Skip to main content Accessibility help
×
Hostname: page-component-77c89778f8-n9wrp Total loading time: 0 Render date: 2024-07-23T10:28:42.244Z Has data issue: false hasContentIssue false

9 - Miscellaneous inorganic electrochromes

Published online by Cambridge University Press:  10 August 2009

Paul Monk
Affiliation:
Manchester Metropolitan University
Roger Mortimer
Affiliation:
Loughborough University
David Rosseinsky
Affiliation:
University of Exeter
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Klein, J. D., Yen, A., Rauh, R. D. and Causon, S. L.Near-infrared electrochromism in LixC60 films. Appl. Phys. Lett., 63, 1993, 599–601.CrossRefGoogle Scholar
Konesky, G. A.Reversible electrochromic effect in fullerene thin films utilizing alkali and transition metals. Mater. Res. Soc. Symp. Proc., 417, 1996, 407–13.CrossRefGoogle Scholar
Konesky, G. A.Pulse-width modulation effects on fullerene electrochromism. Proc. SPIE, 3788, 1999, 14–21.CrossRefGoogle Scholar
Konesky, G. Fullerene electrochromism under high pulsed fields. Proceedings of the Annual Technical Conference: Society of Vacuum Coaters, Boston, MA, 18–23 April 1998, pp. 144–6.
Konesky, G.Stability and reversibility of the electrochromic effect in fullerene thin films. Proc. SPIE, 3142, 1997, 205–15.CrossRefGoogle Scholar
Torresi, S. I. C., Torresi, R. M., Ciampi, G. and Luengo, C. A.Electrochromic phenomena in fullerene thin films. J. Electroanal. Chem., 377, 1994, 283–5.CrossRefGoogle Scholar
Goldenberg, L. M.Electrochemical properties of Langmuir–Blodgett films. J. Electroanal. Chem., 379, 1994, 3–19.CrossRefGoogle Scholar
Pfluger, P., Künzi, H. U. and Güntherodt, H. J.Discovery of a new reversible electrochromic effect. Appl. Phys. Lett, 35, 1979, 771–2.CrossRefGoogle Scholar
Kuwabara, K. and Noda, Y.Potential wave-form measurements of an electrochromic device, WO3/Sb2O5/C, at coloration–bleaching processes using a new quasi-reference electrode. Solid State Ionics, 61, 1993, 303–8.CrossRefGoogle Scholar
Yu, P., Popov, B. N., Ritter, J. A. and White, R. E.Determination of the lithium ion diffusion coefficient in graphite. J. Electrochem. Soc., 146, 1999, 8–14.CrossRefGoogle Scholar
Kulak, A. I., Kokorin, A. I., Meissner, D., Ralcherko, V. G., Vlasou, I. I., Kondratyuk, A. V. and Kulak, T. I.Electrodeposition of nanostructured diamond-like films by oxidation of lithium acetylide. Electrochem. Commun., 5, 2003, 301–5.CrossRefGoogle Scholar
Wang, J., Tian, B. M., Nascomento, V. B. and Angnes, L.Performance of screen-printed carbon electrodes fabricated from different carbon inks. Electrochim. Acta, 43, 1998, 3459–65.CrossRefGoogle Scholar
Edwards, M. O. M., Andersson, M., Gruszecki, T., Pettersson, H., Thunman, R., Thuraisingham, G., Vestling, L. and Hagfeldt, A.Charge–discharge kinetics of electric-paint displays. J. Electroanal. Chem., 565, 2004, 175–84.CrossRefGoogle Scholar
Edwards, M. O. M., Boschloo, G., Gruszecki, T., Pettersson, H., Sohlberg, R. and Hagfeldt, A.‘Electric-paint displays’ with carbon counter electrodes. Electrochim. Acta, 46, 2001, 2187–93.CrossRefGoogle Scholar
Edwards, M. O. M., Gruszecki, T., Pettersson, H., Thuraisingham, G. and Hagfeldt, A.A semi-empirical model for the charging and discharging of electric-paint displays. Electrochem. Commun., 4, 2002, 963–7.CrossRefGoogle Scholar
Asano, T., Kubo, T. and Nishikitani, Y.Durability of electrochromic windows fabricated with carbon-based counterelectrode. Proc. SPIE, 3788, 1999, 84–92.CrossRefGoogle Scholar
Nishikitani, Y., Asano, T., Uchida, S. and Kubo, T.Thermal and optical behavior of electrochromic windows fabricated with carbon-based counterelectrode. Electrochim. Acta, 44, 1999, 3211–17.CrossRefGoogle Scholar
Ziegler, J. P.Status of reversible electrodeposition electrochromic devices. Sol. Energy Mater. Sol. Cells, 56, 1999, 477–93.CrossRefGoogle Scholar
Ziegler, J. P. and Howard, B. M.Applications of reversible electrodeposition electrochromic devices. Sol. Energy Mater. Sol. Cells, 39, 1995, 317–31.CrossRefGoogle Scholar
Howard, B. M. and Ziegler, J. P.Optical properties of reversible electrodeposition electrochromic materials. Sol. Energy Mater. Sol. Cells, 39, 1995, 309–16.CrossRefGoogle Scholar
Torresi, S. I. C. and Carlos, I. A.Optical characterization of bismuth reversible electrodeposition. J. Electroanal. Chem., 414, 1996, 11–16.CrossRefGoogle Scholar
Ziegler, J. P. and Howard, B. M.Spectroelectrochemistry of reversible electrodeposition electrochromic materials. Proc. Electrochem. Soc., 94–2, 1994, 158–69.Google Scholar
Richards, T. C. and Brzezinski, M. R. Oxidation mechanism for reversibly electrodeposited bismuth in electrochromic devices. 121st Electrochemical Society Meeting, Montreal, Canada, 6 May 1997, abstract 945.
Oliveira, S. C., Morais, L. C., Curvelo, da Silva A. A. and Torresi, R. M.Improvement of thermal stability of an organic–aqueous gel electrolyte for bismuth electrodeposition devices. Sol. Energy Mater. Sol. Cells, 85, 2005, 489–97.CrossRefGoogle Scholar
Mascaro, L. H., Kaibara, E. K. and Bulhôes, L. A.An electrochromic system based on redox reactions. Proc. Electrochem. Soc., 96–24, 1996, 96–105.Google Scholar
Mascaro, L. H., Kaibara, E. K. and Bulhôes, L. A.An electrochromic system based on the reversible electrodeposition of lead. J. Electrochem. Soc., 144, 1997, L273–4.CrossRefGoogle Scholar
Marković, N. M., Grgur, B. N., Lucas, C. A., and Ross, P. N. jrUnderpotential deposition of lead on Pt(111) in the presence of bromide: RRDPt(111) E and X-ray scattering studies. J. Electroanal. Chem., 448, 1998, 183–8.CrossRefGoogle Scholar
Mantell, J. and Zaromb, S.Inert electrode behaviour of tin oxide-coated glass on repeated plating–deplating cycling in concentrated NaI–AgI solutions. J. Electrochem. Soc., 109, 1962, 992–3.CrossRefGoogle Scholar
Sluis, P. and Mercier, V. M. M.Solid state Gd–Mg electrochromic devices with ZrO2 Hx electrolyte. Electrochim. Acta, 46, 2001, 2167–71.Google Scholar
Huiberts, J. N., Griessen, R., Rector, J. H., Wijngaarden, R. J., Decker, J. P., Groot, D. G. and Koeman, N. J.Yttrium and lanthanum hydride films with switchable optical properties. Nature (London), 380, 1996, 231–4.CrossRefGoogle Scholar
Huiberts, J. N., Rector, J. H., Wijngaarden, R. J., Jetten, S., Groot, D. G., Dan, B., Koeman, N. J., Griessen, R., Hjörvarsson, B., Olafsson, S. and Cho, Y. S.Synthesis of yttrium trihydride films for ex-situ measurements. J. Alloys Compd., 239, 1996, 158–71.CrossRefGoogle Scholar
Rottkay, K., Rubin, M., Michalak, F., Armitage, R., Richardson, T., Slack, J. and Duine, P. A.Effect of hydrogen insertion on the optical properties of Pd-coated magnesium lanthanides. Electrochim. Acta, 44, 1999, 3093–100.CrossRefGoogle Scholar
Kooij, E. S., Gogh, A. T. M. and Griessen, R.In situ resistivity measurements and optical transmission and reflection spectroscopy of electrochemically loaded switchable YHx films. J. Electrochem. Soc., 146, 1999, 2990–4.CrossRefGoogle Scholar
Sluis, P., Ouwerkerk, M. and Duine, P. A.Optical switches based on magnesium lanthanide alloy hydrides. Appl. Phys. Lett., 70, 1997, 3356–8.CrossRefGoogle Scholar
Ouwerkerk, M.Electrochemically induced optical switching of Sm0.3Mg0.7Hx thin layers. Solid State Ionics, 113–15, 1998, 431–7.CrossRefGoogle Scholar
Notten, P. L. H., Kremers, M. and Griessen, T. R.Optical switching of Y-hydride thin film electrodes: a remarkable electrochromic phenomenon. J. Electrochem. Soc., 143, 1996, 3348–53.Google Scholar
Janner, A.-M., Sluis, P. and Mercier, V.Cycling durability of switchable mirrors. Electrochim. Acta, 46, 2001, 2173–8.CrossRefGoogle Scholar
Sluis, P.Chemochromic optical switches based on metal hydrides. Electrochim. Acta, 44, 1999, 3063–6.CrossRefGoogle Scholar
Mohapatra, S. K. and Wagner, S.Electrochromism in nickel-doped strontium titanate. J. Appl. Phys., 50, 1979, 5001–6.
Ohkubo, M., Nonomura, S., Watanabe, H., Gotoh, T., Yamamoto, K. and Nitta, S.Optical properties of amorphous indium nitride films and their electrochromic and photodarkening effects. Appl. Surf. Sci., 1130–14, 1997, 476–9.CrossRefGoogle Scholar
García-Canãdas, J., Meacham, A. P., Peter, L. M. and Ward, M. D.Electrochromic switching in the visible and near IR with a Ru–dioxolene complex adsorbed on a nanocrystalline SnO2 electrode. Electrochem. Commun., 5, 2003, 416–20.CrossRefGoogle Scholar
Tell, B.Electrochromism in solid phosphotungstic acid. J. Electrochem. Soc., 127, 1980, 2451–4.CrossRefGoogle Scholar
Medina, A., Solis, J. L., Rodriguez, J. and Estrada, W.Synthesis and characterization of rough electrochromic phosphotungstic acid films obtained by spray-gel process. Sol. Energy Mater. Sol. Cells, 80, 2003, 473–81.CrossRefGoogle Scholar
Tell, B. and Wudl, F.Electrochromic effects in solid phosphotungstic acid and phosphomolybdic acid. J. Appl. Phys., 50, 1979, 5944–6.CrossRefGoogle Scholar
Qi, Y. H., Desjardins, P., Meng, X. S. and Wang, Z. Y.Electrochromic ruthenium complex materials for optical attenuation. Opt. Mater., 21, 2003, 255–63.CrossRefGoogle Scholar
Gan, J., Tian, H., Wang, Z., Chen, K., Hill, J., Lane, P. A., Rahn, M. D., Fox, A. M. and Bradley, D. D. C.Synthesis and luminescence properties of novel ferrocene–naphthalimides dyads. J. Organometallic Chem., 645, 2002, 168–75.CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×