Climate, 19, 3033–54.CrossRefGoogle Scholar
Duce, R. A., Unni, C. K., and Ray, B. J., 1980. Long-range atmospheric transport of soil dust from Asia to the tropical North Pacific: temporal variability. Science, 209, 1522–4.CrossRefGoogle ScholarPubMed
Duce, R. A., Liss, P. S., Merrill, J. T., et al., 1991. The atmospheric input of trace species to the world ocean. Global Biogeochemical Cycles, 5, 193–259.CrossRefGoogle Scholar
Dufresne, J.-L., Friedlingstein, P., Berthelot, M., et al., 2002. On the magnitude of positive feedback between future climate change and the carbon cycle. Geophysical Research Letters, 29, 1405, doi:10.1029/2001GL013777.CrossRefGoogle Scholar
Eamus, D. and Jarvis, P. G., 1989. The direct effects of increase in the global atmospheric CO2 concentration on natural and commercial temperate trees and forests. Advances in Ecological Research, 19, 1–55.CrossRefGoogle Scholar
Falkowski, P. G., Barber, R. T., and Smetacek, V., 1998. Biogeochemical controls and feedbacks on ocean primary production. Science 281, 200–6.CrossRefGoogle ScholarPubMed
Feddema, J. J., Oleson, K. W., Bonan, G. B., et al., 2005. The importance of land-cover change in simulating future climates. Science, 310, 1674–8.CrossRefGoogle ScholarPubMed
Finzi, A. C., Moore, D. J. P., DeLucia, E. H., et al., 2006. Progressive nitrogen limitation of ecosystem processes under elevated CO2 in a warm-temperate forest. Ecology, 87, 15–25.CrossRefGoogle Scholar
Friedlingstein, P., Delire, C., Müller, J. F., and Gérard, J. C., 1992. The climate induced variation of the continental biosphere: a model simulation of the last glacial maximum. Geophysical Research Letters, 19, 897–900.CrossRefGoogle Scholar
Friedlingstein, P., Prentice, K. C., Fung, I. Y., John, J. G., and Brasseur, G. P., 1995a. Carbon–biosphere–climate interactions in the last glacial maximum climate. Journal of Geophysical Research, 100D, 7203–21.CrossRefGoogle Scholar
Friedlingstein, P., Fung, I., Holland, E., et al., 1995b. On the contribution of CO2 fertilization to the missing biospheric sink. Global Biogeochemical Cycles, 9, 541–56.CrossRefGoogle Scholar
Friedlingstein, P., Bopp, L., Ciais, P., et al., 2001. Positive feedback between future climate change and the carbon cycle. Geophysical Research Letters, 28, 1543–6.CrossRefGoogle Scholar
Friedlingstein, P., Dufresne, J.-L., Cox, P. M., and Rayner, P., 2003. How positive is the feedback between climate change and the carbon cycle?Tellus, 55B, 692–700.CrossRefGoogle Scholar
Friedlingstein, P., Cox, P., Betts, R., et al., 2006. Climate–carbon cycle feedback analysis: results from the C4MIP model intercomparison. Journal of Climate, 19, 3337–53.CrossRefGoogle Scholar
Fung, I. Y., Meyn, S. K., Tegen, I., et al., 2000. Iron supply and demand in the upper ocean. Global Biogeochemical Cycles, 14, 281–95.CrossRefGoogle Scholar
Fung, I. Y., Doney, S. C., Lindsay, K., and John, J., 2005. Evolution of carbon sinks in a changing climate. Proceedings of the National Academy of Sciences, USA, 102, 11 201–6.CrossRefGoogle Scholar
Galloway, J. N., Schlesinger, W. H., Levy, H., II, Michaels, A., and Schnoor, J. L., 1995. Nitrogen fixation: anthropogenic enhancement–environmental response. Global Biogeochemical Cycles, 9, 235–52.CrossRefGoogle Scholar
Galloway, J. N., Dentener, F. J., Capone, D. G., et al., 2004. Nitrogen cycles: past, present, and future. Biogeochemistry, 70, 153–226.CrossRefGoogle Scholar
Giardina, C. P. and Ryan, M. G., 2000. Evidence that decomposition rates of organic carbon in mineral soil do not vary with temperature. Nature, 404, 858–61.CrossRefGoogle Scholar
Gibbard, S., Caldeira, K., Bala, G., Phillips, T. J., and Wickett, M., 2005. Climate effects of global land cover change. Geophysical Research Letters, 32, L23 705, doi:10.1029/2005GL024550.CrossRefGoogle Scholar
Gifford, R. M., Barrett, D. J., Lutze, J. L., and Samarakoon, A. B., 2000. The CO2 fertilizing effect: relevance to the global carbon cycle. In The Carbon Cycle, ed. Wigley, T. M. L. and Schimel, D. S.. Cambridge University Press, pp. 77–92.CrossRefGoogle Scholar
Goodale, C. L., Apps, M. J., Birdsey, R. A., et al., 2002. Forest carbon sinks in the Northern Hemisphere. Ecological Applications, 12, 891–9.CrossRefGoogle Scholar
Govindasamy, B., Thompson, S., Mirin, A., Wickett, M., and Caldeira, K., 2005. Increase of carbon cycle feedback with climate sensitivity: results from a coupled climate and carbon cycle model. Tellus, 57B, 153–63.CrossRefGoogle Scholar
Gu, L., Baldocchi, D. D., Wofsy, S. C., et al., 2003. Response of a deciduous forest to the Mount Pinatubo eruption: enhanced photosynthesis. Science, 299, 2035–8.CrossRefGoogle ScholarPubMed
Gurney, K. R., Law, R. M., Denning, A. S., et al., 2002. Towards robust regional estimates of CO2 sources and sinks using atmospheric transport models. Nature, 415, 626–30.CrossRefGoogle ScholarPubMed
Harrison, S. P. and Prentice, I. C., 2003. Climate and CO2 controls on global vegetation distribution at the last glacial maximum: analysis based on palaeovegetation data, biome modelling and palaeoclimate simulations. Global Change Biology, 9, 983–1004.CrossRefGoogle Scholar
Hashimoto, H., Nemani, R. R., White, M. A., et al., 2004. El Niño–Southern Oscillation-induced variability in terrestrial carbon cycling. Journal of Geophysical Research, 109D, D23110, doi:10.1029/2004JD004959.Google Scholar
Herwitz, S. R., Muhs, D. R., Prospero, J. M., Mahan, S., and Vaughn, B., 1996. Origin of Bermuda's clay-rich Quaternary paleosols and their paleoclimatic significance. Journal of Geophysical Research, 101D, 23 389–400.CrossRefGoogle Scholar
Holland, E. A., Braswell, B. H., Lamarque, J.-F., et al., 1997. Variations in the predicted spatial distribution of atmospheric nitrogen deposition and their impact on carbon uptake by terrestrial ecosystems. Journal of Geophysical Research, 102D, 15 849–66.CrossRefGoogle Scholar
Holland, E. A., Braswell, B. H., Sulzman, J., and Lamarque, J.-F., 2005. Nitrogen deposition onto the United States and western Europe: synthesis of observations and models. Ecological Applications, 15, 38–57.CrossRefGoogle Scholar
Houghton, R. A., 1999. The annual net flux of carbon to the atmosphere from changes in land use 1850–1990. Tellus, 51B, 298–313.CrossRefGoogle Scholar
Houghton, R. A., 2000. Interannual variability in the global carbon cycle. Journal of Geophysical Research, 105D, 20 121–30.CrossRefGoogle Scholar
Houghton, R. A., 2003a. Revised estimates of the annual net flux of carbon to the atmosphere from changes in land use and land management 1850–2000. Tellus, 55B, 378–90.Google Scholar
Houghton, R. A., 2003b. Why are estimates of the terrestrial carbon balance so different?Global Change Biology, 9, 500–9.CrossRefGoogle Scholar
Houghton, R. A., 2005. Aboveground forest biomass and the global carbon balance. Global Change Biology, 11, 945–58.CrossRefGoogle Scholar
Houghton, R. A. and Hackler, J. L., 2000. Changes in terrestrial carbon storage in the United States. 1: The roles of agriculture and forestry. Global Ecology and Biogeography, 9, 125–44.CrossRefGoogle Scholar
Houghton, R. A., Hobbie, J. E., Melillo, J. M., et al., 1983. Changes in the carbon content of terrestrial biota and soils between 1860 and 1980: a net release of CO2 to the atmosphere. Ecological Monographs, 53, 235–62.CrossRefGoogle Scholar
Houghton, R. A., Hackler, J. L., and Lawrence, K. T., 1999. The U.S. carbon budget: contributions from land-use change. Science, 285, 574–8.CrossRefGoogle ScholarPubMed
Houghton, R. A., Hackler, J. L., and Lawrence, K. T., 2000. Changes in terrestrial carbon storage in the United States. 2: The role of fire and fire management. Global Ecology and Biogeography, 9, 145–70.CrossRefGoogle Scholar
House, J. I., Prentice, I. C., Ramankutty, N., Houghton, R. A., and Heimann, M., 2003. Reconciling apparent inconsistencies in estimates of terrestrial CO2 sources and sinks. Tellus, 55B, 345–63.CrossRefGoogle Scholar
Hurtt, G. C., Pacala, S. W., Moorcroft, P. R., et al., 2002. Projecting the future of the U.S. carbon sink. Proceedings of the National Academy of Sciences, USA, 99, 1389–94.CrossRefGoogle ScholarPubMed
Ise, T. and Moorcroft, P. R., 2006. The global-scale temperature and moisture dependencies of soil organic carbon decomposition: an analysis using a mechanistic decomposition model. Biogeochemistry, 80, 217–31.CrossRefGoogle Scholar
Jackson, R. B., Jobbágy, E. G., Avissar, R., et al., 2005. Trading water for carbon with biological carbon sequestration. Science, 310, 1944–7.CrossRefGoogle ScholarPubMed
Jansen, E., Overpeck, J., Briffa, K. R., et al., 2007. Palaeoclimate. In Climate Change 2007: the Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, ed. Solomon, S., Qin, D., Manning, M., et al. Cambridge University Press, pp. 433–97.Google Scholar
Janssens, I. A., Lankreijer, H., Matteucci, G., et al., 2001. Productivity overshadows temperature in determining soil and ecosystem respiration across European forests. Global Change Biology, 7, 269–78.CrossRefGoogle Scholar
Jastrow, J. D., Miller, R. M., Matamala, R., et al., 2005. Elevated atmospheric carbon dioxide increases soil carbon. Global Change Biology, 11, 2057–64.CrossRefGoogle Scholar
Jickells, T. D., An, Z. S., Andersen, K. K., et al., 2005. Global iron connections between desert dust, ocean biogeochemistry, and climate. Science, 308, 67–71.CrossRefGoogle ScholarPubMed
Jones, C. D., Cox, P., and Huntingford, C., 2003a. Uncertainty in climate–carbon-cycle projections associated with the sensitivity of soil respiration to temperature. Tellus, 55B, 642–8.Google Scholar
Jones, C. D., Cox, P. M., Essery, R. L. H., Roberts, D. L., and Woodage, M. J., 2003b. Strong carbon cycle feedbacks in a climate model with interactive CO2 and sulphate aerosols. Geophysical Research Letters, 30, 1479, doi:10.1029/2003GL016867.CrossRefGoogle Scholar
Jones, C., McConnell, C., Coleman, K., et al., 2005. Global climate change and soil carbon stocks; predictions from two contrasting models for the turnover of organic carbon in soil. Global Change Biology, 11, 154–66.CrossRefGoogle Scholar
Jones, C. D., Cox, P. M., and Huntingford, C., 2006. Climate–carbon cycle feedbacks under stabilization: uncertainty and observational constraints. Tellus, 58B, 603–13.CrossRefGoogle Scholar
Joos, F., Prentice, I. C., and House, J. I., 2002. Growth enhancement due to global atmospheric change as predicted by terrestrial ecosystem models: consistent with US forest inventory data. Global Change Biology, 8, 299–303.CrossRefGoogle Scholar
Joos, F., Gerber, S., Prentice, I. C., Otto-Bliesner, B. L., and Valdes, P. J., 2004. Transient simulations of Holocene atmospheric carbon dioxide and terrestrial carbon since the Last Glacial Maximum. Global Biogeochemical Cycles, 18, GB2002, doi:10.1029/2003GB002156.CrossRefGoogle Scholar
Jouzel, J., Barkov, N. I., Barnola, J. M., et al., 1993. Extending the Vostok ice-core record of palaeoclimate to the penultimate glacial period. Nature, 364, 407–12.CrossRefGoogle Scholar
Kaplan, J. O., Prentice, I. C., Knorr, W., and Valdes, P. J., 2002. Modeling the dynamics of terrestrial carbon storage since the Last Glacial Maximum. Geophysical Research Letters, 29, 2074, doi:10.1029/2002GL015230.CrossRefGoogle Scholar
Keeling, C. D., Chin, J. F. S., and Whorf, T. P., 1996. Increased activity of northern vegetation inferred from atmospheric CO2 measurements. Nature, 382, 146–9.CrossRefGoogle Scholar
Keeling, R. F., Piper, S. C., and Heimann, M., 1996. Global and hemispheric CO2 sinks deduced from changes in atmospheric O2 concentration. Nature, 381, 218–21.CrossRefGoogle Scholar
Kicklighter, D. W., Bruno, M., Dönges, S., et al., 1999. A first-order analysis of the potential role of CO2 fertilization to affect the global carbon budget: a comparison of four terrestrial biosphere models. Tellus, 51B, 343–66.CrossRefGoogle Scholar
King, A. W., Emanuel, W. R., Wullschleger, S. D., and Post, W. M., 1995. In search of the missing carbon sink: a model of terrestrial biospheric response to land-use change and atmospheric CO2. Tellus, 47B, 501–19.CrossRefGoogle Scholar
Knorr, W., Prentice, I. C., House, J. I., and Holland, E. A., 2005. Long-term sensitivity of soil carbon turnover to warming. Nature, 433, 298–301.CrossRefGoogle ScholarPubMed
Kohlmaier, G. H., Bröhl, H., Siré, E. O., Plöchl, M., and Revelle, R., 1987. Modelling stimulation of plants and ecosystem response to present levels of excess atmospheric CO2. Tellus, 39B, 155–70.CrossRefGoogle Scholar
Körner, C., 1993. CO2 fertilization: the great uncertainty in future vegetation development. In Vegetation Dynamics and Global Change, ed. Solomon, A. M. and Shugart, H. H.. Chapman and Hall, pp. 53–70.CrossRefGoogle Scholar
Körner, C., 2000. Biosphere responses to CO2 enrichment. Ecological Applications, 10, 1590–619.Google Scholar
Körner, C., Asshoff, R., Bignucolo, O., et al., 2005. Carbon flux and growth in mature deciduous forest trees exposed to elevated CO2. Science, 309, 1360–2.CrossRefGoogle ScholarPubMed
Krinner, G., Boucher, O., and Balkanski, Y., 2006. Ice-free glacial northern Asia due to dust deposition on snow. Climate Dynamics, 27, 613–25.CrossRefGoogle Scholar
Kurz, W. A. and Apps, M. J., 1999. A 70-year retrospective analysis of carbon fluxes in the Canadian forest sector. Ecological Applications, 9, 526–47.CrossRefGoogle Scholar
Kurz, W. A., Apps, M. J., Beukema, S. J., and Lekstrum, T., 1995. 20th century carbon budget of Canadian forests. Tellus, 47B, 170–7.CrossRefGoogle Scholar
Lamarque, J.-F., Kiehl, J. T., Brasseur, G. P., et al., 2005. Assessing future nitrogen deposition and carbon cycle feedback using a multimodel approach: analysis of nitrogen deposition. Journal of Geophysical Research, 110, D19303, doi:10.1029/2005JD005825.CrossRefGoogle Scholar
Langenfelds, R. L., Francey, R. J., Pak, B. C., et al., 2002. Interannual growth rate variations of atmospheric CO2 and its δ13C, H2, CH4, and CO between 1992 and 1999 linked to biomass burning. Global Biogeochemical Cycles, 16, 1048, doi:10.1029/2001GB001466.CrossRefGoogle Scholar
Levy, P. E., Friend, A. D., White, A., and Cannell, M. G. R., 2004. The influence of land use change on global-scale fluxes of carbon from terrestrial ecosystems. Climatic Change, 67, 185–209.CrossRefGoogle Scholar
Lichter, J., Barron, S. H., Bevacqua, C. E., et al., 2005. Soil carbon sequestration and turnover in a pine forest after six years of atmospheric CO2 enrichment. Ecology, 86, 1835–47.CrossRefGoogle Scholar
Long, S. P., Ainsworth, E. A., Leakey, A. D. B., Nösberger, J., and Ort, D. R., 2006. Food for thought: lower-than-expected crop yield stimulation with rising CO2 concentrations. Science, 312, 1918–21.CrossRefGoogle ScholarPubMed
Lucht, W., Prentice, I. C., Myneni, R. B., et al., 2002. Climatic control of the high-latitude vegetation greening trend and Pinatubo effect. Science, 296, 1687–9.CrossRefGoogle ScholarPubMed
Luo, Y., Su, B., Currie, W. S., et al., 2004. Progressive nitrogen limitation of ecosystem responses to rising atmospheric carbon dioxide. BioScience, 54, 731–9.CrossRefGoogle Scholar
Magnani, F., Mencuccini, M., Borghetti, M., et al., 2007. The human footprint in the carbon cycle of temperate and boreal forests. Nature, 447, 848–52.CrossRefGoogle ScholarPubMed
Mahowald, N. M. and Luo, C., 2003. A less dusty future?Geophysical Research Letters, 30, 1903, doi:10.1029/2003GL017880.CrossRefGoogle Scholar
Mahowald, N., Kohfeld, K., Hansson, M., et al., 1999. Dust sources and deposition during the last glacial maximum and current climate: a comparison of model results with paleodata from ice cores and marine sediments. Journal of Geophysical Research, 104D, 15 895–916.CrossRefGoogle Scholar
Mahowald, N. M., Zender, C. S., Luo, C., et al., 2002. Understanding the 30-year Barbados desert dust record. Journal of Geophysical Research, 107D, 4561, doi:10.1029/2002JD002097.Google Scholar
Mahowald, N. M., Baker, A. R., Bergametti, G., et al., 2005. Atmospheric global dust cycle and iron inputs to the ocean. Global Biogeochemical Cycles, 19, GB4025, doi:10.1029/2004GB002402.CrossRefGoogle Scholar
Mahowald, N. M., Yoshioka, M., Collins, W. D., et al., 2006a. Climate response and radiative forcing from mineral aerosols during the last glacial maximum, pre-industrial, current and doubled-carbon dioxide climates. Geophysical Research Letters, 33, L20 705, doi:10.1029/2006GL026126.CrossRefGoogle Scholar
Mahowald, N. M., Muhs, D. R., Levis, S., et al., 2006b. Change in atmospheric mineral aerosols in response to climate: last glacial period, preindustrial, modern, and doubled carbon dioxide climates. Journal of Geophysical Research, 111D, D10202, doi:10.1029/2005JD006653.Google Scholar
Manley, J., Kooten, G. C., Moeltner, K., and Johnson, D. W., 2005. Creating carbon offsets in agriculture through no-till cultivation: a meta-analysis of costs and carbon benefits. Climatic Change, 68, 41–65.CrossRefGoogle Scholar
Manning, A. C. and Keeling, R. F., 2006. Global oceanic and land biotic carbon sinks from the Scripps atmospheric oxygen flask sampling network. Tellus, 58B, 95–116.CrossRefGoogle Scholar
Marland, G., West, T. O., Schlamadinger, B., and Canella, L., 2003. Managing soil organic carbon in agriculture: the net effect on greenhouse gas emissions. Tellus, 55B, 613–21.CrossRefGoogle Scholar
Martin, J., 1990. Glacial–interglacial CO2 change: the iron hypothesis. Paleoceanography, 5, 1–13.CrossRefGoogle Scholar
Matthews, H. D., 2005. Decrease of emissions required to stabilize atmospheric CO2 due to positive carbon cycle–climate feedbacks. Geophysical Research Letters, 32, L21707, doi:10.1029/2005GL023435.CrossRefGoogle Scholar
Matthews, H. D., 2006. Emissions targets for CO2 stabilization as modified by carbon cycle feedbacks. Tellus, 58B, 591–602.CrossRefGoogle Scholar
Matthews, H. D., 2007. Implications of CO2 fertilization for future climate change in a coupled climate–carbon model. Global Change Biology, 13, 1068–78.CrossRefGoogle Scholar
Matthews, H. D., Weaver, A. J., Meissner, K. J., Gillett, N. P., and Eby, M., 2004. Natural and anthropogenic climate change: Incorporating historical land cover change, vegetation dynamics and the global carbon cycle. Climate Dynamics, 22, 461–79.CrossRefGoogle Scholar
Matthews, H. D., Weaver, A. J., and Meissner, K. J., 2005a. Terrestrial carbon cycle dynamics under recent and future climate change. Journal of Climate, 18, 1609–28.CrossRefGoogle Scholar
Matthews, H. D., Eby, M., Weaver, A. J., and Hawkins, B. J., 2005b. Primary productivity control of simulated carbon cycle–climate feedbacks. Geophysical Research Letters, 32, L14708, doi:10.1029/2005GL022941.CrossRefGoogle Scholar
Matthews, H. D., Eby, M., Ewen, T., Friedlingstein, P., and Hawkins, B. J., 2007. What determines the magnitude of carbon cycle–climate feedbacks?Global Biogeochemical Cycles, 21, GB2012, doi:10.1029/2006GB002733.CrossRefGoogle Scholar
McGuire, A. D., Melillo, J. M., and Joyce, L. A., 1995. The role of nitrogen in the response of forest net primary production to elevated atmospheric carbon dioxide. Annual Review of Ecology and Systematics, 26, 473–503.CrossRefGoogle Scholar
McGuire, A. D., Melillo, J. M., Kicklighter, D. W., et al., 1997. Equilibrium responses of global net primary production and carbon storage to doubled atmospheric carbon dioxide: sensitivity to changes in vegetation nitrogen concentration. Global Biogeochemical Cycles, 11, 173–89.CrossRefGoogle Scholar
McLauchlan, K. K., Hobbie, S. E., and Post, W. M., 2006. Conversion from agriculture to grassland builds soil organic matter on decadal timescales. Ecological Applications, 16, 143–53.CrossRefGoogle ScholarPubMed
Melillo, J. M., Steudler, P. A., Aber, J. D., et al., 2002. Soil warming and carbon-cycle feedbacks to the climate system. Science, 298, 2173–6.CrossRefGoogle ScholarPubMed
Menzel, A., Sparks, T. H., Estrella, N., et al., 2006. European phenological response to climate change matches the warming pattern. Global Change Biology, 12, 1969–76.CrossRefGoogle Scholar
Middleton, N. J., 1985. Effect of drought on dust production in the Sahel. Nature 316, 431–4.CrossRefGoogle Scholar
Miller, R. L. and Tegen, I., 1998. Climate response to soil dust aerosols. Journal of Climate, 11, 3247–67.2.0.CO;2>CrossRefGoogle Scholar
Miller, R. L., and Tegen, I., 1999. Radiative forcing of a tropical direct circulation by soil dust aerosols. Journal of the Atmospheric Sciences, 56, 2403–33.2.0.CO;2>CrossRefGoogle Scholar
Miller, R. L., Perlwitz, J., and Tegen, I., 2004a. Feedback upon dust emission by dust radiative forcing through the planetary boundary layer. Journal of Geophysical Research, 109D, D24209, doi:10.1029/2004JD004912.Google Scholar
Miller, R. L., Tegen, I., and Perlwitz, J., 2004b. Surface radiative forcing by soil dust aerosols and the hydrologic cycle. Journal of Geophysical Research, 109D, D04203, doi:10.1029/2003JD004085.Google Scholar
Moulin, C. and Chiapello, I., 2006. Impact of human-induced desertification on the intensification of Sahel dust emission and export over the last decades. Geophysical Research Letters, 33, L18808, doi:10.1029/2006GL025923.CrossRefGoogle Scholar
Müller, C., Eickhout, B., Zaehle, S., et al., 2007. Effects of changes in CO2, climate, and land use on the carbon balance of the land biosphere during the 21st century. Journal of Geophysical Research, 112G, G02032, doi:10.1029/2006JG000388.Google Scholar
Myneni, R. B., Keeling, C. D., Tucker, C. J., Asrar, G., and Nemani, R. R., 1997. Increased plant growth in the northern high latitudes from 1981 to 1991. Nature 386, 698–702.CrossRefGoogle Scholar
Myneni, R. B., Dong, J., Tucker, C. J., et al., 2001. A large carbon sink in the woody biomass of northern forests. Proceedings of the National Academy of Sciences, USA, 98, 14 784–9.CrossRefGoogle ScholarPubMed
Nemani, R. R., White, M., Thornton, P., et al., 2002. Recent trends in hydrologic balance have enhanced the terrestrial carbon sink in the United States. Geophysical Research Letters, 29, doi:10.1029/2002GL014867.CrossRefGoogle Scholar
Nemani, R. R., Keeling, C. D., Hashimoto, H., et al., 2003. Climate-driven increases in global terrestrial net primary production from 1982 to 1999. Science, 300, 1560–3.CrossRefGoogle ScholarPubMed
Norby, R. J. and Iversen, C. M., 2006. Nitrogen uptake, distribution, turnover, and efficiency of use in a CO2-enriched sweetgum forest. Ecology, 87, 5–14.CrossRefGoogle Scholar
Norby, R. J., Wullschleger, S. D., Gunderson, C. A., Johnson, D. W., and Ceulemans, R., 1999. Tree responses to rising CO2 in field experiments: implications for the future forest. Plant, Cell and Environment, 22, 683–714.CrossRefGoogle Scholar
Norby, R. J., DeLucia, E. H., Gielen, B., et al., 2005. Forest response to elevated CO2 is conserved across a broad range of productivity. Proceedings of the National Academy of Sciences, USA, 102, 18 052–6.CrossRefGoogle ScholarPubMed
Nowak, R. S., Ellsworth, D. S., and Smith, S. D., 2004. Functional responses of plants to elevated atmospheric CO2 – do photosynthetic and productivity data from FACE experiments support early predictions?New Phytologist, 162, 253–80.CrossRefGoogle Scholar
Okin, G. S., Mahowald, N., Chadwick, O. A., and Artaxo, P., 2004. Impact of desert dust on the biogeochemistry of phosphorus in terrestrial ecosystems. Global Biogeochemical Cycles, 18, GB2005, doi:10.1029/2003GB002145.CrossRefGoogle Scholar
Oren, R., Ellsworth, D. S., Johnsen, K. H., et al., 2001. Soil fertility limits carbon sequestration by forest ecosystems in a CO2-enriched atmosphere. Nature, 411, 469–72.CrossRefGoogle Scholar
Overpeck, J., Rind, D., Lacis, A., and Healy, R., 1996. Possible role of dust-induced regional warming in abrupt climate change during the last glacial period. Nature, 384, 447–9.CrossRefGoogle Scholar
Pacala, S. W., Hurtt, G. C., Baker, D., et al., 2001. Consistent land- and atmosphere-based U.S. carbon sink estimates. Science, 292, 2316–20.CrossRefGoogle ScholarPubMed
Page, S. E., Siegert, F., Rieley, J. O., et al., 2002. The amount of carbon released from peat and forest fires in Indonesia during 1997. Nature, 420, 61–5.CrossRefGoogle ScholarPubMed
Paustian, K., Cole, C. V., Sauerbeck, D., and Sampson, N., 1998. CO2 mitigation by agriculture: an overview. Climatic Change, 40, 135–62.CrossRefGoogle Scholar
Paustian, K., Six, J., Elliott, E. T., and Hunt, H. W., 2000. Management options for reducing CO2 emissions from agricultural soils. Biogeochemistry, 48, 147–63.CrossRefGoogle Scholar
Peterson, B. J. and Melillo, J. M., 1985. The potential storage of carbon caused by eutrophication of the biosphere. Tellus 37B, 117–27.CrossRefGoogle Scholar
Petit, J. R., Mounier, L., Jouzel, J., et al., 1990. Palaeoclimatological and chronological implications of the Vostok core dust record. Nature, 343, 56–8.CrossRefGoogle Scholar
Piao, S., Friedlingstein, P., Ciais, P., Zhou, L., and Chen, A., 2006. Effect of climate and CO2 changes on the greening of the Northern Hemisphere over the past two decades. Geophysical Research Letters, 33, L23402, doi:10.1029/2006GL028205.CrossRefGoogle Scholar
Post, W. M. and Kwon, K. C., 2000. Soil carbon sequestration and land-use change: processes and potential. Global Change Biology, 6, 317–27.CrossRefGoogle Scholar
Post, W. M., King, A. W., and Wullschleger, S. D., 1997. Historical variations in terrestrial biospheric carbon storage. Global Biogeochemical Cycles, 11, 99–109.CrossRefGoogle Scholar
Post, W. M., Izaurralde, R. C., Jastrow, J. D., et al., 2004. Enhancement of carbon sequestration in US soils. BioScience, 54, 895–908.CrossRefGoogle Scholar
Potter, C., Klooster, S., Steinbach, M., et al., 2003. Global teleconnections of climate to terrestrial carbon flux. Journal of Geophysical Research, 108D, 4556, doi:10.1029/2002JD002979.CrossRefGoogle Scholar
Prentice, I. C., Sykes, M. T., Lautenschlager, M., et al., 1993. Modelling global vegetation patterns and terrestrial carbon storage at the last glacial maximum. Global Ecology and Biogeography Letters, 3, 67–76.CrossRefGoogle Scholar
Prentice, I. C., Farquhar, G. D., Fasham, M. J. R., et al., 2001. The carbon cycle and atmospheric carbon dioxide. In Climate Change 2001: the Scientific Basis. Contribution of Working Group I to the Third Assessment Report of the Intergovernmental Panel on Climate Change, ed. Houghton, J. T., Ding, Y., Griggs, D. J., et al. Cambridge University Press, pp. 183–237.Google Scholar
Prentice, K. C. and Fung, I. Y., 1990. The sensitivity of terrestrial carbon storage to climate change. Nature, 346, 48–51.CrossRefGoogle Scholar
Prospero, J. M., 1996. Saharan dust transport over the North Atlantic Ocean and Mediterranean: an overview. In The Impact of Desert Dust Across the Mediterranean, ed. Guerzoni, S. and Chester, R.. Kluwer, pp. 133–51.CrossRefGoogle Scholar
Prospero, J. M., 1999. Long-term measurements of the transport of African mineral dust to the southeastern United States: implications for regional air quality. Journal of Geophysical Research, 104D, 15 917–27.CrossRefGoogle Scholar
Prospero, J. M. and Lamb, P. J., 2003. African droughts and dust transport to the Caribbean: climate change implications. Science, 302, 1024–7.CrossRefGoogle ScholarPubMed
Prospero, J. M. and Nees, R. T., 1977. Dust concentration in the atmosphere of the equatorial North Atlantic: possible relationship to the Sahelian drought. Science, 196, 1196–8.CrossRefGoogle ScholarPubMed
Prospero, J. M., and Nees, R. T., 1986. Impact of the North African drought and El Niño on mineral dust in the Barbados trade winds. Nature, 320, 735–8.CrossRefGoogle Scholar
Prospero, J. M. and Savoie, D. L., 1989. Effect of continental sources on nitrate concentrations over the Pacific Ocean. Nature, 339, 687–9.CrossRefGoogle Scholar
Prospero, J. M., Glaccum, R. A., and Nees, R. T., 1981. Atmospheric transport of soil dust from Africa to South America. Nature 289, 570–2.CrossRefGoogle Scholar
Prospero, J. M., Nees, R. T., and Uematsu, M., 1987. Deposition rate of particulate and dissolved aluminum derived from Saharan dust in precipitation at Miami, Florida. Journal of Geophysical Research, 92D, 14 723–31.CrossRefGoogle Scholar
Prospero, J. M., Barrett, K., Church, T., et al., 1996. Atmospheric deposition of nutrients to the North Atlantic Basin. Biogeochemistry, 35, 27–73.CrossRefGoogle Scholar
Prospero, J. M., Ginoux, P., Torres, O., Nicholson, S. E., and Gill, T. E., 2002. Environmental characterization of global sources of atmospheric soil dust identified with the NIMBUS 7 Total Ozone Mapping Spectrometer (TOMS) absorbing aerosol product. Reviews of Geophysics, 40, 1002, doi:10.1029/2000RG000095.CrossRefGoogle Scholar
Ramankutty, N., Gibbs, H. K., Achard, F., et al., 2006. Challenges to estimating carbon emissions from tropical deforestation. Global Change Biology, 12, 1–16.Google Scholar
Randerson, J. T., Thompson, M. V., Conway, T. J., Fung, I. Y., and Field, C. B., 1997. The contribution of terrestrial sources and sinks to trends in the seasonal cycle of atmospheric carbon dioxide. Global Biogeochemical Cycles, 11, 535–60.CrossRefGoogle Scholar
Randerson, J. T., Field, C. B., Fung, I. Y., and Tans, P. P., 1999. Increases in early season ecosystem uptake explain recent changes in the seasonal cycle of atmospheric CO2 at high northern latitudes. Geophysical Research Letters, 26, 2765–8.CrossRefGoogle Scholar
Randerson, J. T., Werf, G. R., Collatz, G. J., et al., 2005. Fire emissions from C3 and C4 vegetation and their influence on interannual variability of atmospheric CO2 and δ13CO2. Global Biogeochemical Cycles, 19, GB2019, doi:10.1029/2004GB002366.CrossRefGoogle Scholar
Randerson, J. T., Liu, H., Flanner, M. G., et al., 2006. The impact of boreal forest fire on climate warming. Science, 314, 1130–2.CrossRefGoogle ScholarPubMed
Rayner, P. J. and Law, R. M., 1999. The interannual variability of the global carbon cycle. Tellus 51B, 210–12.CrossRefGoogle Scholar
Rayner, P. J., Enting, I. G., Francey, R. J., and Langenfelds, R., 1999. Reconstructing the recent carbon cycle for atmospheric CO2, δ13C and O2/N2 observations. Tellus, 51B, 213–32.CrossRefGoogle Scholar
Reich, P. B., Hobbie, S. E., Lee, T., et al., 2006. Nitrogen limitation constrains sustainability of ecosystem response to CO2. Nature, 440, 922–5.CrossRefGoogle Scholar
Sabine, C. L., Heimann, M., Artaxo, P., et al., 2004. Current status and past trends of the global carbon cycle. In The Global Carbon Cycle: Integrating Humans, Climate, and the Natural World, ed. Field, C. B. and Raupach, M. R.. Island Press, pp. 17–44.Google Scholar
Schaefer, K., Denning, A. S., and Leonard, O., 2005. The winter Arctic Oscillation, the timing of spring, and carbon fluxes in the Northern Hemisphere. Global Biogeochemical Cycles, 19, GB3017, doi:10.1029/2004GB002336.CrossRefGoogle Scholar
Schaeffer, M., Eickhout, B., Hoogwijk, M., et al., 2006. CO2 and albedo climate impacts of extratropical carbon and biomass plantations. Global Biogeochemical Cycles, 20, GB2020, doi:10.1029/2005GB002581.CrossRefGoogle Scholar
Schaphoff, S., Lucht, W., Gerten, D., et al., 2006. Terrestrial biosphere carbon storage under alternative climate projections. Climatic Change, 74, 97–122.CrossRefGoogle Scholar
Schimel, D. S., Braswell, B. H., Holland, E. A., et al., 1994. Climatic, edaphic, and biotic controls over storage and turnover of carbon in soils. Global Biogeochemical Cycles, 8, 279–93.CrossRefGoogle Scholar
Schimel, D. S., Melillo, J., Tian, H., et al., 2000. Contribution of increasing CO2 and climate to carbon storage by ecosystems in the United States. Science, 287, 2004–6.CrossRefGoogle ScholarPubMed
Schimel, D. S., House, J. I., Hibbard, K. A., et al., 2001. Recent patterns and mechanisms of carbon exchange by terrestrial ecosystems. Nature, 414, 169–72.CrossRefGoogle ScholarPubMed
Schlesinger, W. H., Winkler, J. P., and Megonigal, J. P., 2000. Soils and the global carbon cycle. In The Carbon Cycle, ed. Wigley, T. M. L. and Schimel, D. S.. Cambridge University Press, pp. 93–101.CrossRefGoogle Scholar
Schwartz, M. D., Ahas, R., and Aasa, A., 2006. Onset of spring starting earlier across the Northern Hemisphere. Global Change Biology, 12, 343–51.CrossRefGoogle Scholar
Sitch, S., Brovkin, V., Bloh, W., et al., 2005. Impacts of future land cover changes on atmospheric CO2 and climate. Global Biogeochemical Cycles, 19, GB2013, doi:10.1029/2004GB002311.CrossRefGoogle Scholar
Slayback, D. A., Pinzon, J. E., Los, S. O., and Tucker, C. J., 2003. Northern hemisphere photosynthetic trends 1982–99. Global Change Biology, 9, 1–15.CrossRefGoogle Scholar
Stephens, B. B., Gurney, K. R., Tans, P. P., et al., 2007. Weak northern and strong tropical land carbon uptake from vertical profiles of atmospheric CO2. Science, 316, 1732–5.CrossRefGoogle ScholarPubMed
Svensson, A., Biscaye, P. E., and Grousset, F. E., 2000. Characterization of late glacial continental dust in the Greenland Ice Core Project ice core. Journal of Geophysical Research, 105D, 4637–56.CrossRefGoogle Scholar
Swap, R., Garstang, M., Greco, S., Talbot, R., and Kållberg, P., 1992. Saharan dust in the Amazon Basin. Tellus 44B, 133–49.CrossRefGoogle Scholar
Tans, P. P., Fung, I. Y., and Takahashi, T., 1990. Observational constraints on the global atmospheric CO2 budget. Science, 247, 1431–8.CrossRefGoogle Scholar
Tegen, I. and Fung, I., 1995. Contribution to the atmospheric mineral aerosol load from land surface modification. Journal of Geophysical Research, 100D, 18 707–26.CrossRefGoogle Scholar
Tegen, I., Lacis, A. A., and Fung, I., 1996. The influence on climate forcing of mineral aerosols from disturbed soils. Nature, 380, 419–22.CrossRefGoogle Scholar
Tegen, I., Werner, M., Harrison, S. P., and Kohfeld, K. E., 2004. Relative importance of climate and land use in determining present and future global soil dust emission. Geophysical Research Letters, 31, L05105, doi:10.1029/2003GL019216.Google Scholar
Thompson, S. L., Govindasamy, B., Mirin, A., et al., 2004. Quantifying the effects of CO2-fertilized vegetation on future global climate and carbon dynamics. Geophysical Research Letters, 31, L23211, doi:10.1029/2004GL021239.CrossRefGoogle Scholar
Tian, H., Melillo, J. M., Kicklighter, D. W., et al., 1998. Effect of interannual climate variability on carbon storage in Amazonian ecosystems. Nature, 396, 664–7.CrossRefGoogle Scholar
Tian, H., Melillo, J. M., Kicklighter, D. W., McGuire, A. D., and Helfrich, J., 1999. The sensitivity of terrestrial carbon storage to historical climate variability and atmospheric CO2 in the United States. Tellus, 51B, 414–52.CrossRefGoogle Scholar
Townsend, A. R., Braswell, B. H., Holland, E. A., and Penner, J. E., 1996. Spatial and temporal patterns in terrestrial carbon storage due to deposition of fossil fuel nitrogen. Ecological Applications, 6, 806–14.CrossRefGoogle Scholar
Tucker, C. J., Fung, I. Y., Keeling, C. D., and Gammon, R. H., 1986. Relationship between atmospheric CO2 variations and a satellite-derived vegetation index. Nature, 319, 195–9.CrossRefGoogle Scholar
Tucker, C. J., Slayback, D. A., Pinzon, J. E., et al., 2001. Higher northern latitude normalized difference vegetation index and growing season trends from 1982 to 1999. International Journal of Biometeorology, 45, 184–90.CrossRefGoogle ScholarPubMed
Werf, G. R., Randerson, J. T., Collatz, G. J., et al., 2004. Continental-scale partitioning of fire emissions during the 1997 to 2001 El Niño/La Niña period. Science, 303, 73–6.CrossRefGoogle ScholarPubMed
Vitousek, P. M., Aber, J. D., Howarth, R. W., et al., 1997. Human alteration of the global nitrogen cycle: sources and consequences. Ecological Applications, 7, 737–50.Google Scholar
Werner, M., Tegen, I., Harrison, S. P., et al., 2002. Seasonal and interannual variability of the mineral dust cycle under present and glacial climate conditions. Journal of Geophysical Research, 107D, 4744, doi:10.1029/2002JD002365.CrossRefGoogle Scholar
West, T. O. and Marland, G., 2002. A synthesis of carbon sequestration, carbon emissions, and net carbon flux in agriculture: comparing tillage practices in the United States. Agriculture, Ecosystems & Environment, 91, 217–32.CrossRefGoogle Scholar
West, T. O., and Marland, G., 2003. Net carbon flux from agriculture: carbon emissions, carbon sequestration, crop yield, and land-use change. Biogeochemistry, 63, 73–83.CrossRefGoogle Scholar
West, T. O. and Post, W. M., 2002. Soil organic carbon sequestration rates by tillage and crop rotation: a global data analysis. Soil Science Society of America Journal, 66, 1930–46.CrossRefGoogle Scholar
Woodward, S., Roberts, D. L., and Betts, R. A., 2005. A simulation of the effect of climate change-induced desertification on mineral dust aerosol. Geophysical Research Letters, 32, L18810, doi:10.1029/2005GL023482.CrossRefGoogle Scholar
Zaehle, S., Bondeau, A., Carter, T. R., et al., 2007. Projected changes in terrestrial carbon storage in Europe under climate and land-use change, 1990–2100. Ecosystems, 10, 380–401, doi:10.1007/s10021-007-9028-9.CrossRefGoogle Scholar
Zhou, L., Tucker, C. J., Kaufmann, R. K., et al., 2001. Variations in northern vegetation activity inferred from satellite data of vegetation index during 1981 to 1999. Journal of Geophysical Research, 106D, 20 069–84.CrossRefGoogle Scholar
Zhou, L., Kaufmann, R. K., Tian, Y., Myneni, R. B., and Tucker, C. J., 2003. Relation between interannual variations in satellite measures of northern forest greenness and climate between 1982 and 1999. Journal of Geophysical Research, 108D, 4004, doi:10.1029/2002JD002510.CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×