Skip to main content Accessibility help
×
Hostname: page-component-5c6d5d7d68-wp2c8 Total loading time: 0 Render date: 2024-08-13T21:29:29.315Z Has data issue: false hasContentIssue false

29A - Bone neoplasms and tumor-like lesions associated with endocrine disease

from Chapter 29 - Bone in endocrine disease

Published online by Cambridge University Press:  13 April 2017

Ozgur Mete
Affiliation:
University of Toronto
Sylvia L. Asa
Affiliation:
University of Toronto
Get access
Type
Chapter
Information
Endocrine Pathology , pp. 992 - 1003
Publisher: Cambridge University Press
Print publication year: 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Karsenty, G. The complexities of skeletal biology. Nature 2003;423:316318.Google Scholar
Lee, NK, Karsenty, G. Reciprocal regulation of bone and energy metabolism. Trends Endocrinol Metab 2008;19:161166.Google Scholar
Karsenty, G, Ferron, M. The contribution of bone to whole-organism physiology. Nature 2012;481:314320.Google Scholar
Bilezikian, JP, Raisz, LG, Martin, TJ. Principles of Bone Biology, Vols. 1 and 2. San Diego, FL: Academic Press, 2008.Google Scholar
Ducy, P, Zhang, R, Geoffroy, V, Ridall, AL, Karsenty, G. Osf2/Cbfa1: a transcriptional activator of osteoblast differentiation. Cell 1997;89:747754.Google Scholar
Karsenty, G, Kronenberg, HM, Settembre, C. Genetic control of bone formation. Annu Rev Cell Dev Biol 2009;25:629648.Google Scholar
Glorieux, FH, Pettifor, JM, Jüppner, H. Pediatric Bone Biology and Diseases. Amsterdam: Elsevier/Academic Press, 2012.Google Scholar
Thakker, RV. Genetics of Bone Biology and Skeletal Disease. London: Academic Press, 2013.Google Scholar
Yang, Y. Skeletal morphogenesis during embryonic development. Crit Rev Eukaryot Gene Express 2009;19:197218.Google Scholar
Chung, UI, Kawaguchi, H, Takato, T, Nakamura, K. Distinct osteogenic mechanisms of bones of distinct origins. J Orthopaed Sci 2004;9:410414.Google Scholar
Riminucci, M, Bradbeer, JN, Corsi, A, Gentili, C, Descalzi, F, Cancedda, R, et al. Vis-a-vis cells and the priming of bone formation. J Bone Miner Res 1998;13:18521861.Google Scholar
Provot, S, Schipani, E. Molecular mechanisms of endochondral bone development. Biochem Biophys Res Commun 2005;328:658665.Google Scholar
Klein, M, Bonar, SG, Freemont, T, Vinh, T, Lopez-Ben, R, Siegel, H, et al. Atlas of Non-neoplastic Pathology: Non-Neoplastic Diseases of Bones and Joints. Bethesda, MD: ARP Press, 2011.CrossRefGoogle Scholar
Eames, BF, Helms, JA. Conserved molecular program regulating cranial and appendicular skeletogenesis. Dev Dyn 2004;231:413.Google Scholar
Hall, BK, Miyake, T. All for one and one for all: condensations and the initiation of skeletal development. BioEssays 2000;22:138147.Google Scholar
Mills, SE. Histology for Pathologists. Philadelphia PA: Lippincott Williams & Wilkins; 2007.Google Scholar
Karsenty, G, Wagner, EF. Reaching a genetic and molecular understanding of skeletal development. Dev Cell 2002;2:389406.CrossRefGoogle ScholarPubMed
Carroll, SH, Ravid, K. Differentiation of mesenchymal stem cells to osteoblasts and chondrocytes: a focus on adenosine receptors. Exp Rev Mol Med 2013;15:e1.Google Scholar
Edwards, JR, Mundy, GR. Advances in osteoclast biology: old findings and new insights from mouse models. Nature Rev Rheumatol 2011;7:235243.Google Scholar
Nakashima, K, Zhou, X, Kunkel, G, Zhang, Z, Deng, JM, Behringer, RR, et al. The novel zinc finger-containing transcription factor osterix is required for osteoblast differentiation and bone formation. Cell 2002;108:1729.Google Scholar
Hu, H, Hilton, MJ, Tu, X, Yu, K, Ornitz, DM, Long, F. Sequential roles of Hedgehog and Wnt signaling in osteoblast development. Development 2005;132:4960.Google Scholar
Thompson, JS, Akesson, EJ, Loeb, JA, Wilson-Pauwels, L. Thompson’s Core Textbook of Anatomy, 2nd edn. Philadelphia PA: Lippincott, 1990.Google Scholar
Enlow, DH. Wolff’s law and the factor of architectonic circumstance. Am J Orthodont 1968;54:803822.Google Scholar
Kizilkanat, E, Boyan, N, Ozsahin, ET, Soames, R, Oguz, O. Location, number and clinical significance of nutrient foramina in human long bones. Ann Anat 2007;189:8795.Google Scholar
Edwards, JR, Williams, K, Kindblom, LG, Meis-Kindblom, JM, Hogendoorn, PC, Hughes, D, et al. Lymphatics and bone. Hum Pathol 2008;39:4955.Google Scholar
Webber, RH, DeFelice, R, Ferguson, RJ, Powell, JP. Bone marrow response to stimulation of the sympathetic trunks in rats. Acta Anat 1970;77:9297.Google Scholar
Ji-Ye, H, Xin-Feng, Z, Lei-Sheng, J. Autonomic control of bone formation: its clinical relevance. Handbook Clin Neurol 2013;117:161171.Google Scholar
Khor, EC, Baldock, P. The NPY system and its neural and neuroendocrine regulation of bone. Curr Osteopor Rep 2012;10:160168.Google Scholar
Elefteriou, F, Campbell, P, Ma, Y. Control of bone remodeling by the peripheral sympathetic nervous system. Calcif Tissue Int 2014;94:140151.Google Scholar
Bullough, PG. Orthopaedic Pathology, 5th edn. Philadelphia, PA: Mosby-Elsevier, 2009.Google Scholar
Franz-Odendaal, TA, Hall, BK, Witten, PE. Buried alive: how osteoblasts become osteocytes. Dev Dyn 2006;235:176190.CrossRefGoogle ScholarPubMed
Neve, A, Corrado, A, Cantatore, FP. Osteoblast physiology in normal and pathological conditions. Cell Tissue Res 2011;343:289302.Google Scholar
Everts, V, Delaisse, JM, Korper, W, Jansen, DC, Tigchelaar-Gutter, W, Saftig, P, et al. The bone lining cell: its role in cleaning Howship’s lacunae and initiating bone formation. J Bone Miner Res 2002;17:7790.Google Scholar
Li, Y, Aparicio, C. Discerning the subfibrillar structure of mineralized collagen fibrils: a model for the ultrastructure of bone. PLOS ONE 2013;8:e76782.Google Scholar
Boivin, G, Anthoine-Terrier, C, Obrant, KJ. Transmission electron microscopy of bone tissue. A review. Acta Orthopaed Scand 1990;61:170180.Google Scholar
Miller, SC, Jee, WS. The bone lining cell: a distinct phenotype? Calcif Tissue Int 1987;41:15.CrossRefGoogle ScholarPubMed
Sterchi, D. Bone. In Suvarna, KS, Layton, C, Bancroft, JD, eds. Bancroft’s Theory and Practice of Histological Techniques, 7th edn. Edinburgh: Churchill Livingstone-Elesvier; 2013:317352.Google Scholar
Diamanti-Kandarakis, E, Livadas, S, Tseleni-Balafouta, S, Lyberopoulos, K, Tantalaki, E, Palioura, H, et al. Brown tumor of the fibula: unusual presentation of an uncommon manifestation. Report of a case and review of the literature. Endocrine 2007;32:345349.Google Scholar
Bohlman, ME, Kim, YC, Eagan, J, Spees, EK. Brown tumor in secondary hyperparathyroidism causing acute paraplegia. Am J Med 1986;81:545547.Google Scholar
Verlaan, L, van der Wal, B, de Maat, GJ, Walenkamp, G, Nollen-Lopez, L, van Ooij, A. Primary hyperparathyroidism and pathological fractures: a review. Acta Orthopaed Belg 2007;73:300305.Google Scholar
Takeshita, T, Takeshita, K, Abe, S, Takami, H, Imamura, T, Furui, S. Brown tumor with fluid-fluid levels in a patient with primary hyperparathyroidism: radiological findings. Radiat Med 2006;24:631634.CrossRefGoogle Scholar
Davies, AM, Pettersson, H, Ostensen, H, World Health Organization., International Society of Radiology. The WHO Manual of Diagnostic Imaging: Radiographic Anatomy and Interpretation of the Musculoskeletal System. Geneva: World Health Organization, 2002.Google Scholar
Jaffe, HL. Hyperparathyroidism. Bull N Y Acad Med 1940;16:291311.Google Scholar
Unni, KK, Inwards, CY, Bridge, JA, Atlas of Tumor Pathology, 4th Series, Fascicle 2: Tumors of Bones and Joints. Bethesda, MD: ARP Press, 2005.Google Scholar
Desai, P, Steiner, GC. Ultrastructure of brown tumor of hyperparathyroidism. Ultrastruct Pathol 1990;14:505511.Google Scholar
Rossi, B, Ferraresi, V, Appetecchia, ML, Novello, M, Zoccali, C. Giant cell tumor of bone in a patient with diagnosis of primary hyperparathyroidism: a challenge in differential diagnosis with brown tumor. Skeletal Radiol 2014;43:693697.Google Scholar
Siegal, G, Bianco, P, Dal Cin, P. Fibrous dysplasia. In Fletcher, C, Bridge, J, Hogendoorn, P, Mertens, F, eds. World Health Organization Classification of Tumours of Soft Tissue and Bone. Lyon: International Agency for Research on Cancer, 2013:352353.Google Scholar
Ippolito, E, Bray, EW, Corsi, A, De Maio, F, Exner, UG, Robey, PG, et al. Natural history and treatment of fibrous dysplasia of bone: a multicenter clinicopathologic study promoted by the European Pediatric Orthopaedic Society. J Pediatr Orthoped B 2003;12:155177.Google Scholar
Parekh, SG, Donthineni-Rao, R, Ricchetti, E, Lackman, RD. Fibrous dysplasia. J Am Acad Orthopaed Surg 2004;12:305313.CrossRefGoogle ScholarPubMed
Collins, MT, Chebli, C, Jones, J, Kushner, H, Consugar, M, Rinaldo, P, et al. Renal phosphate wasting in fibrous dysplasia of bone is part of a generalized renal tubular dysfunction similar to that seen in tumor-induced osteomalacia. J Bone Miner Res 2001;16:806813.Google Scholar
Stanton, RP, Ippolito, E, Springfield, D, Lindaman, L, Wientroub, S, Leet, A. The surgical management of fibrous dysplasia of bone. Orphanet J Rare Dis 2012;7(suppl 1):S1.Google Scholar
Utz, JA, Kransdorf, MJ, Jelinek, JS, Moser, RP Jr., Berrey, BH. MR appearance of fibrous dysplasia. J Comput Assist Tomogr 1989;13:845851.Google Scholar
Lee, SE, Lee, EH, Park, H, Sung, JY, Lee, HW, Kang, SY, et al. The diagnostic utility of the GNAS mutation in patients with fibrous dysplasia: meta-analysis of 168 sporadic cases. Hum Pathol 2012;43:12341242.Google Scholar
Tabareau-Delalande, F, Collin, C, Gomez-Brouchet, A, Decouvelaere, AV, Bouvier, C, Larousserie, F, et al. Diagnostic value of investigating GNAS mutations in fibro-osseous lesions: a retrospective study of 91 cases of fibrous dysplasia and 40 other fibro-osseous lesions. Mod Pathol 2013;26:911921.Google Scholar
Regard, JB, Cherman, N, Palmer, D, Kuznetsov, SA, Celi, FS, Guettier, JM, et al. Wnt/beta-catenin signaling is differentially regulated by Galpha proteins and contributes to fibrous dysplasia. Proc Natl Acad Sci USA 2011;108:2010120106.Google Scholar
Bhattacharyya, N, Wiench, M, Dumitrescu, C, Connolly, BM, Bugge, TH, Patel, HV, et al. Mechanism of FGF23 processing in fibrous dysplasia. J Bone Miner Res 2012;27:11321141.Google Scholar
Fan, QM, Yue, B, Bian, ZY, Xu, WT, Tu, B, Dai, KR, et al. The CREB–Smad6–Runx2 axis contributes to the impaired osteogenesis potential of bone marrow stromal cells in fibrous dysplasia of bone. J Pathol 2012;228:4555.Google Scholar
Choong, PF, Pritchard, DJ, Rock, MG, Sim, FH, McLeod, RA, Unni, KK. Low grade central osteogenic sarcoma. A long-term followup of 20 patients. Clin Orthopaed Relat Res 1996;198–206.Google Scholar
Lee, JS, FitzGibbon, EJ, Chen, YR, Kim, HJ, Lustig, LR, Akintoye, SO, et al. Clinical guidelines for the management of craniofacial fibrous dysplasia. Orphanet J Rare Dis 2012;7(suppl 1):S2.Google Scholar
Slootweg, P, El Mofty, S. Ossifying fibroma. In Barnes, L, Eveson, J, Reichart, P, Sidransky, D, eds. World Health Organization Classification of Tumours: Pathology and Genetics of Head and Neck Tumours. Lyon: International Agency for Research on Cancer, 2005:430.Google Scholar
Teh, B, Sweet, K, Morrison, C. Pathology and genetics of tumours of endocrine organs. In DeLellis, R, Lloyd, R, Heitz, P, Eng, C, ed. World Health Organization Classification of Tumours: Pathology and Genetics of Tumours of Endocrine Organs. Lyon: International Agency for Research on Cancer, 2004:320.Google Scholar
Haven, CJ, Wong, FK, van Dam, EW, van der Juijt, R, van Asperen, C, Jansen, J, et al. A genotypic and histopathological study of a large Dutch kindred with hyperparathyroidism-jaw tumor syndrome. J Clin Endocrinol Metab 2000;85:14491454.Google Scholar
Newey, PJ, Bowl, MR, Cranston, T, Thakker, RV. Cell division cycle protein 73 homolog (CDC73) mutations in the hyperparathyroidism-jaw tumor syndrome (HPT-JT) and parathyroid tumors. Hum Mutat 2010;31:295307.Google Scholar
Jackson, MA, Rich, TA, Hu, MI, Martin, JW, Perrier, ND, Waguespack, SG. CDC73-related disorders. In Pagon, RA, Adam, MP, Bird, TD, Dolan, CR, Fong, CT, Stephens, K, eds. GeneReviews. Seattle, WA: University of Washington, 2015 (http://www.ncbi.nlm.nih.gov/books/NBK3789/, accessed 10 September 2015).Google Scholar
Kennett, S, Pollick, H. Jaw lesions in familial hyperparathyroidism. Oral Surg Oral Med Oral Pathol 1971;31:502510.Google Scholar
Eversole, LR, Leider, AS, Nelson, K. Ossifying fibroma: a clinicopathologic study of sixty-four cases. Oral Surg Oral Med Oral Pathol 1985;60:505511.Google Scholar
Warnakulasuriya, S, Markwell, BD, Williams, DM. Familial hyperparathyroidism associated with cementifying fibromas of the jaws in two siblings. Oral Surg Oral Med Oral Pathol 1985;59:269274.Google Scholar
Carpten, JD, Robbins, CM, Villablanca, A, Forsberg, L, Presciuttini, S, Bailey-Wilson, J, et al. HRPT2, encoding parafibromin, is mutated in hyperparathyroidism-jaw tumor syndrome. Nat Genet 2002;32:676680.Google Scholar
Rozenblatt-Rosen, O, Hughes, CM, Nannepaga, SJ, Shanmugam, KS, Copeland, TD, Guszczynski, T, et al. The parafibromin tumor suppressor protein is part of a human Paf1 complex. Mol Cell Biol 2005;25:612620.Google Scholar
Zhang, C, Kong, D, Tan, MH, Pappas, DL Jr., Wang, PF, Chen, J, et al. Parafibromin inhibits cancer cell growth and causes G1 phase arrest. Biochem Biophys Res Commun 2006;350:1724.CrossRefGoogle ScholarPubMed
Woodard, GE, Lin, L, Zhang, JH, Agarwal, SK, Marx, SJ, Simonds, WF. Parafibromin, product of the hyperparathyroidism-jaw tumor syndrome gene HRPT2, regulates cyclin D1/PRAD1 expression. Oncogene 2005;24:12721276.Google Scholar
Yang, YJ, Han, JW, Youn, HD, Cho, EJ. The tumor suppressor, parafibromin, mediates histone H3 K9 methylation for cyclin D1 repression. Nucl Acids Res 2010;38:382390.Google Scholar
Mosimann, C, Hausmann, G, Basler, K. Parafibromin/Hyrax activates Wnt/Wg target gene transcription by direct association with beta-catenin/Armadillo. Cell 2006;125:327341.Google Scholar
Bricaire, L, Odou, MF, Cardot-Bauters, C, Delemer, B, North, MO, Salenave, S, et al. Frequent large germline HRPT2 deletions in a French National cohort of patients with primary hyperparathyroidism. J Clin Endocrinol Metab 2013;98:E403E408.Google Scholar
Kutcher, MR, Rigby, MH, Bullock, M, Trites, J, Taylor, SM, Hart, RD. Hyperparathyroidism-jaw tumor syndrome. Head Neck 2013;35:E175E177.CrossRefGoogle ScholarPubMed
Dinnen, JS, Greenwoood, RH, Jones, JH, Walker, DA, Williams, ED. Parathyroid carcinoma in familial hyperparathyroidism. J Clin Pathol 1977;30:966975.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×