Skip to main content Accessibility help
×
Hostname: page-component-77c89778f8-m42fx Total loading time: 0 Render date: 2024-07-23T10:16:53.490Z Has data issue: false hasContentIssue false

8 - Electrochromism by intervalence charge-transfer coloration: metal hexacyanometallates

Published online by Cambridge University Press:  10 August 2009

Paul Monk
Affiliation:
Manchester Metropolitan University
Roger Mortimer
Affiliation:
Loughborough University
David Rosseinsky
Affiliation:
University of Exeter
Get access

Summary

Prussian blue systems: history and bulk properties

Prussian blue – PB; ferric ferrocyanide, or iron(III) hexacyanoferrate(II) – first made by Diesbach in Berlin in 1704, is extensively used as a pigment in the formulation of paints, lacquers and printing inks. Since the first report in 1978 of the electrochemistry of PB films, numerous studies concerning the electrochemistry of PB and related analogues have been made, with, in addition to electrochromism, proposed applications in electroanalysis and electrocatalysis. Fundamental studies on basic PB properties (electronic structure, spectra and conductimetry) underlie the elaborations that follow.

Prussian blue is the prototype of numerous polynuclear transition-metal hexacyanometallates, which form an important class of insoluble mixed-valence compounds. They have the general formula M′k[M″(CN)6]l (k, l integral) where M′ and M″ are transition metals with different formal oxidation numbers. These materials can contain ions of other metals and varying amounts of water. In PB the two transition metals in the formula are the two common oxidation states of iron, FeIII and FeII. Prussian blue is readily prepared by mixing aqueous solutions of a hexacyanoferrate(III) salt with iron(II), the preferred industrial-production route (rather than iron(III) with a hexacyanoferrate(II) salt). In the PB chromophore, the distribution of oxidation states is FeIII–FeII respectively; i.e. it contains Fe3+ and [FeII(CN)6]4−, as established by the CN stretching frequency in the IR spectrum and confirmed by Mössbauer spectroscopy. The chromophore alone thus has a negative charge, therefore in the solid a counter cation is to be incorporated.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Diesbach (1704), cited in Gmelin, Handbuch der Anorganischen Chemie, Frankfurt am Main, Deutsche Chemische Gesellschaft, 1930, vol. 59, Eisen B, p. 671.
Fukuda, K. In Pigment Handbook, 2nd edn, Lewis, P. A. (ed.), New York, Wiley Interscience, 1988, vol. 1, pp. 357–65.Google Scholar
Colour Index, 3rd edn, Bradford, Society of Dyers and Colourists, 1971, vol. 4, p. 4673.
Neff, V. D.Electrochemical oxidation and reduction of thin films of Prussian blue. J. Electrochem. Soc., 125, 1978, 886–7.CrossRefGoogle Scholar
Itaya, K., Uchida, I. and Neff, V. D.Electrochemistry of polynuclear transition-metal cyanides – Prussian blue and its analogs. Acc. Chem. Res., 19, 1986, 162–168.CrossRefGoogle Scholar
Monk, P. M. S., Mortimer, R. J. and Rosseinsky, D. R.Electrochromism: Fundamentals and Applications, Weinheim, VCH, 1995, ch. 6.CrossRefGoogle Scholar
Tacconi, N. R., Rajeshwar, K. and Lezna, R. O.Metal hexacyanoferrates: electrosynthesis, in situ characterization, and applications. Chem. Mater., 15, 2003, 3046–62.CrossRefGoogle Scholar
Cox, J. A., Jaworski, R. K. and Kulesza, P. J.Electroanalysis with electrodes modified by inorganic films. Electroanalysis, 3, 1991, 869–77.CrossRefGoogle Scholar
Karyakin, A. A.Prussian blue and its analogues: electrochemistry and analytical applications. Electroanalysis, 13, 2001, 813–19.3.0.CO;2-Z>CrossRefGoogle Scholar
Koncki, R.Chemical sensors and biosensors based on Prussian blues. Crit. Rev. Anal. Chem., 32, 2002, 79–96.CrossRefGoogle Scholar
Ricci, F. and Palleschi, G.Sensor and biosensor preparation, optimisation and applications of Prussian blue modified electrode. Biosens. Bioelectron. 21, 2005, 389–407.CrossRefGoogle Scholar
Robin, M. B.The colour and electronic configuration of Prussian blue. Inorg. Chem., 1, 1962, 337–42.CrossRefGoogle Scholar
Inoue, H. and Yanagisawa, S.Bonding nature and semiconductivity of Prussian blue and related compounds. J. Inorg. Nucl. Chem., 36, 1974, 1409–11.CrossRefGoogle Scholar
Wilde, R. E., Ghosh, S. N. and Marshall, B. J.The Prussian blues. Inorg. Chem., 9, 1970, 2512–16.CrossRefGoogle Scholar
Chadwick, B. M. and Sharpe, A. G.Transition metal cyanides and their complexes. Adv. Inorg. Chem. Radiochem, 8, 1966, 83–176.CrossRefGoogle Scholar
Sharpe, A. G.The Chemistry of Cyano Complexes of the Transition Metals, New York, Academic Press, 1976.Google Scholar
Dunbar, K. R. and Heintz, R. A.Chemistry of transition metal cyanide compounds: modern perspectives. Prog. Inorg. Chem., 45, 1997, 283–391.Google Scholar
Bonnette, A. K. jr., and Allen, J. F.Isotopic labelling for Mössbauer studies, an application to the iron cyanides. Inorg. Chem., 10, 1971, 1613–16.Google Scholar
Sillen, L. G. and Martell, A. E. Stability Constants – Supplement No. 1. London, The Chemical Society, 1971, Special Publication No. 25.
Mayoh, B. and Day, P.Charge transfer in mixed valence solids. Part VII. Perturbation calculations of valence delocalisation in iron(II, III) cyanides and silicates. J. Chem. Soc., Dalton Trans., 1974, 846–52.CrossRefGoogle Scholar
Keggin, J. F. and Miles, F. D.Structures and formulae of the Prussian blues and related compounds. Nature (London), 137, 1936, 577–8.CrossRefGoogle Scholar
Buser, H. J., Schwarzenbach, D., Petter, W. and Ludi, A.The crystal structure of Prussian blue: Fe4[Fe(CN)6]3. xH2O. Inorg. Chem., 16, 1977, 2704–10.CrossRefGoogle Scholar
Widmann, A., Kahlert, H., Petrovic-Prelevic, H., Wulff, H., Yakshmi, J. V., Bagkar, N. and Scholz, F.Structure, insertion electrochemistry, and magnetic properties of a new type of substitutional solid solutions of copper, nickel, and iron hexacyanoferrates/hexacyanocobaltates. Inorg. Chem., 41, 2002, 5706–15.CrossRefGoogle ScholarPubMed
Rosseinsky, D. R., Lim, H., Jiang, H. and Chai, J. W.Optical charge-transfer in iron(III)hexacyanoferrate(II): electro-intercalated cations induce lattice-energy-dependent ground-state energies. Inorg. Chem., 42, 2003, 6015–23.CrossRefGoogle ScholarPubMed
Yano, , , Y., Kinugasa, N., Yoshida, H.Fujino, K., , K. and Kawahara, H.Electrochemical properties of amorphous Prussian blue films chemically deposited from aqueous solutions. Proc. Electrochem. Soc., 90–2, 1990, 125–36.Google Scholar
Ellis, D., Eckhoff, M. and Neff, V. D.Electrochromism in the mixed-valence hexacyanides. 1. Voltammetric and spectral studies of the oxidation and reduction of thin-films of Prussian blue. J. Phys. Chem., 85, 1981, 1225–31.CrossRefGoogle Scholar
Ho, K.-C.On the deposition of Prussian blue by the sacrificial anode method. Proc. Electrochem. Soc., 94–2, 1994, 170–84.Google Scholar
Gomathi, H. and Rao, G. P.Simple electrochemical immobilization of the ferro ferricyanide redox couple on carbon electrodes. J. Appl. Electrochem., 20, 1990, 454–6.CrossRefGoogle Scholar
Scholz, F. and Meyer, B. Voltammetry of solid microparticles immobilized on electrode surfaces. In Electroanalytical Chemistry: A Series of Advances, Bard, A. J. and Rubinstein, I. (eds.), New York, Marcel Dekker, 1998, vol. 20, pp. 1–86.Google Scholar
Kellawi, H. and Rosseinsky, D. R.Electrochemical bichromic behaviour of ferric ferrocyanide (Prussian blue) in thin film redox processes. J. Electroanal. Chem., 131, 1982, 373–6.CrossRefGoogle Scholar
Barton, R. T., Kellawi, H., Marken, F., Mortimer, R. J. and Rosseinsky, D. R. Unpublished results.
Goncalves, R. M. C., Kellawi, H. and Rosseinsky, D. R.Electron-transfer processes and electrodeposition involving the iron hexacyanoferrates studied voltammetrically. J. Chem. Soc., Dalton Trans., 1983, 991–4.CrossRefGoogle Scholar
Mortimer, R. J. and Rosseinsky, D. R.Electrochemical polychromicity in iron hexacyanoferrate films, and a new film form of ferric ferricyanide. J. Electroanal. Chem., 151, 1983, 133–47.CrossRefGoogle Scholar
Mortimer, R. J. and Rosseinsky, D. R.Iron hexacyanoferrate films: spectroelectrochemical distinction and electrodeposition sequence of ‘soluble’ (K+-containing) and ‘insoluble’ (K+-free) Prussian blue and composition changes in polyelectrochromic switching. J. Chem. Soc., Dalton Trans., 1984, 2059–61.CrossRefGoogle Scholar
Itaya, K., Ataka, T. and Toshima, S.Spectroelectrochemistry and electrochemical preparation method of Prussian blue modified electrodes. J. Am. Chem. Soc., 104, 1982, 4767–72.CrossRefGoogle Scholar
Cheng, G. J. and Dong, S. J.Chronoabsorptometric study of Prussian blue modified film electrode. Electrochim. Acta, 32, 1987, 1561–5.CrossRefGoogle Scholar
Feldman, B. J. and Melroy, O. R.Ion flux during electrochemical charging of Prussian blue films. J. Electroanal. Chem., 234, 1987, 213–27.CrossRefGoogle Scholar
Hamnett, A., Higgins, S., Mortimer, R. J. and Rosseinsky, D. R.A study of the electrodeposition and subsequent potential cycling of Prussian blue films using ellipsometry. J. Electroanal. Chem., 255, 1988, 315–24.CrossRefGoogle Scholar
Rosseinsky, D. R. and Tonge, J. S.Electron transfer rates by dielectric relaxometry and the DC conductivities of solid homonuclear and heteronuclear mixed valence metal cyanometallates, and of the methylene-blue/iron-dithiolate adduct. J. Chem. Soc., Faraday Trans., 1, 83, 1987, 245–55.CrossRefGoogle Scholar
Mortimer, R. J., Rosseinsky, D. R. and Glidle, A.Polyelectrochromic Prussian blue: a chronoamperometric study of the electrodeposition. Sol. Energy Mater. Sol. Cells, 25, 1992, 211–23.CrossRefGoogle Scholar
Rosseinsky, D. R. and Glidle, A.EDX, spectroscopy, and composition studies of electrochromic iron(III) hexacyanoferrate(II) deposition. J. Electrochem. Soc., 150, 2003, C641–5.CrossRefGoogle Scholar
Millward, R. C., Madden, C. E., Sutherland, I., Mortimer, R. J., Fletcher, S. and Marken, F.Directed assembly of multi-layers: the case of Prussian blue. Chem. Commun, 2001, 1994–5.CrossRefGoogle Scholar
Pyrasch, M. and Tieke, B.Electro- and photoresponsive films of Prussian blue prepared upon multiple sequential adsorption. Langmuir, 17, 2001, 7706–9.CrossRefGoogle Scholar
Pyrasch, M., Toutianoush, A., Jin, W., Schnepf, J. and Tieke, B.Self-assembled films of Prussian blue and analogues: optical and electrochemical properties and application as ion-sieving membranes. Chem. Mater., 15, 2003, 245–54.CrossRefGoogle Scholar
Jin, W., Toutianoush, A., Pyrasch, M., Schnepf, J., Gottschalk, H., Rammensee, W. and Tieke, B.J. Phys. Chem. B, 107, 2003, 12062–70.CrossRef
Mortimer, R. J. Unpublished observations.
Itaya, K. and Uchida, I.Nature of intervalence charge-transfer bands in Prussian blues. Inorg. Chem., 25, 1986, 389–92.CrossRefGoogle Scholar
Emrich, R. J., Traynor, L., Gambogi, W. and Buhks, E.Surface-analysis of electrochromic displays of iron hexacyanoferrate films by X-ray photoelectron spectroscopy. J. Vac. Sci. Technol. A, 5, 1987, 1307–10.CrossRefGoogle Scholar
Lundgren, C. A. and Murray, R. W.Observations on the composition of Prussian blue films and their electrochemistry. Inorg. Chem., 27, 1988, 933–9.CrossRefGoogle Scholar
Beckstead, D. J., Smet, D. J. and Ord, J. L.An ellipsometric investigation of the formation and conversion of Prussian blue films. J. Electrochem. Soc., 136, 1989, 1927–32.CrossRefGoogle Scholar
Christensen, P. A., Hamnett, A. and Higgins, S. J.A study of electrochemically grown Prussian blue films using Fourier-transform infrared spectroscopy. J. Chem. Soc., Dalton Trans., 1990, 2233–8.CrossRefGoogle Scholar
Rosseinsky, D. R., Glasser, L. and Jenkins, H. D. B.Thermodynamic clarification of the curious ferric/potassium ion exchange accompanying the electrochromic redox reactions of Prussian Blue, iron(III) hexacyanoferrate(II). J. Am. Chem. Soc., 126, 2004, 10473–7.CrossRefGoogle Scholar
Lee, O. H., Yang, H. and Kwak, J.Ion and water transports in Prussian blue films investigated with electrochemical quartz crystal microbalance. Electrochem. Commun., 3, 2001, 274–80.Google Scholar
Rosseinsky, D. R., Lim, H., Zhang, X., Jiang, H. and Chai, J. W.Charge-transfer band shifts in iron(III)hexacyanoferrate(II) by electro-intercalated cations via groundstate-energy/lattice-energy link. Chem. Commun., 2002, 2988–9.CrossRefGoogle ScholarPubMed
Stilwell, D. E., Park, K. W. and Miles, M. H.Electrochemical studies of the factors influencing the cycle stability of Prussian blue films. J. Appl. Electrochem., 22, 1992, 325–31.CrossRefGoogle Scholar
Itaya, K., Shibayama, K., Akahoshi, H. and Toshima, S.Prussian-blue-modified electrodes – an application for a stable electrochromic display device. J. Appl. Phys., 53, 1982, 804–5.CrossRefGoogle Scholar
Honda, K., Ochiai, J. and Hayashi, H.Polymerization of transition-metal complexes in solid polymer electrolytes. J. Chem. Soc., Chem. Commun., 1986, 168–70.CrossRefGoogle Scholar
Honda, K. and Kuwano, A.Solid-state electrochromic device using polynuclear metal complex-containing solid polymer electrolyte. J. Electrochem. Soc., 133, 1986, 853–4.CrossRefGoogle Scholar
Carpenter, M. K. and Conell, R. S.A single-film electrochromic device. J. Electrochem. Soc., 137, 1990, 2464–7.CrossRefGoogle Scholar
Honda, K., Fujita, M., Ishida, H., Yamamoto, R. and Ohgaki, K.Solid-state electrochromic devices composed of Prussian blue, WO3, and poly(ethylene oxide)–polysiloxane hybrid-type ionic conducting membrane. J. Electrochem. Soc., 135, 1988, 3151–4.CrossRefGoogle Scholar
Habib, M. A., Maheswari, S. P. and Carpenter, M. K.A tungsten-trioxide Prussian blue complementary electrochromic cell with a polymer electrolyte. J. Appl. Electrochem., 21, 1991, 203–7.CrossRefGoogle Scholar
Habib, M. A. and Maheswari, S. P.Effect of temperature on a complementary WO3–Prussian blue electrochromic system. J. Electrochem. Soc., 139, 1992, 2155–7.CrossRefGoogle Scholar
Béraud, J.-G. and Deroo, D.Some novel prospective polymer electrolytes containing potassium-ion for electrochromic devices, with preliminary tests on Prussian blue/KxWO3 electrochromic windows. Sol. Energy Mater. Sol. Cells, 31, 1993, 263–75.CrossRefGoogle Scholar
Ho, K. C.Cycling and at-rest stabilities of a complementary electrochromic device based on tungsten oxide and Prussian blue thin films. Electrochim. Acta, 44, 1999, 3227–35.CrossRefGoogle Scholar
Duek, E. A. R., Paoli, M.-A. and Mastragostino, M.An electrochromic device based on polyaniline and Prussian blue. Adv. Mater., 4, 1992, 287–91.CrossRefGoogle Scholar
Duek, E. A. R., Paoli, M.-A. and Mastragostino, M. A.A solid-state electrochromic device based on polyaniline, Prussian blue and an elastomeric electrolyte. Adv. Mater., 5, 1993, 650–2.CrossRefGoogle Scholar
Morita, M.Electrochromic behavior and stability of polyaniline composite films combined with Prussian blue. J. Appl. Polym. Sci., 52, 1994, 711–19.CrossRefGoogle Scholar
Jelle, B. P., Hagen, G. and Nødland, S.Transmission spectra of an electrochromic window consisting of polyaniline, Prussian blue and tungsten oxide. Electrochim. Acta, 38, 1993, 1497–500.CrossRefGoogle Scholar
Jelle, B. P. and Hagen, G. J.Transmission spectra of an electrochromic window based on polyaniline, Prussian blue and tungsten oxide. J. Electrochem. Soc., 140, 1993, 3560–4.CrossRefGoogle Scholar
Leventis, N. and Chung, Y. C.Polyaniline–Prussian blue novel composite-material for electrochromic applications. J. Electrochem. Soc., 137, 1990, 3321–2.CrossRefGoogle Scholar
Jelle, B. P. and Hagen, G.Correlation between light absorption and electric charge in solid state electrochromic windows. J. Appl. Chem., 29, 1999, 1103–10.Google Scholar
Jelle, B. P. and Hagen, G.Performance of an electrochromic window based on polyaniline, Prussian blue and tungsten oxide. Sol. Energy Mater. Sol. Cells, 58, 1999, 277–86.CrossRefGoogle Scholar
Tung, T.-S. and Ho, K.-C.Cycling and at-rest stabilities of a complementary electrochromic device containing poly(3,4-ethylenedioxythiophene) and Prussian blue. Sol. Energy Mater. Sol. Cells, 90, 2006, 521–37.CrossRefGoogle Scholar
Kashiwazaki, N.New complementary electrochromic display utilizing polymeric YbPc2 and Prussian blue films. Sol. Energy Mater. Sol. Cells, 25, 1992, 349–59.CrossRefGoogle Scholar
Rajan, K. P. and Neff, V. D.Electrochromism in the mixed-valence hexacyanides. 2. Kinetics of the reduction of ruthenium purple and Prussian blue. J. Phys. Chem., 86, 1982, 4361–8.CrossRefGoogle Scholar
Itaya, K., Ataka, T. and Toshima, S.Electrochemical preparation of a Prussian blue analog – iron–ruthenium cyanide. J. Am. Chem. Soc., 104, 1982, 3751–2.CrossRefGoogle Scholar
Carpenter, M. K., Conell, R. S. and Simko, S. J.Electrochemistry and electrochromism of vanadium hexacyanoferrate. Inorg. Chem., 29, 1990, 845–50.CrossRefGoogle Scholar
Dong, S. J. and Li, F. B.Researches on chemically modified electrodes.16. Electron-diffusion coefficient in vanadium hexacyanoferrate film. J. Electroanal. Chem., 217, 1987, 49–63.Google Scholar
Bocarsly, A. B. and Sinha, S.Chemically derivatized nickel surfaces – synthesis of a new class of stable electrode interfaces. J. Electroanal. Chem., 137, 1982, 157–62.CrossRefGoogle Scholar
Joseph, J., Gomathi, H. and Rao, G. P.Electrochemical characteristics of thin-films of nickel hexacyanoferrate formed on carbon substrates. Electrochim. Acta, 36, 1991, 1537–41.CrossRefGoogle Scholar
Dillingham, J. L. Investigation of bipyridilium and Prussian blue systems for their potential application in electrochromic devices. Ph.D. Thesis, Loughborough University, 1999, ch. 5 (A survey of the transition metal hexacyanoferrates).
Sinha, S., Humphrey, B. D., Fu, E. and Bocarsly, A. B.The coordination chemistry of chemically derivatized nickel surfaces – generation of an electrochromic interface. J. Electroanal. Chem., 162, 1984, 351–7.CrossRefGoogle Scholar
Siperko, L. M. and Kuwana, T.Electrochemical and spectroscopic studies of metal hexacyanometalate films. 1. Cupric hexacyanoferrate. J. Electrochem. Soc., 130, 1983, 396–402.CrossRefGoogle Scholar
Siperko, L. M. and Kuwana, T.Electrochemical and spectroscopic studies of metal hexacyanoferrate films. 2. Cupric hexacyanoferrate and Prussian blue layered films. J. Electrochem. Soc., 133, 1986, 2439–40.CrossRefGoogle Scholar
Siperko, L. M. and Kuwana, T.Electrochemical and spectroscopic studies of metal hexacyanometalate films. 3. Equilibrium and kinetic studies of cupric hexacyanoferrate. Electrochim. Acta, 32, 1987, 765–71.CrossRefGoogle Scholar
Siperko, L. M. and Kuwana, T.Studies of layered thin-films of Prussian-blue-type compounds. J. Vac. Sci. Technol. A, 5, 1987, 1303–6.CrossRefGoogle Scholar
Jiang, M. and Zhao, Z. F.A novel stable electrochromic thin-film – a Prussian blue analog based on palladium hexacyanoferrate. J. Electroanal. Chem., 292, 1990, 281–7.CrossRefGoogle Scholar
Lezna, R. O., Romagnoli, R., Tacconi, N. R. and Rajeshwar, K.Spectroelectrochemistry of palladium hexacyanoferrate films on platinum substrates. J. Electroanal. Chem., 544, 2003, 101–6.CrossRefGoogle Scholar
Kulesza, P. J. and Faszynska, M.Indium(III) hexacyanoferrate as a novel polynuclear mixed-valent inorganic material for preparation of thin zeolitic films on conducting substrates. J. Electroanal. Chem., 252, 1988, 461–6.CrossRefGoogle Scholar
Kulesza, P. J. and Faszynska, M.Indium(III)–hexacyanoferrate(III, II) as an inorganic material analogous to redox polymers for modification of electrode surfaces. Electrochim. Acta, 34, 1989, 1749–53.CrossRefGoogle Scholar
Dong, S. J. and Jin, Z.Electrochemistry of indium hexacyanoferrate film modified electrodes. Electrochim. Acta, 34, 1989, 963–8.CrossRefGoogle Scholar
Jin, Z. and Dong, S. J.Spectroelectrochemical studies of indium hexacyanoferrate film modified electrodes. Electrochim Acta, 35, 1990, 1057–60.CrossRefGoogle Scholar
Eftekhari, A.Electrochemical behavior of gallium hexacyanoferrate film directly modified electrode in a cool environment. J. Electrochem. Soc., 151, 2004, E297–301.CrossRefGoogle Scholar
Luangdilok, C. H., Arent, D. J., Bocarsly, A. B. and Wood, R.Investigation of the structure reactivity relationship in the Pt/MxCdFe(CN) 6 modified electrode system. Langmuir, 8, 1992, 650–7.CrossRefGoogle Scholar
Jiang, M., Zhou, X. and Zhao, Z.A new zeolitic thin-film based on chromium hexacyanoferrate on conducting substrates. J. Electroanal. Chem., 287, 1990, 389–94.CrossRefGoogle Scholar
Joseph, J., Gomathi, H. and Rao, Prabhakar G.Electrodes modified with cobalt hexacyanoferrate. J. Electroanal. Chem., 304, 1991, 263–9.CrossRefGoogle Scholar
Bharathi, S., Joseph, J., Jeyakumar, D. and Rao, Prabhakara G.Modified electrodes with mixed metal hexacyanoferrates. J. Electroanal. Chem., 319, 1991, 341–5.CrossRefGoogle Scholar
Dong, S. and Jin, Z.Molybdenum hexacyanoferrate film modified electrodes. J. Electroanal. Chem., 256, 1988, 193–8.CrossRefGoogle Scholar
Chen, S.-M. and Liao, C.-J.Preparation and characterization of osmium hexacyanoferrate films and their electrocatalytic properties. Electrochim. Acta, 2004, 50, 115–25.CrossRefGoogle Scholar
Cox, J. A. and Das, B. K.Characteristics of a glassy-carbon electrode modified in a mixture of osmium-tetroxide and hexacyanoruthenate. J. Electroanal. Chem., 233, 1987, 87–98.CrossRefGoogle Scholar
Liu, S. Q., Li, H. L., Jiang, M. and Li, P. B.Platinum hexacyanoferrate: a novel Prussian blue analogue with stable electroactive properties. J. Electroanal. Chem., 426, 1997, 27–30.CrossRefGoogle Scholar
Kulesza, P. J.A polynuclear mixed-valent ruthenium oxide cyanoruthenate composite that yields thin coatings on a glassy-carbon electrode with high catalytic activity toward methanol oxidation. J. Electroanal. Chem., 220, 1987, 295–309.CrossRefGoogle Scholar
Chen, S.-M., Lu, M.-F. and Lin, K.-C.Preparation and characterization of ruthenium oxide/hexacyanoferrate and ruthenium hexacyanoferrate mixed films and their electrocatalytic properties. J. Electroanal. Chem., 579, 2005, 163–74.CrossRefGoogle Scholar
Kulesza, P. J., Jedral, T. and Galus, Z.A new development in polynuclear inorganic films – silver(I) crosslinked nickel(II) hexacyanoferrate(III, II) microstructures. Electrochim. Acta, 34, 1989, 851–3.CrossRefGoogle Scholar
Jiang, M., Zhou, X. Y. and Zhao, Z. F.Preparation and characterization of mixed-valent titanium hexacyanoferrate film modified glassy-carbon electrode. J. Electroanal. Chem., 292, 1990, 289–96.CrossRefGoogle Scholar
Joseph, J., Gomathi, H. and Rao, G. P.Modification of carbon electrodes with zinc hexacyanoferrate. J. Electroanal. Chem., 431, 1997, 231–5.CrossRefGoogle Scholar
Liu, S.-Q., Chen, Y. and Chen, H.-Y.Studies of spectroscopy and cyclic voltammetry on a zirconium hexacyanoferrate modified electrode. J. Electroanal. Chem., 502, 2001, 197–203.CrossRefGoogle Scholar
Gao, Z., Zhang, Y., Tian, M. and Zhao, Z.Electrochemical study of copper heptacyanonitrosylferrate film modified electrodes: preparation, properties and applications. J. Electroanal. Chem., 358, 1993, 161–76.CrossRefGoogle Scholar
Liu, S.-Q. and Chen, H.-Y.Spectroscopic and voltammetric studies on a lanthanum hexacyanoferrate modified electrode. J. Electroanal. Chem., 528, 2002, 190–5.CrossRefGoogle Scholar
Wu, P., Lu, S. and Cai, C.Electrochemical preparation and characterization of a samarium hexcyanoferrate modified electrode. J. Electroanal. Chem., 569, 2004, 143–50.CrossRefGoogle Scholar
Jiang, M., Wang, M. and Zhou, X.Facile attachment of uranium hexacyanoferrate to carbon electrode by reductive electrodeposition. Chem. Lett., 1992, 1709–12.CrossRefGoogle Scholar
Kulesza, P. J., Malik, M. A., Schmidt, R., Smolinska, A., Miecznikowski, K., Zamponi, S., Czerwinski, A., Berrettoni, M. and Marassi, R.Electrochemical preparation and characterization of electrodes modified with mixed hexacyanoferrates of nickel and palladium. J. Electroanal. Chem., 487, 2000, 57–65.CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×