Skip to main content Accessibility help
×
Hostname: page-component-7479d7b7d-wxhwt Total loading time: 0 Render date: 2024-07-11T00:51:24.641Z Has data issue: false hasContentIssue false

5 - Reynolds Number Effects

Published online by Cambridge University Press:  23 December 2009

Mohamed Gad-el-Hak
Affiliation:
University of Notre Dame, Indiana
Get access

Summary

What is reasonable is real; that which is real is reasonable.

(Georg Wilhelm Friedrich Hegel, 1770–1831)

Science is what you know, philosophy is what you don't know.

(Bertrand Arthur William Russell, 1872–1970)

PROLOGUE

This chapter deals with Reynolds number effects in turbulent shear flows with particular emphasis on the canonical zero-pressure-gradient boundary layer and twodimensional channel-flow problems. The Reynolds numbers encountered in many practical situations are typically several orders of magnitude higher than those studied computationally or even experimentally. High-Reynolds-number research facilities are expensive to build and operate, and the few that exist are heavily scheduled with mostly developmental work. For wind tunnels, additional complications due to compressibility effects are introduced at high speeds. Likewise, full computational simulation of high-Reynolds-number flows is beyond the reach of current capabilities. Understanding turbulence and modeling will therefore continue to play vital roles in the computation of high-Reynolds-number practical flows using the Reynolds-averaged Navier–Stokes equations. Because the existing knowledge base, accumulated mostly through physical as well as numerical experiments, is skewed toward the low Reynolds numbers, the key question in such high-Reynolds-number modeling as well as in devising novel flow control strategies is, What are the Reynolds number effects on the mean and statistical turbulence quantities and on the organized motions? Understanding the Reynolds number effects is important for flow control on two counts:

  1. A passive or active control device developed in a low-Reynolds-number facility may perform quite differently at high Re.

  2. For reactive control, coherent structures are targeted.

Type
Chapter
Information
Flow Control
Passive, Active, and Reactive Flow Management
, pp. 58 - 103
Publisher: Cambridge University Press
Print publication year: 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×