Skip to main content Accessibility help
×
Hostname: page-component-7479d7b7d-767nl Total loading time: 0 Render date: 2024-07-11T21:32:24.407Z Has data issue: false hasContentIssue false

7 - The role of microtubules and motors for polarized growth of filamentous fungi

from III - Protein folding and secretion

Published online by Cambridge University Press:  05 October 2013

R. Fischer
Affiliation:
Institute for Applied Life Sciences Applied Microbiology University of Karlsruhe Hertzstr. 16 D-76187 KarlsruheGermany
D. Veith
Affiliation:
Institute for Applied Life Sciences Applied Microbiology University of Karlsruhe Hertzstr. 16 D-76187 KarlsruheGermany
G. D. Robson
Affiliation:
University of Manchester
Pieter van West
Affiliation:
University of Aberdeen
Geoffrey Gadd
Affiliation:
University of Dundee
Get access

Summary

Introduction

Polarized growth is the mechanism by which filamentous fungi extend their hyphae. Microtubules (MT) and filamentous actin (F-actin), in combination with their corresponding motor proteins, kinesins, dynein and myosins, play crucial roles in this process. The exact contribution of the MT cytoskeleton, however, is still under debate. In this review we will summarize recent advances in understanding the role of MTs and MT-dependent motor proteins in fungi with special emphasis on Aspergillus nidulans. Genetic, biochemical and cell biological approaches in A. nidulans and other fungi led to a modified view of many aspects within the past few years. There is increasing evidence that MT strings, which are visualized by immunostaining or GFP-tagging, consist of several MTs and their dynamics appears to be different in fast-growing hyphal tips as compared with young germlings. Whereas the spindle pole bodies were considered as the only or the main microtubule organizing centres (MTOCs) in filamentous fungi, it appears that several additional MTOCs are responsible for the generation of the MT array. In addition to new insights into the MT network and its dynamics, the roles of several kinesins have been elucidated recently and their interplay with dynein investigated. It became clear that MT functions are interwoven with those of the actin cytoskeleton and that three main structures are required for polarized growth, the Spitzenkörper (vesicle supply centre), the polarisome and probably cell end markers at the cortex. We propose a model for polarized growth, where the actin cytoskeleton and the polarisome are crucial for hyphal extension and the MT cytoskeleton continuously provides the building material within vesicles to the Spitzenkörper and determines growth directionality by delivery of cell end marker proteins.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Akhmanova, A. & Hoogenraad, C. C. (2005). Microtubule plus-end-tracking proteins: mechanisms and functions. Current Opinions in Cell Biology, 17, 47–54.CrossRefGoogle ScholarPubMed
Aldaz, H., Rice, L. M., Stearns, T. & Agard, D. A. (2005). Insights into microtubule nucleation from the crystal structure of human gamma-tubulin. Nature, 435, 523–7.CrossRefGoogle ScholarPubMed
Baas, P. W., Pienkowski, T. P., Cimbalnik, K. A., Toyama, K., Bakalis, S., Ahmad, F. J. & Kosik, K. S. (1994). Tau confers drug stability but not cold stability to microtubules in living cells. Journal of Cell Science, 107, 135–43.Google Scholar
Baas, P. W. & Qiang, L. (2005). Neuronal microtubules: when the MAP is the roadblock. Trends in Cell Biology, 15, 183–7.CrossRefGoogle ScholarPubMed
Bartnicki-Garcia, S., Bartnicki, D. D., Gierz, G., Lopez-Franco, R. & Bracker, C. E. (1995). Evidence that Spitzenkörper behavior determines the shape of a fungal hypha: a test of the hyphoid model. Experimental Mycology, 19, 153–9.CrossRefGoogle ScholarPubMed
Browning, H., Hayles, J., Mata, J., Aveline, L., Nurse, P. & McIntosh, J. R. (2000). Tea2p is a kinesin-like protein required to generate polarized growth in fission yeast. Journal of Cell Biology, 151, 15–27.CrossRefGoogle ScholarPubMed
Browning, H., Hackney, D. D. & Nurse, P. (2003). Targeted movement of cell end factors in fission yeast. Nature Cell Biology, 5, 812–18.CrossRefGoogle ScholarPubMed
Brunswick, H. (1924). Untersuchungen über die Geschlechts und Kernverhältnisse bei der Hymenomyzetengattung Corpinus. Jena: Gustav Fisher.Google Scholar
Busch, K. E., Hayles, J., Nurse, P. & Brunner, D. (2004). Tea2p kinesin is involved in spatial microtubule organization by transporting tip1p on microtubules. Developmental Cell, 16, 831–43.CrossRefGoogle Scholar
Carazo-Salas, R., Antony, C. & Nurse, P. (2005). The kinesin Klp2 mediates polarization of interphase microtubules in fission yeast. Science, 309, 297–300.CrossRefGoogle ScholarPubMed
Carminati, J. L. & Stearns, T. (1997). Microtubules orient the mitotic spindle in yeast through dynein-dependent interactions with the cell cortex. Journal of Cell Biology, 138, 629–41.CrossRefGoogle ScholarPubMed
Carvalho, P., Gupta, M. L. J., Hoyt, M. A. & Pellman, D. (2004). Cell cycle control of kinesin-mediated transport of Bik1 (CLIP-170) regulates microtubule stability and dynein activation. Developmental Cell, 6, 815–29.CrossRefGoogle ScholarPubMed
Cassimeris, L. & Spittle, C. (2001). Regulation of microtubule-associated proteins. International Review of Cytology, 210, 163–226.CrossRefGoogle ScholarPubMed
Crampin, H., Finley, K., Gerami-Nejad, M., Court, H., Gale, C., Berman, J. & Sudbery, P. (2005). Candida albicans hyphae have a Spitzenkörper that is distinct from the polarisome found in yeast and pseudohyphae. Journal of Cell Science, 118, 2935–47.CrossRefGoogle ScholarPubMed
Ding, D. Q., Chikashige, Y., Haraguchi, T. & Hiraoka, Y. (1998). Oscillatory nuclear movement in fission yeast meiotic prophase is driven by astral microtubules, as revealed by continuous observation of chromosomes and microtubules in living cells. Journal of Cell Science, 111, 701–12.Google ScholarPubMed
Doxsey, S., McCollum, D. & Theurkauf, W. (2005). Centrosomes in cellular regulation. Annual Review of Cell and Developmental Biology, 21, 411–34.CrossRefGoogle ScholarPubMed
Efimov, V., Zhang, J. & Xiang, X. (2006). CLIP-170 homologue and NUDE play overlapping roles in NUDF localization in Aspergillus nidulans. Molecular Biology of the Cell, 17, 2021–34.CrossRefGoogle ScholarPubMed
Enos, A. P. & Morris, N. R. (1990). Mutation of a gene that encodes a kinesin-like protein blocks nuclear division in A. nidulans. Cell, 60, 1019–27.CrossRefGoogle ScholarPubMed
Eshel, D., Urrestarazu, L. A., Vissers, S., Jauniaux, J. C., Vliet-Reedijk, J. C., Planta, R. J. & Gibbons, I. R. (1993). Cytoplasmic dynein is required for normal nuclear segregation in yeast. Proceedings of the National Academy of Sciences USA, 90, 11172–6.CrossRefGoogle Scholar
Fischer, R. & Timberlake, W. E. (1995). Aspergillus nidulans apsA (anucleate primary sterigmata) encodes a coiled-coil protein necessary for nuclear positioning and completion of asexual development. Journal of Cell Biology, 128, 485–98.CrossRefGoogle Scholar
Freitag, M., Hickey, P. C., Raju, N. B., Selker, E. U. & Read, N. D. (2004). GFP as a tool to analyze the organization, dynamics and function of nuclei and microtubules in Neurospora crassa. Fungal Genetics and Biology, 41, 897–910.CrossRefGoogle ScholarPubMed
Fuchs, F., Prokisch, H., Neupert, W. & Westermann, B. (2002). Interaction of mitochondria with microtubules in the filamentous fungus Neurospora crassa. Journal of Cell Science, 115, 1931–7.Google ScholarPubMed
Fuchs, F. & Westermann, B. (2005). Role of Unc104/KIF1-related motor proteins in mitochondrial transport in Neurospora crassa. Molecular Biology of the Cell, 16, 153–61.CrossRefGoogle ScholarPubMed
Girbardt, M. (1957). Der Spitzenkörper von Polystictus versicolor. Planta, 50, 47–59.CrossRefGoogle Scholar
Hagan, I. M. (1998). The fission yeast microtubule cytoskeleton. Journal of Cell Science, 111, 1603–12.Google ScholarPubMed
Han, G., Liu, B., Zhang, J., Zuo, W., Morris, N. R. & Xiang, X. (2001). The Aspergillus cytoplasmic dynein heavy chain and NUDF localize to microtubule ends and affect microtubule dynamics. Current Biology, 11, 19–24.CrossRefGoogle ScholarPubMed
Harris, S. D. & Momany, C. (2004). Polarity in filamentous fungi: moving beyond the yeast paradigm. Fungal Genetics and Biology, 41, 391–400.CrossRefGoogle ScholarPubMed
Harris, S. D., Read, N. D., Roberson, R. W., Shaw, B., Seiler, S., Plamann, M. & Momany, M. (2005). Polarisome meets Spitzenkörper: Microscopy, genetics, and genomics converge. Eukaryotic Cell, 4, 225–9.CrossRefGoogle ScholarPubMed
Heath, I. B. (1981). Nucleus-associated organelles in fungi. International Review of Cytology, 69, 191–221.CrossRefGoogle Scholar
Hestermann, A., Rehberg, M. & Gräf, R. (2002). Centrosomal microtubule plus end tracking proteins and their role in Dictyostelium cell dynamics. Journal of Muscle Research and Cell Motility, 23, 621–30.CrossRefGoogle ScholarPubMed
Hirokawa, N. (1998). Kinesin and dynein superfamily proteins and the mechanism of organelle transport. Science, 279, 519–26.CrossRefGoogle ScholarPubMed
Hoepfner, D., Brachat, A. & Philippsen, P. (2000). Time-lapse video microscopy analysis reveals astral microtubule detachment in the yeast spindle pole mutant cnm67v. Molecular Biology of the Cell, 11, 1197–211.CrossRefGoogle Scholar
Horio, T. & Oakley, B. R. (2005). The role of microtubules in rapid hyphal tip growth of Aspergillus nidulans. Molecular Biology of the Cell, 16, 918–26.CrossRefGoogle ScholarPubMed
Jaspersen, S. L. & Winey, M. (2004). The budding yeast spindle pole body: structure, duplication, and function. Annual Review of Cell and Developmental Biology, 20, 1–28.CrossRefGoogle ScholarPubMed
Job, D., Valiron, O. & Oakley, B. R. (2003). Microtubule nucleation. Current Opinion in Cell Biology, 15, 111–17.CrossRefGoogle ScholarPubMed
Jung, M. K., May, G. S. & Oakley, B. R. (1998). Mitosis in wild-type and β-tubulin mutant strains of Aspergillus nidulans. Fungal Genetics and Biology, 24, 146–60.CrossRefGoogle ScholarPubMed
Kapitein, L. C., Peterman, E. J., Kwok, B. H., Kim, J. H., Kapoor, T. M. & Schmidt, C. F. (2005). The bipolar mitotic kinesin Eg5 moves on both microtubules that it crosslinks. Nature, 435, 114–18.CrossRefGoogle ScholarPubMed
Knechtle, P., Dietrich, F. & Philippsen, P. (2003). Maximal polar growth potential depends on the polarisome component AgSpa2 in the filamentous fungus Ashbya gossypii. Molecular Biology of the Cell, 14, 4140–54.CrossRefGoogle ScholarPubMed
Konzack, S., Rischitor, P., Enke, C. & Fischer, R. (2005). The role of the kinesin motor KipA in microtubule organization and polarized growth of Aspergillus nidulans. Molecular Biology of the Cell, 16, 497–506.CrossRefGoogle ScholarPubMed
Lehmler, C., Steinberg, G., Snetselaar, K. M., Schliwa, M., Kahmann, R. & Bölker, M. (1997). Identification of a motor protein required for filamentous growth in Ustilago maydis. EMBO Journal, 16, 3464–73.CrossRefGoogle ScholarPubMed
Maekawa, H., Usui, T., Knop, M. & Schiebel, E. (2003). Yeast Cdk1 translocates to the plus end of cytoplasmic microtubules to regulate bud cortex interactions. EMBO Journal, 22, 438–49.CrossRefGoogle ScholarPubMed
Maekawa, H. & Schiebel, E. (2004). Cdk1-Clb4 controls the interaction of astral microtubule plus ends with subdomains of the daughter cell cortex. Genes and Development, 18, 1709–24.CrossRefGoogle ScholarPubMed
Martin, R., Walther, A. & Wendland, J. (2004). Deletion of the dynein heavy-chain gene DYN1 leads to aberrant nuclear positioning and defective hyphal development in Candida albicans. Eukaryotic Cell, 3, 1574–88.CrossRefGoogle ScholarPubMed
Martin, S. G. & Chang, F. (2003). Cell polarity: a new mod(e) of anchoring. Current Biology, 13, R711–730.CrossRefGoogle Scholar
Martin, S. G. & Chang, F. (2005). New end take off: regulating cell polarity during the fission yeast cell cycle. Cell Cycle, 4(8), 1046–9.CrossRefGoogle ScholarPubMed
Mata, J. & Nurse, P. (1997). tea1 and the microtubular cytoskeleton are important for generating global spatial order within the fission yeast cell. Cell, 89, 939–49.CrossRefGoogle ScholarPubMed
McDaniel, D. P. & Roberson, R. W. (1998). γ-tubulin is a component of the Spitzenkörper and centrosomes in hyphal-tip cells of Allomyces macrogynus. Protoplasma, 203, 118–23.CrossRefGoogle Scholar
McGoldrick, C. A., Gruver, C. & May, G. S. (1995). myoA of Aspergillus nidulans encodes an essential myosin I required for secretion and polarized growth. Journal of Cell Biology, 128, 577–87.CrossRefGoogle ScholarPubMed
Miller, R. K., Heller, K. K., Frisèn, L., Wallack, D. L., Loayza, D., Gammie, A. E. & Rose, M. D. (1998). The kinesin-related proteins, Kip2p and Kip3p, function differently in nuclear migration in yeast. Molecular Biology of the Cell, 9, 2051–68.CrossRefGoogle Scholar
Morris, N. R. (1976). Mitotic mutants of Aspergillus nidulans. Genetical Research, 26, 237–54.CrossRefGoogle Scholar
Mouriño-Pérez, R. R., Roberson, R. W. & Bartnicki-Garcia, S. (2006). Microtubule dynamics and organization during hyphal growth and branching in Neurospora crassa. Fungal Genetics and Biology, 43(6), 389–400.CrossRefGoogle ScholarPubMed
O'Connell, M. J., Meluh, P. B., Rose, M. D. & Morris, N. R. (1993). Suppression of the bimC4 mitotic spindle defect by deletion of klpA, a gene encoding a KAR3-related kinesin-like protein in Aspergillus nidulans. Journal of Cell Biology, 120, 153–62.CrossRefGoogle ScholarPubMed
Oakley, B. R., Oakley, C. E., Yoon, Y. & Jung, K. M. (1990). γ-Tubulin is a component of the spindle pole body in Aspergillus nidulans. Cell, 61, 1289–301.CrossRefGoogle ScholarPubMed
Oakley, B. R. (1995). A nice ring to the centrosome. Nature, 378, 555–6.CrossRefGoogle ScholarPubMed
Oakley, B. R. (2000). An abundance of tubulins. Trends in Cell Biology, 10, 537–42.CrossRefGoogle ScholarPubMed
Oakley, B. R. (2004). Tubulins in Aspergillus nidulans. Fungal Genetics and Biology, 41, 420–7.CrossRefGoogle ScholarPubMed
Oakley, C. E. & Oakley, B. R. (1989). Identification of gamma-tubulin, a new member of the tubulin superfamily encoded by mipA gene of Aspergillus nidulans. Nature, 338, 662–4.CrossRefGoogle ScholarPubMed
Ovechkina, Y., Maddox, P., Oakley, C. E., Xiang, X., Osmani, S. A., Salomon, E. D. & Oakley, B. R. (2003). Spindle formation in Aspergillus is coupled to tubulin movement into the nucleus. Molecular Biology of the Cell, 14, 2192–200.CrossRefGoogle ScholarPubMed
Pereira, G. & Schiebel, E. (1997). Centrosome-microtubule nucleation. Journal of Cell Science, 110, 295–300.Google ScholarPubMed
Philippsen, P., Kaufmann, A. & Schmitz, H.-P. (2005). Homologues of yeast polarity genes control the development of multinucleated hyphae in Ashbya gossypii. Current Opinions in Microbiology, 8, 370–7.CrossRefGoogle ScholarPubMed
Prigozhina, N. L., Walker, R. A., Oakley, C. E. & Oakley, B. R. (2001). Gamma-tubulin and the C-terminal motor domain kinesin-like protein, KLPA, function in the establishment of spindle bipolarity in Aspergillus nidulans. Molecular Biology of the Cell, 12, 3161–74.CrossRefGoogle ScholarPubMed
Pruyne, D., Legesse-Miller, A., Gao, L., Dong, Y. & Bretscher, A. (2004). Mechanisms of polarized growth and organelle segregation in yeast. Annual Review of Cell and Developmental Biology, 20, 559–91.CrossRefGoogle Scholar
Requena, N., Alberti-Segui, C., Winzenburg, E., Horn, C., Schliwa, M., Philippsen, P., Liese, R. & Fischer, R. (2001). Genetic evidence for a microtubule-destabilizing effect of conventional kinesin and analysis of its consequences for the control of nuclear distribution in Aspergillus nidulans. Molecular Microbiology, 42, 121–32.CrossRefGoogle ScholarPubMed
Riquelme, M., Reynaga-Peña, C. G., Gierz, G. & Bartnicki-García, S. (1998). What determines growth direction in fungal hyphae?Fungal Genetics and Biology, 24, 101–9.CrossRefGoogle ScholarPubMed
Riquelme, M., Fischer, R. & Bartnicki-Garcia, S. (2003). Apical growth and mitosis are independent processes in Aspergillus nidulans. Protoplasma, 222, 211–15.CrossRefGoogle ScholarPubMed
Riquelme, M. & Bartnicki-Garcia, S. (2004). Key differenences between lateral and apical branching in hyphae of Neurospora crassa. Fungal Genetics and Biology, 41, 842–51.CrossRefGoogle Scholar
Rischitor, P., Konzack, S. & Fischer, R. (2004). The Kip3-like kinesin KipB moves along microtubules and determines spindle position during synchronized mitoses in Aspergillus nidulans hyphae. Eukaryotic Cell, 3, 632–45.CrossRefGoogle ScholarPubMed
Sagot, I., Klee, S. K. & Pellman, D. (2002). Yeast formins regulate cell polarity by controlling the assembly of actin cables. Nature Cell Biology, 4, 42–50.CrossRefGoogle ScholarPubMed
Sampson, K. & Heath, I. B. (2005). The dynamic behaviour of microtubules and their contributions to hyphal tip growth in Aspergillus nidulans. Microbiology, 151, 1543–55.CrossRefGoogle ScholarPubMed
Sawin, K. E., Lourenco, P. C. C. & Snaith, H. A. (2004). Microtubule nucleation at non-spindle pole body microtubule-organizing centers requires fission yeast centrosomin-related protein mod20p. Current Biology, 14, 763–75.CrossRefGoogle ScholarPubMed
Sawin, K. E. & Snaith, H. A. (2004). Role of microtubules and tea1p in establishment and maintenance of fission yeast cell polarity. Journal of Cell Science, 117, 689–700.CrossRefGoogle ScholarPubMed
Schliwa, M. & Woehlke, G. (2003). Molecular motors. Nature, 422, 759–65.CrossRefGoogle ScholarPubMed
Schuyler, S. C. & Pellman, D. (2001a). Search, capture and signal: games microtubules and centrosomes play. Journal of Cell Science, 114, 247–55.Google Scholar
Schuyler, S. C. & Pellman, D. (2001b). Microtubule ‘plus-end-tracking proteins’: The end is just the beginning. Cell, 105, 421–4.CrossRefGoogle Scholar
Seiler, S., Nargang, F. E., Steinberg, G. & Schliwa, M. (1997). Kinesin is essential for cell morphogenesis and polarized secretion in Neurospora crassa. EMBO Journal, 16, 3025–34.CrossRefGoogle ScholarPubMed
Seiler, S., Plamann, M. & Schliwa, M. (1999). Kinesin and dynein mutants provide novel insights into the roles of vesicle traffic during cell morphogenesis in Neurospora. Current Biology, 9, 779–85.CrossRefGoogle ScholarPubMed
Sharpless, K. E. & Harris, S. D. (2002). Functional characterization and localization of the Aspergillus nidulans formin SEPA. Molecular Biology of the Cell, 13, 469–79.CrossRefGoogle ScholarPubMed
Sheeman, B., Carvalho, P., Sagot, I., Geiser, J., Kho, D., Hoyt, M. A. & Pellman, D. (2003). Determinants of S. cerevisiae dynein localization and activation: Implications for the mechanism of spindle positioning. Current Biology, 13, 364–72.CrossRefGoogle ScholarPubMed
Snaith, H. A. & Sawin, K. E. (2003). Fission yeast mod5p regulates polarized growth through anchoring of tea1p at cell tips. Nature, 423, 647–51.CrossRefGoogle ScholarPubMed
Snell, V. & Nurse, P. (1994). Genetic analysis of cell morphogenesis in fission yeast – a role for casein kinase II in the establishment of polarized growth. EMBO Journal, 13, 2066–74.Google ScholarPubMed
Steinberg, G., Wedlich-Söldner, R., Brill, M. & Schulz, I. (2001). Microtubules in the fungal pathogen Ustilago maydis are highly dynamic and determine cell polarity. Journal of Cell Science, 114, 609–22.Google ScholarPubMed
Straube, A., Enard, W., Berner, A., Wedlich-Söldner, R., Kahmann, R. & Steinberg, G. (2001). A split motor domain in a cytoplasmic dynein. EMBO Journal, 20, 5091–100.CrossRefGoogle Scholar
Straube, A., Brill, M., Oakley, B. R., Horio, T. & Steinberg, G. (2003). Microtubule organization requires cell cycle-dependent nucleation at dispersed cytoplasmic sites: polar and perinuclear microtubule organizing centers in the plant pathogen Ustilago maydis. Molecular Biology of the Cell, 14, 642–57.CrossRefGoogle ScholarPubMed
Suelmann, R. & Fischer, R. (2000). Mitochondrial movement and morphology depend on an intact actin cytoskeleton in Aspergillus nidulans. Cell Motility and the Cytoskeleton, 45, 42–50.3.0.CO;2-C>CrossRefGoogle ScholarPubMed
Veith, D., Scherr, N., Efimov, V. P. & Fischer, R. (2005). Role of the spindle-pole body protein ApsB and the cortex protein ApsA in microtubule organization and nuclear migration in Aspergillus nidulans. Journal of Cell Science, 118, 3705–16.CrossRefGoogle ScholarPubMed
Venkatram, S., Jennings, J. L., Link, A. & Gould, K. L. (2005). Mto2p, a novel fission yeast protein required for cytoplasmic microtubule organization and anchoring of the cytokinetic actin ring. Molecular Biology of the Cell, 16, 3052–63.CrossRefGoogle ScholarPubMed
Wendland, J. & Walther, A. (2005). Ashbya gossypii: a model for fungal developmental biology. Nature Reviews. Microbiology, 3, 421–9.CrossRefGoogle ScholarPubMed
West, R. R., Malmstrom, T. & McIntosh, J. R. (2002). Kinesins klp5+ and klp6+ are required for normal chromosome movement in mitosis. Journal of Cell Science, 115, 931–40.Google Scholar
Woehlke, G. & Schliwa, M. (2000). Walking on two heads: The many talents of kinesin. Nature Reviews. Molecular Cell Biology, 1, 50–8.CrossRefGoogle ScholarPubMed
Wu, Q., Sandrock, T. M., Turgeon, B. G., Yoder, O. C., Wirsel, S. G. & Aist, J. R. (1998). A fungal kinesin required for organelle motility, hyphal growth, and morphogenesis. Molecular Biology of the Cell, 9, 89–101.CrossRefGoogle ScholarPubMed
Xiang, X., Beckwith, S. M. & Morris, N. R. (1994). Cytoplasmic dynein is involved in nuclear migration in Aspergillus nidulans. Proceedings of the National Academy of Sciences USA, 91, 2100–4.CrossRefGoogle ScholarPubMed
Xiang, X. & Fischer, R. (2004). Nuclear migration and positioning in filamentous fungi. Fungal Genetics and Biology, 41, 411–19.CrossRefGoogle ScholarPubMed
Yamamoto, A. & Hiraoka, Y. (2003). Cytoplasmic dynein in fungi: insights from nuclear migration. Journal of Cell Science, 116, 4501–12.CrossRefGoogle ScholarPubMed
Yildiz, A. & Selvin, P. R. (2005). Kinesin: walking, crawling or sliding along?Trends in Cell Biology, 15, 112–20.CrossRefGoogle ScholarPubMed
Zhang, J., Han, G. & Xiang, X. (2002). Cytoplasmic dynein intermediate chain and heavy chain are dependent upon each other for microtubule end localization in Aspergillus nidulans. Molecular Microbiology, 44, 381–92.CrossRefGoogle ScholarPubMed
Zhang, J., Li, S., Fischer, R. & Xiang, X. (2003). The accumulation of cytoplasmic dynein and dynactin at microtubule plus-ends is kinesin dependent in Aspergillus nidulans. Molecular Biology of the Cell, 14, 1479–88.CrossRefGoogle ScholarPubMed
Zheng, X. D., Wang, Y. M. & Wang, Y. (2003). CaSPA2 is important for polarity establishment and maintenance in Candida albicans. Molecular Microbiology, 49, 1391–405.CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×