Skip to main content Accessibility help
×
Hostname: page-component-78c5997874-dh8gc Total loading time: 0 Render date: 2024-11-13T14:23:15.791Z Has data issue: false hasContentIssue false

Chapter 68 - Pectinopitys

Podocarpales: Prumnopityaceae

from Part III - Living Arborescent Gymnosperm Genetic Presentations

Published online by Cambridge University Press:  11 November 2024

Christopher N. Page
Affiliation:
University of Exeter
Get access

Summary

Monoecious or dioecious, moderate-sized to large trees, with leaves strongly ranked in flattened, frond-like evergreen sprays of regularly pectinate and regimented arrangement on all main lateral shoots and branchlets.

Type
Chapter
Information
Evolution of the Arborescent Gymnosperms
Pattern, Process and Diversity
, pp. 528 - 541
Publisher: Cambridge University Press
Print publication year: 2024

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Adam, P. 1992. Australian Rainforests. Oxford: Clarendon Press.CrossRefGoogle Scholar
Beu, A.G., Griffin, M. & Maxwell, P.A. 1997. Opening of Drake Passage gateway and Late Miocene to Pleistocene cooling reflected in Southern Ocean molluscan dispersal: evidence from New Zealand and Argentina. Tectonophysics 281: 8397.CrossRefGoogle Scholar
Brodribb, T. & Hill, R.S. 1997. Light response characteristics of a morphologically diverse group of Southern Hemisphere conifers as measured by chlorophyll fluorescence. Oecologia 110: 1017.CrossRefGoogle ScholarPubMed
Buchholz, J.T. 1936. Embryogeny of species of Podocarpus of the subgenus Stachycarpus. Botanical Gazette 98: 135146.CrossRefGoogle Scholar
Buchholz, J.T. 1941. Embryogeny of the Podocarpaceae. Botanical Gazette 103: 137.CrossRefGoogle Scholar
Buchholtz, J.T. & Gray, N.E. 1948. A taxonomic revision of Podocarpus II: the American species of Podocarpus section Stachycarpus. Journal of the Arnold Arboretum 29: 6483.CrossRefGoogle Scholar
Carter, G.A. & Smith, W.K. 1985. Influence of shoot structure on light interception and photosynthesis in conifers. Plant Physiology 79(4): 10381043.CrossRefGoogle ScholarPubMed
Chowdhury, C.R. 1962. The embryology of conifers: a review. Phytomorphology 12: 313338.Google Scholar
Christophel, D.C. & Greenwood, D.R. 1988. A comparison of Australian tropical rainforest and Tertiary fossil leaf beds. Proceedings of the Ecological Society of Australia 15: 139148.Google Scholar
Clarkson, B.D., Patel, R.N. & Clarkson, B.R. 1988. Composition and structure of forest overwhelmed at Pureora, central North Island, New Zealand, during the Taupo eruption (c. AD 130). Journal of the Royal Society of New Zealand 18: 417436.CrossRefGoogle Scholar
Clout, M.N. & Tilley, J.A.V. 1992. Germination of Miro (Prumnopitys ferruginea) seeds after consumption by New Zealand pigeons (Hemiphaga novaeseelandiae). New Zealand Journal of Botany 30: 2528.CrossRefGoogle Scholar
Conran, J.G., Wood, G.A., Martin, P.G., et al. 2000. Generic relationships within and between the gymnosperm families Podocarpaceae and Phyllocladaceae based on an analysis of the chloroplast gene rbcL. Australian Journal of Botany 48: 715724.CrossRefGoogle Scholar
Correa, V., Vara, A.M.A., Machuca, E.H. & Angel, M. 2002. Wood anatomy of Columbian Podocarpaceae (Podocarpus, Prumnopitys and Retrophyllum). Botanical Journal of the Linnean Society 164: 293302.CrossRefGoogle Scholar
Davies, B.J., O’Brien, I.E.W. & Murray, B.G. 1997. Karyotypes, chromosome bands and genome size variation in New Zealand endemic gymnosperms. Plant Systematics and Evolution 208: 169185.CrossRefGoogle Scholar
Dawson, J. & Lucas, R. 2013. New Zealand’s Native Trees. Nelson: Craig Potton Publishing.Google Scholar
de Laubenfels, D.J. 1969. A revision of the Malesian and Pacific conifers. I. Podocarpaceae. I. Journal of the Arnold Arboretum 50: 274314.CrossRefGoogle Scholar
de Laubenfels, D.J. 1972. Flore de la Nouvelle-Calédonia et Dépendences. No 4. Gymnospermes. Paris: Muséum National D’Histoire Naturelle.Google Scholar
Diester-Haass, L. & Zahn, R. 1996. Eocene–Oligocene transition in the Southern Ocean: history of water mass circulation and biological productivity. Geology 24: 163166.2.3.CO;2>CrossRefGoogle Scholar
Dilcher, D.L. 1968. Podocarpus from the Eocene of North America. Science 164: 299301.CrossRefGoogle Scholar
Dingle, R.V. & Lavelle, M. 1998. Late Cretaceous Cenozoic climatic variations of the northern Antarctic Peninsula: new geochemical evidence and review. Palaeogeography, Palaeoclimatology and Palaeoecology 141: 215232.CrossRefGoogle Scholar
Doweld, A.B. 2000. Botryopteris, a new generic name (Podocarpopsida). Turczaninowia 3(4): 3738.Google Scholar
Doweld, A.B. & Reveal, J.L. 1998. Validation of new suprageneric names in Pinophyta. Phytologia 84(5): 363367.Google Scholar
Ebbett, R.J. & Ogden, J. 1998. Comparative seedling growth of five endemic podocarp species under different light regimes. New Zealand Journal of Botany 36: 189201.CrossRefGoogle Scholar
Farjon, A. 2010. A Handbook of the World’s Conifers. Leiden: Brill.CrossRefGoogle Scholar
Florin, R. 1940. The Tertiary conifers of southern Chile and their phytogeographical significance. Kungliga Svenska Vetenskapsakademiens Handlingar 19: 1107.Google Scholar
Gardner, M.F. & Lara, A. 2003. The conifers of Chile: an overview of their distribution and ecology. Pp 165170 in Mill, R.R. (ed.), Conifers for the Future? Proceedings of the Fourth International Conifer Conference. Wye: Acta Horticulturae.Google Scholar
Gaussen, H. 1973. Les Gymnospermes Actualles et Fossils. Les Podocarpinees. Etudes Général. Travaux Laboratoire Forestière Toulouse 12: 1108.Google Scholar
Gaussen, H. 1974. Les Gymnospermes actuelles et fossiles. Les Podocarpacées. Travaux du Laboratoire Forestal de Toulouse 13.Google Scholar
Gaussen, H. 1976. Les Gymnospermes actuelles et fossiles. Genre Podocarpus. Conclusion des Podocarpnes. Travaux du Laboratoire Forestal de Toulouse 14.Google Scholar
Gentry, A.H. 1993. A Field Guide to the Families and Genera of Woody Plants of Northwest South America (Colombia, Ecuador, Peru). Washington, DC: Conservation International.Google Scholar
Greenwood, D.R. 1987. Early Tertiary Podocarpaceae megafossils from the Eocene Anglesea locality, Victoria, Australia. Australian Journal of Botany 35: 111133.CrossRefGoogle Scholar
Greenwood, D.R., Hill, C.R. & Conran, J.G. 2013. Prumnopitys anglica sp. nov. (Podocarpaceae) from the Eocene of England. Taxon 62(3): 565580.CrossRefGoogle Scholar
Hair, J.B. & Beuzenberg, E.J. 1958. Chromosomal evolution in the Podocarpaceae. Nature 181: 15841586.CrossRefGoogle Scholar
Hinojosa, L.F. 2005. Climatic and vegetational changes inferred from Cenozoic southern South American paleoflora. Revista Geologica de Chile 32: 95115.Google Scholar
Hinojosa, L.F. & Villagran, C. 1997. History of the South American forests. 1. Paleobotanical, geological and climatic background on Tertiary of southern South America. Revista Chilena de Historia Natural 70: 225239.Google Scholar
Hinojosa, L.F. & Villagran, C. 2005. Did South American mixed paleofloras evolve under thermal equability or in the absence of an effective Andean barrier during the Cenozoic? Palaeogeography, Palaeoclimatology, Palaeoecology 217: 123.CrossRefGoogle Scholar
Jovane, L., Coccioni, R., Marsili, A. & Acton, G. 2009. Late Eocene Earth: hothouse icehouse and impacts. Geological Society of America Special Papers 452: 149168.Google Scholar
Kelch, D.G. 1997. The phylogeny of the Podocarpaceae based on morphological evidence. Systematic Botany 22: 119.CrossRefGoogle Scholar
Kelch, D.G. 1998. Phylogeny of the Podocarpaceae: comparison of evidence from morphology and 18S rRNA. American Journal of Botany 85: 986996.CrossRefGoogle Scholar
Knopf, P., Schulz, C., Little, D.P., Stützel, Th. & Stevenson, D.W. 2012. Relationships within Podocarpaceae based on DNA sequence anatomical, morphological, and biogeographical data. Cladistics 1: 129.Google Scholar
Krassilov, V.A. 1974. Podocarpus from the Upper Cretaceous of eastern Asia and its bearing on the theory of conifer evolution. Palaeontology 17: 365370.Google Scholar
Little, D.P., Knopf, P. & Schulz, C. 2013. DNA barcode identification of Podocarpaceae: the second largest conifer family. PLoS One 8: e81008.CrossRefGoogle Scholar
Looby, W.J. & Doyle, J. 1944a. Fertilisation and early embryology in Podocarpus andinus. Scientific Proceedings of the Royal Dublin Society 22: 222237.Google Scholar
Looby, W.J. & Doyle, J. 1944b. The gametophytes of Podocarpus andinus. Scientific Proceedings of the Royal Dublin Society 23: 257275.Google Scholar
Lusk, C.H. & Ogden, J. 1992. Age structure and dynamics of a podocarp–broadleaf forest in Tongariro national park, New Zealand. Journal of Ecology 80: 379393.CrossRefGoogle Scholar
Lusk, C.H., Wright, I. & Reich, P.B. 2003. Photosynthetic differences contribute to competitive advantage of evergreen angiosperm trees over evergreen conifers in productive habitats. New Phytologist 160: 329336.CrossRefGoogle ScholarPubMed
Markham, K., Webby, R.F., Molloy, B.P.J. & Vilain, C. 1989. Support from flavenoid glycoside distribution for the division of Dacrydium sensu lato. New Zealand Journal of Botany 27: 111.CrossRefGoogle Scholar
Markham, K.R., Webby, R.F., Whitehouse, L.A., et al. 1985. Support from flavonoid glycoside distribution for the division of Podocarpus in New Zealand. New Zealand Journal of Botany 23: 113.CrossRefGoogle Scholar
McGlone, M.S. 1988. New Zealand. Pp 557602 in Huntley, B. & Webb, T. (eds.), Vegetation History of New Zealand. Dordrecht: Kluwer.CrossRefGoogle Scholar
Mehra, P.N. & Khoshoo, T.N. 1956. Cytology of conifers I, II. Journal of Genetics 54: 165180, 181–185.CrossRefGoogle Scholar
Melikan, A.P. & Bobrov, A.V.F.C. 2000. Morphology of female reproductive structures and the experience of building of phylogenetic system of the orders Podocarpales, Cephalotaxales and Taxales. Botanichekij Zhurnal 85: 5068 (in Russian).Google Scholar
Mill, R.R., Möller, M., Glidewell, S.M., Masson, D. & Williamson, B. 2004. Comparative anatomy and morphology of fertile complexes of Prumnopitys and Afrocarpus species (Podocarpaceae) as revealed by histology and NMR imaging, and their relevance to systematics. Botanical Journal of the Linnean Society 145: 295316.CrossRefGoogle Scholar
Page, C.N. 1990. Podocarpaceae. Pp 332346 in Kubitsky, K. & Green, P.S. (eds.), The Families and Genera of Vascular Plants. I. Pteridophytes and Gymnosperms. Berlin: Springer.Google Scholar
Page, C.N. 2019. New and maintained genera in the taxonomic alliance of Prumnopitys s.l. (Podocarpaceae), and circumscription of a new genus. New Zealand Journal of Botany 57: 137153.CrossRefGoogle Scholar
Philipson, W.R. & Molloy, B.P.J. 1990. Seedling, shoot, and adult morphology of New Zealand conifers: the genera Dacrycarpus, Podocarpus, Dacrydium and Prumnopitys. New Zealand Journal of Botany 28: 7384.CrossRefGoogle Scholar
Pole, M. 1997. Paleocene plant microfossils from Kakahu, South Canterbury, New Zealand. Journal of the Royal Society of New Zealand 27: 371400.CrossRefGoogle Scholar
Pole, M. 2007. Early Eocene dispersed cuticles and mangrove to rainforest vegetation at Strahan-Regatte Point, Tasmania. Palaeontologica Electronica 10(3).Google Scholar
Pole, M.S. 1992. Eocene vegetation from Hasties, north-east Tasmania. Australian Systematic Botany 5: 431475.CrossRefGoogle Scholar
Preest, D.S. 1963. A note on the dispersal characteristics of the seed of New Zealand podocarps and beeches and their biogeographical significance. Pp 415424 in Gressitt, J.L. (ed.), Pacific Basin Biogeography. Honolulu, HI: Bishop Museum Press.Google Scholar
Quiroga, M.P., Mathiasen, P., Iglesias, A., Mill, R.R. & Premoli, A.C. 2016. Molecular and fossil evidence disentangle the biogeographical history of Podocarpus, a key genus in plant geography. Journal of Biogeography 43(2): 372383.CrossRefGoogle Scholar
Rack, F.R. 1993. A geologic perspective on the Miocene evolution of the Antarctic Circumpolar Current system. Tectonophysics 222: 397415.CrossRefGoogle Scholar
Salter, J. 2007. Matai and miro (Prumnopitys): the inside story on the rumour of their separation. New Zealand Journal of Botany 45: 294295.Google Scholar
Sinclair, W.T., Mill, R.R., Gardner, M.F., et al. 2002. Evolutionary relationships of the New Caledonian heterotrophic conifer Parasitaxus usta (Podocarpaceae) inferred from chloroplast trnL–F intron/spacer and nuclear rDNA ITS sequences. Plant Systematics and Evolution 233: 79104.CrossRefGoogle Scholar
Stockey, R.A. & Frevel, B.J. 1997. Cuticle micromorphology of Prumnopitys philippi (Podocarpaceae). International Journal of Plant Sciences 158: 198221.CrossRefGoogle Scholar
Webby, R.F., Markam, K.R. & Molloy, B.P.J. 1987. The characterization of New Zealand Podocarpus hybrids using flavenoid markers. New Zealand Journal of Botany 25: 355366.CrossRefGoogle Scholar
Wells, P.M. & Hill, R.S. 1989. Leaf morphology of the imbricate-leaved Podocarpaceae. Australian Systematic Botany 2: 369386.CrossRefGoogle Scholar
Wilf, P. 2012. Rainforest conifers of Eocene Patagonia: attached cones and foliage of the extant Southeast Asian and Australasian genus Dacrycarpus (Podocarpaceae). American Journal of Botany 99: 562584.CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • Pectinopitys
  • Christopher N. Page, University of Exeter
  • Book: Evolution of the Arborescent Gymnosperms
  • Online publication: 11 November 2024
  • Chapter DOI: https://doi.org/10.1017/9781009263108.032
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • Pectinopitys
  • Christopher N. Page, University of Exeter
  • Book: Evolution of the Arborescent Gymnosperms
  • Online publication: 11 November 2024
  • Chapter DOI: https://doi.org/10.1017/9781009263108.032
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • Pectinopitys
  • Christopher N. Page, University of Exeter
  • Book: Evolution of the Arborescent Gymnosperms
  • Online publication: 11 November 2024
  • Chapter DOI: https://doi.org/10.1017/9781009263108.032
Available formats
×