Skip to main content Accessibility help
×
Hostname: page-component-78c5997874-4rdpn Total loading time: 0 Render date: 2024-11-19T09:35:28.940Z Has data issue: false hasContentIssue false

34 - Anesthesia for Fetal Surgery

from Section 3 - Specific Newborn and Infant Procedures

Published online by Cambridge University Press:  09 February 2018

Mary Ellen McCann
Affiliation:
Harvard Medical School, Boston, MA, USA
Christine Greco
Affiliation:
Harvard Medical School, Boston, MA, USA
Kai Matthes
Affiliation:
Harvard Medical School, Boston, MA, USA
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2018

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Harrison, MR, Golbus, MS, Filly, RA, et al. Fetal surgery for congenital hydronephrosis. N Engl J Med. 1982;306(10):591–3.Google Scholar
2.Harrison, MR, Filly, RA, Golbus, MS, et al. Fetal treatment 1982. N Engl J Med. 1982;307(26):1651–2.CrossRefGoogle ScholarPubMed
3.Zoler, ML. Myelomeningocele repair drives changes in fetal surgery. Pediatic News Digital Network. October 17, 2012.Google Scholar
4.Roybal, JL, Santore, MT, Flake, AW. Stem cell and genetic therapies for the fetus. Semin Fetal Neonatal Med. 2010;15(1):4651.Google Scholar
5.Thornburg, KL, Jacobson, S-L, Giraud, GD, Morton, MJ. Hemodynamic changes in pregnancy. Semin Perinatol. 2000;24(1):1114.Google Scholar
6.Robson, SC, Hunter, S, Boys, RJ, Dunlop, W. Serial study of factors influencing changes in cardiac output during human pregnancy. Am J Physiol. 1989;256(4):H1060–5.Google Scholar
7.Hunter, S, Robson, SC. Adaptation of the maternal heart in pregnancy. Br Heart J. 1992;68(6):540–3.Google Scholar
8.DiFederico, EM, Burlingame, JM, Kilpatrick, SJ, Harrison, M, Matthay, MA. Pulmonary edema in obstetric patients is rapidly resolved except in the presence of infection or of nitroglycerin tocolysis after open fetal surgery. Am J Obstet Gynecol. 1998;179(4):925–33.Google Scholar
9.Rosen, MA. Management of anesthesia for the pregnant surgical patient. Anesthesiology. 1999;91(4):1159–63.Google Scholar
10.Motoyama, EK, Rivard, G, Acheson, F, Cook, CD. The effect of changes in maternal pH and P-CO2 on the P-O2 of fetal lambs. Anesthesiology. 1967;28(5):891903.Google Scholar
11.Chan, MT, Mainland, P, Gin, T. Minimum alveolar concentration of halothane and enflurane are decreased in early pregnancy. Anesthesiology. 1996;85(4):782–6.Google Scholar
12.Luks, FI, Johnson, BD, Papadakis, K, Traore, M, Piasecki, GJ. Predictive value of monitoring parameters in fetal surgery. J Pediatr Surg. 1998;33(8):1297–301.CrossRefGoogle ScholarPubMed
13.Bower, SJ, Flack, NJ, Sepulveda, W, Talbert, DG, Fisk, NM. Uterine artery blood flow response to correction of amniotic fluid volume. Am J Obstet Gynecol. 1995;173(2):502–7.Google Scholar
14.Fisk, NM, Tannirandorn, Y, Nicolini, U, Talbert, DG, Rodeck, CH. Amniotic pressure in disorders of amniotic fluid volume. Obstet Gynecol. 1990;76(2):210–14.Google Scholar
15.Skillman, CA, Plessinger, MA, Woods, JR, Clark, KE. Effect of graded reductions in uteroplacental blood flow on the fetal lamb. Am J Physiol. 1985;249(6 Pt 2):H1098–105. Available at: http://proxy.library.upenn.edu:2205/content/249/6/H1098.long.Google Scholar
16.Fenton, KN, Heinemann, MK, Hickey, PR, et al. Inhibition of the fetal stress response improves cardiac output and gas exchange after fetal cardiac bypass. J Thorac Cardiovasc Surg. 1994;107(6):1416–22.CrossRefGoogle ScholarPubMed
17.Rudolph, AM, Heymann, MA. Cardiac output in the fetal lamb: the effects of spontaneous and induced changes of heart rate on right and left ventricular output. Am J Obstet Gynecol. 1976;124(2):183–92.Google Scholar
18.Gilbert, RD. Control of fetal cardiac output during changes in blood volume. Am J Physiol. 1980;238(1):H80–6.Google Scholar
19.Warren, TM, Datta, S, Ostheimer, GW, et al. Comparison of the maternal and neonatal effects of halothane, enflurane, and isoflurane for cesarean delivery. Anesth Analg. 1983;62(5):516–20.Google Scholar
20.Dwyer, R, Fee, JP, Moore, J. Uptake of halothane and isoflurane by mother and baby during caesarean section. Br J Anaesth. 1995;74(4):379–83.Google Scholar
21.Myers, LB, Cohen, D, Galinkin, J, Gaiser, R, Kurth, CD. Anaesthesia for fetal surgery. Paediatr Anaesth. 2002;12(7):569–78.CrossRefGoogle ScholarPubMed
22.Biehl, DR, Yarnell, R, Wade, JG, Sitar, D. The uptake of isoflurane by the foetal lamb in utero: effect on regional blood flow. Can J Anaesth. 1983;30(6):581–6.Google Scholar
23.Palahniuk, RJ, Shnider, SM. Maternal and fetal cardiovascular and acid–base changes during halothane and isoflurane anesthesia in the pregnant ewe. Anesthesiology. 1974;41(5):462–72.Google Scholar
24.Lee, SJ, Ralston, HJP, Drey, EA, Partridge, JC, Rosen, MA. Fetal pain: a systematic multidisciplinary review of the evidence. JAMA. 2005;294(8):947–54.Google Scholar
25.Torres, F, Anderson, C. The normal EEG of the human newborn. J Clin Neurophysiol. 1985;2(2):89103.Google Scholar
26.Giannakoulopoulos, X, Glover, V, Sepulveda, W, Kourtis, P, Fisk, NM. Fetal plasma cortisol and β-endorphin response to intrauterine needling. The Lancet. 1994;344(8915):7781.Google Scholar
27.Giannakoulopoulos, X, Teixeira, JM, Fisk, NM, Glover, V. Human fetal and maternal noradrenaline responses to invasive procedures. Pediatr Res. 1999;45(4):494–9.Google Scholar
28.Fisk, NM, Gitau, R, Teixeira, JM, et al. Effect of direct fetal opioid analgesia on fetal hormonal and hemodynamic stress response to intrauterine needling. Anesthesiology. 2001;95(4):828–35.Google Scholar
29.Meaney, MJ, Aitken, DH. The effects of early postnatal handling on hippocampal glucocorticoid receptor concentrations: temporal parameters. Brain Res. 1985;354(2):301–4.Google Scholar
30.Clarke, AS, Wittwer, DJ, Abbott, DH, Schneider, ML. Long-term effects of prenatal stress on HPA axis activity in juvenile rhesus monkeys. Dev Psychobiol. 1994;27(5):257–69.Google Scholar
31.Schneider, ML, Coe, CL, Lubach, GR. Endocrine activation mimics the adverse effects of prenatal stress on the neuromotor development of the infant primate. Dev Psychobiol. 1992;25(6):427–39.Google Scholar
32.Glover, V, Fisk, N. Do fetuses feel pain? We don’t know; better to err on the safe side from mid-gestation. BMJ. 1996;313(7060):796.Google Scholar
33.McElhinney, DB, Tworetzky, W, Lock, JE. Current status of fetal cardiac intervention: circulation. Am Heart Assoc. 2010;121(10):1256–63.Google Scholar
34.van den Bosch, AE, Roos-Hesselink, JW, van Domburg, R, et al. Long-term outcome and quality of life in adult patients after the Fontan operation. Am J Cardiol. 2004;93(9):1141–5. Available at: http://proxy.library.upenn.edu:2080/science/article/pii/S0002914904001328.Google Scholar
35.Makikallio, K. Fetal aortic valve stenosis and the evolution of hypoplastic left heart syndrome: patient selection for fetal intervention. Circulation. 2006;113(11):1401–5.Google Scholar
36.McElhinney, DB, Marshall, AC, Wilkins-Haug, LE, et al. Predictors of technical success and postnatal biventricular outcome after in utero aortic valvuloplasty for aortic stenosis with evolving hypoplastic left heart syndrome. Circulation. 2009;120(15):1482–90. Available at: http://circ.ahajournals.org/cgi/doi/10.1161/CIRCULATIONAHA.109.192655.Google Scholar
37.Arzt, W, Wertaschnigg, D, Veit, I, et al. Intrauterine aortic valvuloplasty in fetuses with critical aortic stenosis: experience and results of 24 procedures. Ultrasound Obstet Gynecol. 2011;37(6):689–95.Google Scholar
38.Tworetzky, W, McElhinney, DB, Marx, GR, et al. In utero valvuloplasty for pulmonary atresia with hypoplastic right ventricle: techniques and outcomes. Pediatrics. 2009;124(3):e510–18.Google Scholar
39.Vlahos, AP. Hypoplastic left heart syndrome with intact or highly restrictive atrial septum: outcome after neonatal transcatheter atrial septostomy. Circulation. 2004;109(19):2326–30.Google Scholar
40.Marshall, AC, Levine, J, Morash, D, et al. Results of in utero atrial septoplasty in fetuses with hypoplastic left heart syndrome. Prenat Diagn. 2008;28(11):1023–8.Google Scholar
41.Hedrick, HL. Ex utero intrapartum therapy. Semin Pediatr Surg. 2003;12(3):190–5.Google Scholar
42.Laje, P, Johnson, MP, Howell, LJ, et al. Ex utero intrapartum treatment in the management of giant cervical teratomas. J Pediatr Surg. 2012;47(6):1208–16.Google Scholar
43.Laje, P, Howell, LJ, Johnson, MP, et al. Perinatal management of congenital oropharyngeal tumors: the ex utero intrapartum treatment (EXIT) approach. J Pediatr Surg. 2013;48(10):2005–10.Google Scholar
44.Hedrick, MH, Ferro, MM, Filly, RA, et al. Congenital high airway obstruction syndrome (CHAOS): a potential for perinatal intervention. J Pediatr Surg. 1994;29(2):271–4.Google Scholar
45.Roybal, JL, Liechty, KW, Hedrick, HL, et al. Predicting the severity of congenital high airway obstruction syndrome. J Pediatr Surg. 2010;45(8):1633–9.Google Scholar
46.Kohl, T, Van de Vondel, P, Stressig, R, et al. Percutaneous fetoscopic laser decompression of congenital high airway obstruction syndrome (CHAOS) from laryngeal atresia via a single trocar: current technical constraints and potential solutions for future interventions. Fetal Diagn Ther. 2009;25(1):6771.Google Scholar
47.Saadai, P, Jelin, EB, Nijagal, A, et al. Long-term outcomes after fetal therapy for congenital high airway obstructive syndrome. J Pediatr Surg. 2012;47(6):1095–100.Google Scholar
48.Adzick, NS, Thom, EA, Spong, CY, et al. A randomized trial of prenatal versus postnatal repair of myelomeningocele. N Engl J Med. 2011;364(11):9931004.Google Scholar
49.Adzick, NS. Management of fetal lung lesions. Clin Perinatol. 2003;30(3):481–92.Google Scholar
50.Peranteau, WH, Wilson, RD, Liechty, KW, et al. Effect of maternal betamethasone administration on prenatal congenital cystic adenomatoid malformation growth and fetal survival. Fetal Diagn Ther. 2007;22(5):365–71.Google Scholar
51.Tran, KM, Johnson, MP, Almeida-Chen, GM, Schwartz, AJ. The fetus as patient. Anesthesiology. 2010;113(2):462.Google Scholar
52.Hedrick, HL, Flake, AW, Crombleholme, TM, et al. The ex utero intrapartum therapy procedure for high-risk fetal lung lesions. J Pediatr Surg. 2005;40(6):1038–43.Google Scholar
53.Danzer, E, Siegle, J, D’Agostino, JA, et al. Early neurodevelopmental outcome of infants with high-risk fetal lung lesions. Fetal Diagn Ther. 2012;31(4):210–15.Google Scholar
54.Harrison, MR, Mychaliska, GB, Albanese, CT, et al. Correction of congenital diaphragmatic hernia in utero IX: fetuses with poor prognosis (liver herniation and low lung-to-head ratio) can be saved by fetoscopic temporary tracheal occlusion. J Pediatr Surg. 1998;33(7):1017–22.Google Scholar
55.Harrison, MR, Keller, RL, Hawgood, SB, et al. A randomized trial of fetal endoscopic tracheal occlusion for severe fetal congenital diaphragmatic hernia. N Engl J Med. 2003;349(20):1916–24.Google Scholar
56.Deprest, J, Jani, J, Gratacos, E, et al. Fetal intervention for congenital diaphragmatic hernia: the European experience. Semin Perinatol. 2005;29(2):94103.Google Scholar
57.Doné, E, Gratacos, E, Nicolaides, KH, et al. Predictors of neonatal morbidity in fetuses with severe isolated congenital diaphragmatic hernia undergoing fetoscopic tracheal occlusion. Ultrasound Obstet Gynecol. 2013;42(1):7783.Google Scholar
58.Flake, AW. Fetal sacrococcygeal teratoma. Semin Pediatr Surg. 1993;2(2):113–20.Google Scholar
59.Hedrick, HL, Flake, AW, Crombleholme, TM, et al. Sacrococcygeal teratoma: prenatal assessment, fetal intervention, and outcome. J Pediatr Surg. 2004;39(3):430–8.Google Scholar
60.Mieghem, TV, Al-Ibrahim, A, Deprest, J, et al. Minimally invasive therapy for fetal sacrococcygeal teratomas: case series and systematic review of the literature. Ultrasound Obstet Gynecol. 2014;43(6):611–19.Google Scholar
61.Roybal, JL, Moldenhauer, JS, Khalek, N, et al. Early delivery as an alternative management strategy for selected high-risk fetal sacrococcygeal teratomas. J Pediatr Surg. 2011;46(7):1325–32.Google Scholar
62.Tran, KM, Flake, AW, Kalawadia, NV, Maxwell, LG, Rehman, MA. Emergent excision of a prenatally diagnosed sacrococcygeal teratoma. Paediatr Anaesth. 2008;18(5):431–4.Google Scholar
63.Lewi, L, Van Schoubroeck, D, Gratacós, E, et al. Monochorionic diamniotic twins: complications and management options. Curr Opin Obstet Gynecol. 2003;15(2):177–94.Google Scholar
64.Roberts, D, Neilson, JP, Kilby, MD, Gates, S. Interventions for the treatment of twin-twin transfusion syndrome. Cochrane Database Syst Rev. 2014;1(1):135.Google Scholar
65.Moise, KJ Jr., Dorman, K, Lamvu, G, et al. A randomized trial of amnioreduction versus septostomy in the treatment of twin–twin transfusion syndrome. Am J Obstet Gynecol. 2005;193(3):701–7.Google Scholar
66.Crombleholme, TM, Shera, D, Lee, H, et al. A prospective, randomized, multicenter trial of amnioreduction vs selective fetoscopic laser photocoagulation for the treatment of severe twin–twin transfusion syndrome. Am J Obstet Gynecol. 2007;197(4):396.e1–9.Google Scholar
67.Senat, M-V, Deprest, J, Boulvain, M, et al. Endoscopic laser surgery versus serial amnioreduction for severe twin-to-twin transfusion syndrome. N Engl J Med. 2004;351(2):136–44.Google Scholar
68.Slaghekke, F, Lopriore, E, Lewi, L, et al. Fetoscopic laser coagulation of the vascular equator versus selective coagulation for twin-to-twin transfusion syndrome: an open-label randomised controlled trial. The Lancet. 2014;383(9935):2144–51.Google Scholar
69.Mizrahi-Arnaud, A, Tworetzky, W, Bulich, LA, et al. Pathophysiology, management, and outcomes of fetal hemodynamic instability during prenatal cardiac intervention. Pediatr Res. 2007;62(3):325–30.Google Scholar
70.Brusseau, R, Mizrahi-Arnaud, A. Fetal anesthesia and pain management for intrauterine therapy. Clin Perinatol. 2013;40(3):429–42.Google Scholar
71.Lin, EE, Tran, KM. Anesthesia for fetal surgery. Semin Pediatr Surg. 2013;22(1):50–5.Google Scholar
72.Rychik, J. Acute cardiovascular effects of fetal surgery in the human. Circulation. 2004;110(12):1549–56.Google Scholar
73.Boat, A, Mahmoud, M, Michelfelder, EC, et al. Supplementing desflurane with intravenous anesthesia reduces fetal cardiac dysfunction during open fetal surgery. Pediatr Anesth. 2010;20(8):748–56.Google Scholar
74.Ngamprasertwong, P, Michelfelder, EC, Arbabi, S, et al. Anesthetic techniques for fetal surgery: effects of maternal anesthesia on intraoperative fetal outcomes in a sheep model. Anesthesiology. 2013;118(4):796808.Google Scholar
75.Klaritsch, P, Albert, K, Van Mieghem, T, et al. Instrumental requirements for minimal invasive fetal surgery. BJOG. 2008;116(2):188–97.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×