Skip to main content Accessibility help
×
Hostname: page-component-7479d7b7d-k7p5g Total loading time: 0 Render date: 2024-07-12T11:54:36.507Z Has data issue: false hasContentIssue false

21 - Ontogeny of the spiralian brain

Published online by Cambridge University Press:  08 August 2009

Giuseppe Fusco
Affiliation:
Università degli Studi di Padova, Italy
Alessandro Minelli
Affiliation:
Università degli Studi di Padova, Italy
Get access

Summary

Spiral cleavage is a characteristic feature of several protostomian taxa, sometimes united as Spiralia (Dohle 1996), but its presence in a number of these groups has been debated. This could be the result of too vague definitions, so I will emphasise here the presence of both a spiral pattern with shifting direction of the spindles in the early cleavages and a cell lineage including prototroch cells (trochoblasts) differentiating from cells along the border between first and second micromere quartet. This automatically excludes the non-ciliated groups, but their cleavage types could be discussed in the light of the conclusions reached here.

The cleavage pattern defines two regions of the larvae: the episphere, consisting of cells from the first micromere quartet, including the primary and accessory trochoblasts, and the hyposphere ‘below’ the prototroch (Figures 21.1 and 21.2). The origin of different parts of the central nervous systems from these two regions has been documented sporadically in a number of older papers on embryology of various species, and some more recent studies provide information obtained by modern methods including cell labelling. The literature on cell lineage up to about 2004 has been summarised earlier (Nielsen 2004, 2005a). Here I will try to update the information and to incorporate new information obtained from studies of Hox genes (see also Nielsen 2005b), with special emphasis on the origin of the nervous system.

Type
Chapter
Information
Evolving Pathways
Key Themes in Evolutionary Developmental Biology
, pp. 399 - 416
Publisher: Cambridge University Press
Print publication year: 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ackermann, C., Dorresteijn, A. & Fischer, A. 2005. Clonal domains in postlarval Platynereis dumerilii (Annelida: Polychaeta). Journal of Morphology 266, 258–280.CrossRefGoogle Scholar
Åkesson, B. 1958. A study of the nervous system of the Sipunculoideae. Undersökninger över Öresund 38, 1–249.Google Scholar
Åkesson, B. 1961. The development of Golfingia elongata Keferstein (Sipunculidea) with some remarks on the development of neurosecretory cells in sipunculids. Arkiv för Zoologi, 2. ser. 13, 511–531.Google Scholar
Boyer, B. C., Henry, J. J. & Martindale, M. Q. 1998. The cell lineage of a polyclad turbellarian embryo reveals close similarity to coelomate spiralians. Developmental Biology 204, 111–123.CrossRefGoogle ScholarPubMed
Canapa, A., Biscotti, M. A., Olmo, E. & Barucca, M. 2005. Isolation of Hox and ParaHox genes in the bivalve Pecten maximus. Gene 348, 83–88.CrossRefGoogle ScholarPubMed
Child, C. M. 1900. The early development of Arenicola and Sternaspis. Archiv für Entwicklungsmechanik der Organismen 9, 587–723, plates 21–25.CrossRefGoogle Scholar
Conklin, E. G. 1897. The embryology of Crepidula. Journal of Morphology 13, 1–226.CrossRefGoogle Scholar
Cragg, S. M. & Crisp, D. J. 1991. The biology of scallop larvae. In Shumway, S. E. (ed.) Biology, Ecology and Aquaculture of Scallops. Amsterdam: Elsevier, pp. 75–91.Google Scholar
Croll, R. P. & Dickinson, A. J. G. 2004. Form and function of the larval nervous system in molluscs. Invertebrate Reproduction and Development 46, 173–187.CrossRefGoogle Scholar
Dickinson, A. J. G. & Croll, R. P. 2003. Development of the larval nervous system of the gastropod Ilyanassa obsoleta. Journal of Comparative Neurology 466, 197–218.CrossRefGoogle ScholarPubMed
Dickinson, A. J. G., Nason, J. & Croll, R. P. 1999. Histochemical localization of FMRFamide, serotonin and catecholamines in embryonic Crepidula fornicata (Gastropoda, Prosobranchia). Zoomorphology 119, 49–62.CrossRefGoogle Scholar
Dohle, W. 1996. Spiralia. In Westheide, W. (ed.) Spezielle Zoologie, Teil 1: Einzeller und Wirbellose Tiere, Stuttgart: Gustav Fischer, pp. 205–209.Google Scholar
Dorresteijn, A. W. C. 1990. Quantitative analysis of cellular differentiation during early embryogenesis of Platynereis dumerilii. Roux's Archive of Developmental Biology 199, 14–30.CrossRefGoogle Scholar
Dorresteijn, A. W. C. 1998. How do spiralian embryos accomplish cell diversity?Zoology, 100, 307–319.Google Scholar
Emlet, R. B. & Strathmann, R. R. 1994. Functional occurrences of simple cilia in the mitraria of oweniids (an anomalous polychaete) and comparisons with other larvae. In Wilson, W. H., Stricker, S. A. & Shinn, G. L. (eds.) Reproduction and Development of Marine Invertebrates. Baltimore: Johns Hopkins University Press, pp. 143–157.Google Scholar
Friedrich, H. 1979. Nemertini. In Seidel, F. (ed.) Morphogenese der Tiere, Deskriptive Morphogenese, 3. Lieferung. Jena: Gustav Fischer, pp. 1–136.Google Scholar
Friedrich, S., Wanninger, A., Brückner, M. & Haszprunar, G. 2002. Neurogenesis in the mossy chiton, Mopalia muscosa (Gould) (Polyplacophora): Evidence against molluscan metamerism. Journal of Morphology 253, 109–117.CrossRefGoogle ScholarPubMed
Gerould, J. H. 1906. The development of Phascolosoma. Zoologische Jahrbücher, Anatomie 23, 77–162.Google Scholar
Gifondorwa, D. J. & Leise, E. M. 2006. Programmed cell death in the apical ganglion during larval metamorphosis of the marine mollusc Ilyanassa obsoleta. Biological Bulletin 210, 109–120.CrossRefGoogle ScholarPubMed
Giusti, A. F., Hinman, V. F., Degnan, S. M., Degnan, B. M. & Morse, D. E. 2000. Expression of a Scr/Hox5 gene in the larval central nervous system of the gastropod Haliotis, a non-segmented spiralian lophotrochozoan. Evolution & Development 2, 294–302.CrossRefGoogle ScholarPubMed
Hatschek, B. 1883. Über Entwicklung von Sipunculus nudus. Arbeiten aus den Zoologischen Instituten der Universität Wien und der Zoologischen Station in Triest 5, 61–140.Google Scholar
Hay-Schmidt, A. 1990. Catecholamine-containing, serotonin-like and neuropeptide FMRFamide-like immunoreactive cells and processes in the nervous system of the pilidium larva (Nemertini). Zoomorphology, 109, 321–244.CrossRefGoogle Scholar
Henry, J. J. & Martindale, M. Q. 1987. The organizing role of the D quadrant as revealed through the phenomenon of twinning in the polychate Chætopterus variopedatus. Roux's Archives of Developmental Biology 196, 499–510.Google Scholar
Henry, J. J. & Martindale, M. Q. 1998. Conservation of the spiralian developmental program: cell lineage of the nemertean, Cerebratulus lacteus. Developmental Biology 201, 253–269.CrossRefGoogle ScholarPubMed
Henry, J. J. & Martindale, M. Q. 1999. Conservation and innovation in spiralian development. Hydrobiologia 402, 255–265.CrossRefGoogle Scholar
Henry, J. Q., Okusu, A. & Martindale, M. Q. 2004. The cell lineage of the polyplacophoran Chaetopleura apiculata: variation in the spiralian program and implications for molluscan evolution. Developmental Biology 272, 145–160.CrossRefGoogle ScholarPubMed
Hickman, V. V. 1963. The occurrence in Tasmania of the land nemertine, Geonemertes australiensis Dendy, with some account of its distribution, habits, variations and development. Papers and Proceedings of the Royal Society of Tasmania 97, 63–75.Google Scholar
Hinman, V. F., O'Brien, E. K., Richards, G. S. & Degnan, B. M. 2003. Expression of anterior Hox genes during larval development of the gastropod Haliotis asinina. Evolution & Development 5, 508–521.CrossRefGoogle ScholarPubMed
Huang, F. Z., Kang, D., Ramirez-Weber, F.-A., Bissen, S. T. & Weisblat, D. A. 2002. Micromere lineages in the glossiphoniid leech Helobdella. Development 129, 719–732.Google ScholarPubMed
Irvine, S. Q. & Martindale, M. Q. 2000. Expression patterns of anterior Hox genes in the polychaete Chaetopterus: correlation with morphological boundaries. Development 217, 333–351.Google ScholarPubMed
Iwata, F. 1958. On the development of the nemertean Micrura akkeshiensis. Embryologia 4, 103–131.CrossRefGoogle Scholar
Iwata, F. 1960. Studies on the comparative embryology of nemerteans with special reference to their interrelationships. Publications from the Akkeshi Marine Biological Station 10, 1–51.Google Scholar
Kato, K. 1940. On the development of some Japanese polyclads. Japanese Journal of Zoology 8, 537–573.Google Scholar
Kourakis, M. J., Master, V. A., Lokhorst, D. K.et al. 1997. Conserved anterior boundaries of Hox gene expression in the central nervous system of the leech Helobdella. Developmental Biology 190, 284–300.CrossRefGoogle ScholarPubMed
Kowalevsky, M. A. 1883. Embryogénie du Chiton polii (Philippi). Annales du Musée d'Histoire naturelle de Marseille, Zoologie 1(5), 1–46, 8 plates.Google Scholar
Lacalli, T. C. 1981. Structure and development of the apical organ in trochophores of Spirobranchus polycerus, Phyllodoce maculata and Phyllodoce mucosa (Polychaeta). Proceedings of the Royal Society of London B 212, 381–402.CrossRefGoogle Scholar
Lacalli, T. C. 1982. The nervous system and ciliary band of Müller's larva. Proceedings of the Royal Society of London B 217, 37–58.CrossRefGoogle ScholarPubMed
Lacalli, T. C. 1983. The brain and central nervous system of Müller's larva. Canadian Journal of Zoology 61, 39–51.CrossRefGoogle Scholar
Lacalli, T. C. 1984. Structure and organization of the nervous system in the trochophore larva of Spirobranchus. Philosophical Transactions of the Royal Society B 306, 79–135.CrossRefGoogle Scholar
Lacalli, T. C. & West, J. E. 1985. The nervous system of a pilidium larva: evidence from electron microscope reconstructions. Canadian Journal of Zoology 63, 1909–1916.CrossRefGoogle Scholar
Leise, E. M., Kempf, S. C., Durham, N. R. & Gifondorwa, D. J. 2004. Induction of metamorphosis in the marine gastropod Ilyanassa obsoleta: 5HT, NO and programmed cell death. Acta Biologica Hungarica 55, 293–300.CrossRefGoogle ScholarPubMed
Malakhov, V. V. 1990. Description of the development of Ascopodaria discreta (Coloniales, Barentsiidae) and discussion of the Kamptozoa status in the animal kingdom. Zoologicheskii Zhurnal 69, 20–30.Google Scholar
Marcus, E. 1939. Briozoarios marinhos brasileiros III. Boletim da Faculdade de Filosofia, Ciências e Letras, Universidade de Sao Paulo, Zoologia 3, 111–354.Google Scholar
Marois, R. & Carew, T. J. 1997. Fine structure of the apical ganglion and its serotonergic cells in the larva of Aplysia californica. Biological Bulletin 192, 388–398.CrossRefGoogle ScholarPubMed
Maslakova, S. A., Martindale, M. Q. & Norenburg, J. L. 2004a. Vestigial prototroch in a basal nemertean, Carinoma tremaphoros (Nemertea; Palaeonemertea). Evolution & Development 6, 219–226.CrossRefGoogle Scholar
Maslakova, S. A., Martindale, M. Q. & Norenburg, J. L. 2004b. Fundamental properties of the spiralian development program are displayed by the basal nemertean Carinoma tremaphoros (Palaeonemertea, Nemertea). Developmental Biology 267, 342–360.CrossRefGoogle Scholar
Meisenheimer, J. 1901. Entwicklungsgeschichte von Dreissensia polymorpha Pall. Zeitschrift für Wissenschaftliche Zoologie 69, 1–137, plates 1–13.Google Scholar
Nardelli-Haeflinger, D. & Shankland, M. 1993. Lox10, a member of the NK-2 homeobox gene class, is expressed in a segmental pattern in the endoderm and in the cephalic nervous system of the leech Helobdella. Development 118, 877–892.Google Scholar
Nielsen, C. 1971. Entoproct life-cycles and the entoproct/ectoproct relationship. Ophelia 9, 209–341.CrossRefGoogle Scholar
Nielsen, C. 2001. Animal Evolution: Interrelationships of the Living Phyla. 2nd edn. Oxford: Oxford University Press.Google Scholar
Nielsen, C. 2004. Trochophora larvae: cell-lineages, ciliary bands and body regions. 1. Annelida and Mollusca. Journal of Experimental Zoology B (Molecular and Developmental Evolution) 302, 35–68.CrossRefGoogle ScholarPubMed
Nielsen, C. 2005a. Trochophora larvae: cell-lineages, ciliary bands and body regions. 2. Other groups and general discussion. Journal of Experimental Zoology B (Molecular and Developmental Evolution) 304, 401–447.CrossRefGoogle Scholar
Nielsen, C. 2005b. Larval and adult brains. Evolution & Development 7, 483–489.CrossRefGoogle Scholar
Okusu, A. 2002. Embryogenesis and development of Epimenia babai (Mollusca Neomeniomorpha). Biological Bulletin 203, 87–103.CrossRefGoogle Scholar
Page, L. R. 2002. Apical sensory organ in larvae of the patellogastropod Tectura scutum. Biological Bulletin 202, 6–22.CrossRefGoogle ScholarPubMed
Page, L. R. & Parries, S. C. 2000. Comparative study of the apical ganglion in planktotrophic caenogastropod larvae: ultrastructure and immunoreactivity to serotonin. Journal of Comparative Neurology 418, 383–401.3.0.CO;2-B>CrossRefGoogle ScholarPubMed
Peterson, K. J., Cameron, R. A. & Davidson, E. H. 2000a. Bilaterian origins: significance of new experimental observations. Developmental Biology 219, 1–17.CrossRefGoogle Scholar
Peterson, K. J. & Eernisse, D. J. 2001. Animal phylogeny and the ancestry of bilaterians: inferences from morphology and 18S rDNA sequences. Evolution & Development 3, 170–205.CrossRefGoogle Scholar
Peterson, K. J., Irvine, S. Q., Cameron, R. A. & Davidson, E. H. 2000b. Quantitative assessment of Hox complex expression in the direct development of the polychaete annelid Chaetopterus sp. Proceedings of the National Academy of Sciences of the USA 97, 4487–4492.CrossRefGoogle Scholar
Raineri, M. 1995. Is a mollusc an evolved bent metatrochophore? A histochemical investigation of neurogenesis in Mytilus (Mollusca: Bivalvia). Journal of the Marine Biological Association of the United Kingdom 75, 571–592.CrossRefGoogle Scholar
Rattenbury, J. C. 1954. The embryology of Phoronopsis viridis. Journal of Morphology 95, 289–349.CrossRefGoogle Scholar
Reuter, M. & Halton, D. W. 2001. Comparative neurobiology of Platyhelminthes. In Littlewood, D. T. J. & Bray, R. A. (eds.) Interrelationships of the Platyhelminthes (Systematics Association Special Volume 60). London: Taylor and Francis, pp. 239–249.Google Scholar
Riedl, R. J. 1969. Gnathostomulida from America. Science 163, 445–462.CrossRefGoogle ScholarPubMed
Ruppert, E. E. 1978. A review of metamorphosis of turbellarian larvae. In Chia, F. S. (ed.) Settlement and Metamorphosis of Marine Invertebrate Larvae. New York: Elsevier, pp. 65–81.Google Scholar
Salensky, W. 1912. Über die Metamorphose der Nemertinen. I. Entwicklungsgeschichte der Nemertine im Inneren des Pilidiums. Mémoires de l'Académie impériale des Sciences de St.-Pétersbourg, 8. série, Classe physico-mathématique 30 (10), 1–74.Google Scholar
Shankland, M. & Savage, R. M. 1997. Annelids, the segmented worms. In Gilbert, S. F. & Raunio, A. M. (eds.) Embryology. Constructing the Organism. Sunderland: Sinauer Associates, pp. 219–235.Google Scholar
Surface, F. M. 1907. The early development of a polyclad, Planocera inquilina Wh. Proceedings of the Academy of Natural Sciences Philadelphia 59, 514–559, plates 35–40.Google Scholar
Tardy, J. & Dongard, S. 1993. Le complexe apical de la véligère du Ruditapes philippinarum (Adams et Reeve, 1850) Mollusque Bivalve Vénéridé. Comptes Rendus de l'Académie des Sciences, Sciences de la Vie 316, 177–184.Google Scholar
Treadwell, A. L. 1901. Cytogeny of Podarke obscura Verrill. Journal of Morphology 17, 199–486, plates 36–40.CrossRefGoogle Scholar
Dongen, C. A. M. & Geilenkirchen, W. L. M. 1974. The development of Dentalium with special reference to the significance of the polar lobe. I–III. Division chronology and development of the cell pattern in Dentalium dentale (Scaphopoda). Proceedings of the Koninklijke Nederlandse Akademie van Wetenschappen, Series C 77, 57–100.Google Scholar
Verdonk, N. H. & van den Biggelaar, J. A. M. 1983. Early development and the formation of the germ layers. In Wilbur, K. M. (ed.) The Mollusca, Vol. 3, New York: Academic Press, pp. 91–122.Google Scholar
Voronezshskaya, E. E., Tyurin, S. A. & Nezlin, L. P. 2002. Neuronal development in larval chiton Ischnochiton hakodakensis (Mollusca: Polyplacophora). Journal of Comparative Neurology 444, 25–38.CrossRefGoogle Scholar
Wanninger, A., Koop, D., Bromham, L., Noonan, E. & Degnan, B. M. 2005. Nervous and muscle system development in Phascolion strombus (Sipuncula). Development, Genes & Evolution 215, 509–518.CrossRefGoogle Scholar
Weisblat, D. A., Kim, S. Y. & Stent, G. S. 1984. Embryonic origins of cells in the leech Helobdella triserialis. Developmental Biology 104, 65–85.CrossRefGoogle ScholarPubMed
Woltereck, R. 1902. Trochophora-Studien I. Histologie der Larve und die Entstehung des Annelids bei den Polygordius-Arten der Nordsee. Zoologica (Stuttgart) 13(34), 1–71, 11 plates.Google Scholar
Woltereck, R. 1904. Beiträge zur praktischen Analyse der Polygordius-Entwicklung nach dem ‘Nordsee-’ und dem ‘Mittelmeer-Typus’. Archiv für Entwicklungsmechanik der Organismen 18, 377–403.CrossRefGoogle Scholar
Zimmer, R. L. 1991. Phoronida. In Giese, A. C. (ed.) Reproduction of Marine Invertebrates, Vol. 6. Pacific Grove, CA: Boxwood Press, pp. 1–45.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×