Skip to main content Accessibility help
×
Hostname: page-component-84b7d79bbc-g78kv Total loading time: 0 Render date: 2024-07-28T18:25:30.637Z Has data issue: false hasContentIssue false

2 - Waves in Random Media

Published online by Cambridge University Press:  14 January 2010

Albert D. Wheelon
Affiliation:
Enviromental Technology Laboratory, NOAA, Boulder, CO
Get access

Summary

The first step in studying electromagnetic scintillation is to establish a firm physical foundation. This chapter attempts to do so for the entire work and it will not be repeated in subsequent volumes. We proceed cautiously because the issues are complex and the measured effects are often quite subtle. Section 2.1 explores the way in which Maxwell's equations for the electromagnetic field are modified when the dielectric constant experiences small changes. Because atmospheric fluctuations are much slower than the electromagnetic frequencies employed, their influence can be condensed into a single relationship: the wave equation for random media. This equation is the starting point for all developments in this field.

To proceed further one must characterize the dielectric fluctuations. We want to do so in ways that accurately reflect atmospheric conditions. Because we are dealing with a random medium, we must use statistical methods to describe them and their influence on electromagnetic signals. For instance, we want to know how dielectric fluctuations measured at a single point vary with time. Even more important, we need to describe the way in which fluctuations at separated points in the medium are correlated. There are several ways to do so and they are developed in Section 2.2. These descriptions assume that the random medium is isotropic and homogeneous. Those convenient assumptions are seldom realized in nature and we show how to remove them at the end of this section. Turbulence theory now gives an important but incomplete physical description of these fluctuations.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×