Skip to main content Accessibility help
×
Hostname: page-component-7479d7b7d-fwgfc Total loading time: 0 Render date: 2024-07-12T20:18:24.437Z Has data issue: false hasContentIssue false

10 - Adenylyl cyclase isoform-specific signaling of GPCRs

from PART III - GPCR SIGNALING FEATURES

Published online by Cambridge University Press:  05 June 2012

Karin F. K. Ejendal
Affiliation:
Purdue University
Julie A. Przybyla
Affiliation:
Purdue University
Val J. Watts
Affiliation:
Purdue University
Sandra Siehler
Affiliation:
Novartis Institute for Biomedical Research
Graeme Milligan
Affiliation:
University of Glasgow
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
G Protein-Coupled Receptors
Structure, Signaling, and Physiology
, pp. 189 - 216
Publisher: Cambridge University Press
Print publication year: 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Sutherland, E. W. and Rall, T. W. (1958) Fractionation and characterization of a cyclic adenine ribonucleotide formed by tissue particles, J. Biol. Chem. 232, 1077–1091.Google ScholarPubMed
Chester, J. A. and Watts, V. J. (2007) Adenylyl cyclase 5: a new clue in the search for the “fountain of youth”?, Sci STKE. 2007, e64.CrossRefGoogle ScholarPubMed
Watts, V. J. (2007) Adenylyl cyclase isoforms as novel therapeutic targets: an exciting example of excitotoxicity neuroprotection, Mol. Interv. 7, 70–73.CrossRefGoogle ScholarPubMed
Sadana, R. and Dessauer, C. W. (2009) Physiological roles for G protein-regulated adenylyl cyclase isoforms: insights from knockout and overexpression studies, Neurosignals. 17, 5–22.CrossRefGoogle Scholar
Dupre, D. J., Robitaille, M., Rebois, R. V., and Hebert, T. E. (2009) The role of Gbetagamma subunits in the organization, assembly, and function of GPCR signaling complexes, Annu. Rev. Pharmacol. Toxicol. 49, 31–56.CrossRefGoogle ScholarPubMed
Omori, K. and Kotera, J. (2007) Overview of PDEs and their regulation, Circ. Res. 100, 309–327.CrossRefGoogle ScholarPubMed
Krupinski, J., Coussen, F., Bakalyar, H. A., Tang, W. J., Feinstein, P. G., Orth, K., Slaughter, C., Reed, R. R., and Gilman, A. G. (1989) Adenylyl cyclase amino acid sequence: possible channel- or transporter-like structure, Science 244, 1558–1564.CrossRefGoogle ScholarPubMed
Buck, J., Sinclair, M. L., Schapal, L., Cann, M. J., and Levin, L. R. (1999) Cytosolic adenylyl cyclase defines a unique signaling molecule in mammals, Proc. Natl. Acad. Sci. U. S. A 96, 79–84.CrossRefGoogle ScholarPubMed
Beazely, M. A. and Watts, V. J. (2006) Regulatory properties of adenylate cyclases type 5 and 6: A progress report, Eur. J. Pharmacol. 535, 1–12.CrossRefGoogle ScholarPubMed
Willoughby, D. and Cooper, D. M. (2007) Organization and Ca2+ regulation of adenylyl cyclases in cAMP microdomains, Phyisiol. Rev. 87, 965–1010.CrossRefGoogle ScholarPubMed
Cumbay, M. G. and Watts, V. J. (2004) Novel regulatory properties of human type 9 adenylate cyclase (AC9), J. Pharmacol. Exp. Ther. 310, 108–115.CrossRefGoogle Scholar
Cumbay, M. G. and Watts, V. J. (2005) Galphaq potentiation of adenylate cyclase type 9 activity through a Ca2+/calmodulin-dependent pathway, Biochem. Pharmacol. 69, 1247–1256.CrossRefGoogle ScholarPubMed
Johnston, C. A., Beazely, M. A., Bilodeau, M. L., Andrisani, O. M., and Watts, V. J. (2004) Differentiation-induced alterations in cyclic AMP signaling in the Cath.a Differentiated (CAD) neuronal cell line, J. Neurochem. 88, 1497–1508.CrossRefGoogle ScholarPubMed
Visel, A., varez-Bolado, G., Thaller, C., and Eichele, G. (2006) Comprehensive analysis of the expression patterns of the adenylate cyclase gene family in the developing and adult mouse brain, J. Comp Neurol. 496, 684–697.CrossRefGoogle ScholarPubMed
Vortherms, T. A., Nguyen, C. H., Bastepe, M., Juppner, H., and Watts, V. J. (2006) D(2) dopamine receptor-induced sensitization of adenylyl cyclase type 1 is Galpha(s) independent, Neuropharmacology 50, 576–584.CrossRefGoogle Scholar
Chern, Y. (2000) Regulation of adenylyl cyclases in the central nervous system, Cellular Signalling 12, 195–204.CrossRefGoogle ScholarPubMed
Defer, N., Best- Belpomme, M., and Hanoune, J. (2000) Tissue specificity and physiological relevance of various isoforms of adenylyl cyclase, Am. J. Physiol. Renal Physiol. 279, F400-F416.CrossRefGoogle ScholarPubMed
Antoni, F. A., Wiegand, U. K., Black, J., and Simpson, J. (2006) Cellular localisation of adenylyl cyclase: a post-genome perspective, Neurochem. Res. 31, 287–295.CrossRefGoogle ScholarPubMed
Ferguson, G. D. and Storm, D. R. (2004) Why calcium-stimulated adenylyl cyclases?, Physiology (Bethesda.) 19, 271–276.Google ScholarPubMed
McIntire, W. E. (2009) Structural determinants involved in the formation and activation of G protein betagamma dimers, Neurosignals. 17, 82–99.CrossRefGoogle ScholarPubMed
Jiang, L. I., Collins, J., Davis, R., Fraser, I. D., and Sternweis, P. C. (2008) Regulation of cAMP responses by the G12/13 pathway converges on adenylyl cyclase VII, J. Biol. Chem. 283, 23429–23439.CrossRefGoogle ScholarPubMed
Putney, J. W., Jr. (1986) A model for receptor-regulated calcium entry, Cell Calcium 7, 1–12.CrossRefGoogle ScholarPubMed
Martin, A. C., Willoughby, D., Ciruela, A., Ayling, L. J., Pagano, M., Wachten, S., Tengholm, A., and Cooper, D. M. (2009) Capacitative Ca2+ entry via Orai1 and stromal interacting molecule 1 (STIM1) regulates adenylyl cyclase type 8, Mol. Pharmacol. 75, 830–842.CrossRefGoogle ScholarPubMed
Nielsen, M. D., Chan, G. C. K., Poser, S. W., and Storm, D. R. (1996) Differential regulation of type I and type VIII Ca2+-stimulated adenylyl cyclases by Gi-coupled receptors in vivo, J. Biol. Chem. 271, 33308–33316.CrossRefGoogle ScholarPubMed
Cumbay, M. G. and Watts, V. J. (2001) Heterologous sensitization of recombinant adenylate cyclases by activation of D2 dopamine receptors, J. Pharmacol. Exp. Ther. 297, 1201–1209.Google Scholar
Taussig, R., Iñiguez-Lluhi, J. A., and Gilman, A. (1993) Inhibition of adenylyl cyclase by Gi alpha, Science 261, 218–221.CrossRefGoogle ScholarPubMed
Masada, N., Ciruela, A., Macdougall, D. A., and Cooper, D. M. (2009) Distinct mechanisms of regulation by Ca2+/calmodulin of type 1 and 8 adenylyl cyclases support their different physiological roles, J. Biol. Chem. 284, 4451–4463.CrossRefGoogle ScholarPubMed
Choi, E. J., Wong, W. T., Hinds, T. R., and Storm, D. R. (1992) Calcium and muscarinic agonist stimulation of type I adenylylcyclase in whole cells, J. Biol. Chem. 267, 12440–12442.Google ScholarPubMed
Wayman, G. A., Impey, S., Wu, A., Kindsvogel, W., Prichard, L., and Storm, D. R. (1994) Synergistic activation of the type I adenylyl cyclase by Ca2+ and Gs-coupled receptors in vivo, J. Biol. Chem. 269, 25400–25405.Google ScholarPubMed
Ostrom, R. S., Naugle, J. E., Hase, M., Gregorian, C., Swaney, J. S., Insel, P. A., Brunton, L. L., and Meszaros, J. G. (2003) Angiotensin II enhances adenylyl cyclase signaling via Ca2+/calmodulin. Gq-Gs cross-talk regulates collagen production in cardiac fibroblasts, J. Biol. Chem. 278, 24461–24468.CrossRefGoogle ScholarPubMed
Meszaros, J. G., Gonzalez, A. M., Endo- Mochizuki, Y., Villegas, S., Villarreal, F., and Brunton, L. L. (2000) Identification of G protein-coupled signaling pathways in cardiac fibroblasts: cross talk between G(q) and G(s), Am. J. Physiol Cell Physiol 278, 154–162.CrossRefGoogle Scholar
Jacobowitz, O., Chen, J., Premont, R. T., and Iyengar, R. (1993) Stimulation of specific types of GS-stimulated adenylyl cyclases by phorbol ester treatment, J. Biol. Chem. 268, 3829–3832.Google ScholarPubMed
Tang, W. J. and Gilman, A. G. (1991) Type-specific regulation of adenylyl cyclase by G protein α subunits, Science 254, 1500–1502.CrossRefGoogle Scholar
Federman, A. D., Conklin, B. R., Schrader, K. A., Reed, R. R., and Bourne, H. R. (1992) Hormonal stimulation of adenylyl cyclase through Gi-protein α subunits, Nature 356, 159–161.CrossRefGoogle Scholar
Taussig, R., Tang, W. J., Hepler, J. R., and Gilman, A. G. (1994) Distinct patterns of bidirectional regulation of mammalian adenylyl cyclases, J. Biol. Chem. 269, 6093–6100.Google ScholarPubMed
Nelson, E. J., Hellevuo, K., Yoshimura, M., and Tabakoff, B. (2003) Ethanol-induced phosphorylation and potentiation of the activity of type 7 adenylyl cyclase. Involvement of protein kinase C delta, J. Biol. Chem. 278, 4552–4560.CrossRefGoogle ScholarPubMed
Tsu, R. C. and Wong, Y. H. (1996) Gi-mediated stimulation of type II adenylyl cyclase is augmented by Gq-coupled receptor activation and phorbol ester treatment, J. Neurosci. 16, 1317–1323.CrossRefGoogle ScholarPubMed
Watts, V. J. and Neve, K. A. (1997) Activation of type II adenylate cyclase by D2 and D4 but not D3 dopamine receptors, Mol. Pharmacol. 52, 181–186.CrossRefGoogle Scholar
Mackay, H. J. and Twelves, C. J. (2007) Targeting the protein kinase C family: are we there yet?, Nat. Rev. Cancer 7, 554–562.CrossRefGoogle ScholarPubMed
Zimmermann, G. and Taussig, R. (1996) Protein kinase C alters the responsiveness of adenylyl cyclases to G protein α and βγ subunits, J. Biol. Chem. 271, 27161–27166.CrossRefGoogle Scholar
Nguyen, C. H. and Watts, V. J. (2006) Dexamethasone-induced Ras protein 1 negatively regulates protein kinase C delta: implications for adenylyl cyclase 2 signaling, Mol. Pharmacol. 69, 1763–1771.CrossRefGoogle ScholarPubMed
Watson, P. A., Krupinski, J., Kempinski, A. M., and Frankenfield, C. D. (1994) Molecular cloning and characterization of the type VII isoform of mammalian adenylyl cyclase expressed widely in mouse tissues and in S49 mouse lymphoma cells, J. Biol. Chem. 269, 28893–28898.Google ScholarPubMed
Hellevuo, K., Yoshimura, M., Mons, N., Hoffman, P. L., Cooper, D. M., and Tabakoff, B. (1995) The characterization of a novel human adenylyl cyclase which is present in brain and other tissues, J. Biol. Chem. 270, 11581–11589.CrossRefGoogle ScholarPubMed
Fagan, K. A., Smith, K. E., and Cooper, D. M. F. (2000) Regulation of the Ca2+-inhibitable adenylyl cyclase type VI by capacitative Ca2+ entry requires localization in cholesterol-rich domains, J. Biol. Chem. 275, 26530–26537.CrossRefGoogle ScholarPubMed
Soboloff, J., Spassova, M. A., Dziadek, M. A., and Gill, D. L. (2006) Calcium signals mediated by STIM and Orai proteins – a new paradigm in inter-organelle communication, Biochim. Biophys. Acta 1763, 1161–1168.CrossRefGoogle ScholarPubMed
Korzeniowski, M. K., Popovic, M. A., Szentpetery, Z., Varnai, P., Stojilkovic, S. S., and Balla, T. (2009) Dependence of stim1/orai1 mediated calcium entry on plasma membrane phosphoinositides, J. Biol. Chem. 284, 21027–21035.CrossRefGoogle ScholarPubMed
Bayewitch, M. L., Avidor-Reiss, T., Levy, R., Pfeuffer, T., Nevo, I., Simonds, W. F., and Vogel, Z. (1998) Inhibition of adenylyl cyclase isoforms V and VI by various Gβγ subunits, FASEB J. 12, 1019–1025.CrossRefGoogle ScholarPubMed
Gao, X., Sadana, R., Dessauer, C. W., and Patel, T. B. (2007) Conditional stimulation of type V and VI adenylyl cyclases by G protein betagamma subunits, J. Biol. Chem. 282, 294–302.CrossRefGoogle ScholarPubMed
Kao, Y. Y., Lai, H. L., Hwang, M. J., and Chern, Y. (2004) An important functional role of the N terminus domain of type VI adenylyl cyclase in Galphai-mediated inhibition, J. Biol. Chem. 279, 34440–34448.CrossRefGoogle Scholar
Beazely, M. A., Alan, J. K., and Watts, V. J. (2005) Protein kinase C and epidermal growth factor stimulation of Raf1 potentiates adenylyl cyclase type 6 activation in intact cells, Mol. Pharmacol. 67, 250–259.CrossRefGoogle ScholarPubMed
Chen, Y., Harry, A., Li, J., Smit, M. J., Bai, X., Magnusson, R., Pieroni, J. P., Weng, G., and Iyengar, R. (1997) Adenylyl cyclase 6 is selectively regulated by protein kinase A phosphorylation in a region involved in Galphas stimulation, Proc. Natl. Acad. Sci. U. S. A 94, 14100–14104.CrossRefGoogle Scholar
Iwami, G., Kawabe, J. I., Ebina, T., Cannon, P. J., Homey, C. J., and Ishikawa, Y. (1995) Regulation of adenylyl cyclase by protein kinase A, J. Biol. Chem. 270, 12481–12484.CrossRefGoogle ScholarPubMed
Kawabe, J., Iwami, G., Ebina, T., Ohno, S., Katada, T., Ueda, Y., Homcy, C. J., and Ishikawa, Y. (1994) Differential activation of adenylyl cyclase by protein kinase C isoenzymes, J. Biol. Chem. 269, 16554–16558.Google ScholarPubMed
Beazely, M. A. and Watts, V. J. (2005) Galpha(q)-coupled receptor signaling enhances adenylate cyclase type 6 activation, Biochem. Pharmacol. 70, 113–120.CrossRefGoogle ScholarPubMed
Yan, S. Z., Huang, Z. H., Andrews, R. K., and Tang, W. J. (1998) Conversion of forskolin-insensitive to forskolin-sensitive (mouse-type IX) adenylyl cyclase, Molecular Pharmacology 53, 182–187.CrossRefGoogle ScholarPubMed
Paterson, J. M., Smith, S. M., Simpson, J., Grace, O. C., Sosunov, A., Bell, J. E., and Antoni, F. A. (2000) Characterization of human adenylyl cyclase IX reveals inhibition by Ca2+/calcineurin and differential mRNA polyadenylation, J. Neurochem. 75, 1358–1367.CrossRefGoogle Scholar
Hacker, B. M., Tomlinson, J. E., Wayman, G. A., Sultana, R., Chan, G., Villacres, E., Disteche, C., and Storm, D. R. (1998) Cloning, chromosomal mapping, and regulatory properties of the human type 9 adenylyl cyclase (ADCY9), Genomics 50, 97–104.CrossRefGoogle Scholar
Sharma, S. K., Klee, W. A., and Nirenberg, M. (1975) Dual regulation of adenylate cyclase accounts for narcotic dependence and tolerance, Proc. Natl. Acad. Sci. U. S. A 72, 3092–3096.CrossRefGoogle ScholarPubMed
Watts, V. J. and Neve, K. A. (2005) Sensitization of adenylate cyclase by Galpha(i/o)-coupled receptors, Pharmacol Ther 106, 405–421.CrossRefGoogle ScholarPubMed
Clark, M. J. and Traynor, J. R. (2006) Mediation of adenylyl cyclase sensitization by PTX-insensitive GalphaoA, Galphai1, Galphai2 or Galphai3, J. Neurochem. 99, 1494–1504.CrossRefGoogle ScholarPubMed
Clark, M. J., Harrison, C., Zhong, H., Neubig, R. R., and Traynor, J. R. (2003) Endogenous RGS protein action modulates mu-opioid signaling through Galphao. Effects on adenylyl cyclase, extracellular signal-regulated kinases, and intracellular calcium pathways., J. Biol. Chem. 278, 9418–9425.CrossRefGoogle ScholarPubMed
Watts, V. J., Wiens, B. L., Cumbay, M. G., Vu, M. N., Neve, R. L., and Neve, K. A. (1998) Selective activation of Gαo by D2L dopamine receptors in NS20Y neuroblastoma cells, J. Neurosci. 18, 8692–8699.CrossRefGoogle ScholarPubMed
Zhang, L., Tetrault, J., Wang, W., Loh, H. H., and Law, P. Y. (2006) Short- and long-term regulation of adenylyl cyclase activity by delta-opioid receptor are mediated by Galphai2 in neuroblastoma N2A cells, Mol. Pharmacol. 69, 1810–1819.CrossRefGoogle Scholar
Gintzler, A. R. and Chakrabarti, S. (2006) Post-opioid receptor adaptations to chronic morphine; altered functionality and associations of signaling molecules, Life Sci 79, 717–722.CrossRefGoogle ScholarPubMed
Shy, M., Chakrabarti, S., and Gintzler, A. R. (2008) Plasticity of adenylyl cyclase-related signaling sequelae after long-term morphine treatment, Mol. Pharmacol. 73, 868–879.CrossRefGoogle ScholarPubMed
Beazely, M. A. and Watts, V. J. (2005) Activation of a novel PKC isoform synergistically enhances D2L dopamine receptor-mediated sensitization of adenylate cyclase type 6, Cell Signal 17, 647–653.CrossRefGoogle ScholarPubMed
Tumati, S., Yamamura, H. I., Vanderah, T. W., Roeske, W. R., and Varga, E. V. (2009) Sustained morphine treatment augments capsaicin-evoked CGRP release from primary sensory neurons in a PKA and Raf-1- dependent manner, J. Pharmacol. Exp. Ther. In press.CrossRefGoogle Scholar
Yue, X., Varga, E. V., Stropova, D., Vanderah, T. W., Yamamura, H. I., and Roeske, W. R. (2006) Chronic morphine-mediated adenylyl cyclase superactivation is attenuated by the Raf-1 inhibitor, GW5074, Eur. J. Pharmacol. 540, 57–59.CrossRefGoogle ScholarPubMed
Nguyen, C. H. and Watts, V. J. (2005) Dexras1 blocks receptor-mediated heterologous sensitization of adenylyl cyclase 1, Biochem Biophys Res Commun 332, 913–920.CrossRefGoogle ScholarPubMed
Steiner, D., Avidor- Reiss, T., Schallmach, E., Saya, D., and Vogel, Z. (2005) Inhibition and superactivation of the calcium-stimulated isoforms of adenylyl cyclase: role of Gbetagamma dimers, J Mol Neurosci 27, 195–203.CrossRefGoogle ScholarPubMed
Fan, P., Jiang, Z., Diamond, I., and Yao, L. (2009) Up-regulation of AGS3 during morphine withdrawal promotes cAMP superactivation via adenylyl cyclase 5 and 7 in rat nucleus accumbens/striatal neurons, Mol. Pharmacol. In press.CrossRefGoogle ScholarPubMed
Rhee, M. H., Nevo, I., Avidor- Reiss, T., Levy, R., and Vogel, Z. (2000) Differential superactivation of adenylyl cyclase isozymes after chronic activation of the CB1 cannabinoid receptor, Mol. Pharmacol. 57, 746–752.CrossRefGoogle Scholar
Watts, V. J. and Neve, K. A. (1996) Sensitization of endogenous and recombinant adenylate cyclase by activation of D2 dopamine receptors, Mol. Pharmacol. 50, 966–976.Google ScholarPubMed
Schallmach, E., Steiner, D., and Vogel, Z. (2006) Adenylyl cyclase type II activity is regulated by two different mechanisms: implications for acute and chronic opioid exposure, Neuropharmacology 50, 998–1005.CrossRefGoogle ScholarPubMed
Vortherms, T. A., Nguyen, C. H., Berlot, C. H., and Watts, V. J. (2004) Using molecular tools to dissect the role of Gs in sensitization of AC1, Mol. Pharmacol. 66, 1617–1624.CrossRefGoogle ScholarPubMed
Chakrabarti, S. and Gintzler, A. R. (2007) Phosphorylation of Galphas influences its association with the micro-opioid receptor and is modulated by long-term morphine exposure, Mol. Pharmacol. 72, 753–760.CrossRefGoogle ScholarPubMed
Bol, G. F., Hulster, A., and Pfeuffer, T. (1997) Adenylyl cyclase type II is stimulated by PKC via C-terminal phosphorylation, Biochim. Biophys. Acta 1358, 307–313.CrossRefGoogle ScholarPubMed
Cali, J. J., Parekh, R. S., and Krupinski, J. (1996) Splice variants of type VIII adenylyl cyclase. Differences in glycosylation and regulation by Ca2+/calmodulin, J. Biol. Chem. 271, 1089–1095.CrossRefGoogle ScholarPubMed
Wei, J., Wayman, G., and Storm, D. R. (1996) Phosphorylation and inhibition of type III adenylyl cyclase by calmodulin-dependent protein kinase II in vivo, J. Biol. Chem. 271, 24231–24235.CrossRefGoogle ScholarPubMed
Wu, G. C., Lai, H. L., Lin, Y. W., Chu, Y. T., and Chern, Y. (2001) N-Glycosylation and residues Asn805 and Asn890 are involved in the functional properties of type VI adenylyl cyclase, J. Biol. Chem. 276, 35450–35457.CrossRefGoogle ScholarPubMed
McVey, M., Hill, J., Howlett, A., and Klein, C. (1999) Adenylyl cyclase, a coincidence detector for nitric oxide, J. Biol. Chem. 274, 18887–18892.CrossRefGoogle ScholarPubMed
Hill, J., Howlett, A., and Klein, C. (2000) Nitric oxide selectively inhibits adenylyl cyclase isoforms 5 and 6, Cell Signal. 12, 233–237.CrossRefGoogle Scholar
Arejian, M., Li, Y., and Anand- Srivastava, M. B. (2009) Nitric oxide attenuates the expression of natriuretic peptide receptor C and associated adenylyl cyclase signaling in aortic vascular smooth muscle cells: role of MAPK, Am. J. Physiol Heart Circ. Physiol 296, H1859-H1867.CrossRefGoogle Scholar
Tesmer, J. J., Sunahara, R. K., Gilman, A. G., and Sprang, S. R. (1997) Crystal structure of the catalytic domains of adenylyl cyclase in a complex with Gsα GTPS, Science 278, 1907–1916.CrossRefGoogle Scholar
Zhang, G. Y., Liu, Y., Ruoho, A. E., and Hurley, J. H. (1997) Structure of the adenylyl cyclase catalytic core, Nature 386, 247–253.CrossRefGoogle ScholarPubMed
Tang, W. J., Stanzel, M., and Gilman, A. G. (1995) Truncation and alanine-scanning mutants of type I adenylyl cyclase, Biochemistry 34, 14563–14572.CrossRefGoogle ScholarPubMed
Gu, C., Cali, J. J., and Cooper, D. M. F. (2002) Dimerization of mammalian adenylate cyclases, Eur. J. Biochem. 269, 413–421.CrossRefGoogle ScholarPubMed
Baragli, A., Grieco, M. L., Trieu, P., Villeneuve, L. R., and Hebert, T. E. (2008) Heterodimers of adenylyl cyclases 2 and 5 show enhanced functional responses in the presence of Galpha s, Cell Signal 20, 480–492.CrossRefGoogle ScholarPubMed
Pontier, S. M., Percherancier, Y., Galandrin, S., Breit, A., Gales, C., and Bouvier, M. (2008) Cholesterol-dependent separation of the beta2-adrenergic receptor from its partners determines signaling efficacy: insight into nanoscale organization of signal transduction, J. Biol. Chem. 283, 24659–24672.CrossRefGoogle ScholarPubMed
Rybin, V. O., Xu, X., Lisanti, M. P., and Steinberg, S. F. (2000) Differential targeting of á-adrenergic receptor subtypes and adenylyl cyclase to cardiomyocyte caveolae, J. Biol. Chem. 275, 41447–41457.CrossRefGoogle Scholar
Patel, H. H., Murray, F., and Insel, P. A. (2008) G-protein-coupled receptor-signaling components in membrane raft and caveolae microdomains, Handb. Exp. Pharmacol. 167 –184.Google Scholar
Levitt, E. S., Clark, M. J., Jenkins, P. M., Martens, J. R., and Traynor, J. R. (2009) Differential effect of membrane cholesterol removal on mu and delta opioid receptors: A parallel comparison of acute and chronic signaling to adenylyl cyclase, J. Biol. Chem. 284, 22108–22122.CrossRefGoogle ScholarPubMed
Piggott, L. A., Bauman, A. L., Scott, J. D., and Dessauer, C. W. (2008) The A-kinase anchoring protein Yotiao binds and regulates adenylyl cyclase in brain, Proc Natl Acad Sci U S A 105, 13835–13840.CrossRefGoogle ScholarPubMed
Vidi, P. A. and Watts, V. J. (2009) Fluorescent and bioluminescent protein-fragment complementation assays in the study of G protein-coupled receptor oligomerization and signaling, Mol. Pharmacol. 75, 733–739.CrossRefGoogle Scholar
Bouvier, M., Heveker, N., Jockers, R., Marullo, S., and Milligan, G. (2007) BRET analysis of GPCR oligomerization: newer does not mean better, Nat Methods 4, 3–4.CrossRefGoogle Scholar
Dupre, D. J., Baragli, A., Rebois, R. V., Ethier, N., and Hebert, T. E. (2007) Signalling complexes associated with adenylyl cyclase II are assembled during their biosynthesis, Cell Signal 19, 481–489.CrossRefGoogle ScholarPubMed
Jarrahian, A., Watts, V. J., and Barker, E. L. (2004) D2 dopamine receptors modulate Galpha-subunit coupling of the CB1 cannabinoid receptor, J. Pharmacol. Exp. Ther. 308, 880–886.CrossRefGoogle ScholarPubMed
Kearn, C. S., Blake- Palmer, K., Daniel, E., Mackie, K., and Glass, M. (2005) Concurrent stimulation of cannabinoid CB1 and dopamine D2 receptors enhances heterodimer formation: a mechanism for receptor cross-talk?, Mol. Pharmacol. 67, 1697–1704.CrossRefGoogle ScholarPubMed
Lee, S. P., So, C. H., Rashid, A. J., Varghese, G., Cheng, R., Lanca, A. J., O'Dowd, B. F., and George, S. R. (2004) Dopamine D1 and D2 receptor Co-activation generates a novel phospholipase C-mediated calcium signal, J. Biol. Chem. 279, 35671–35678.CrossRefGoogle ScholarPubMed
So, C. H., Verma, V., Alijaniaram, M., Cheng, R., Rashid, A. J., O'Dowd, B. F., and George, S. R. (2009) Calcium signaling by dopamine D5 receptor and D5-D2 receptor hetero-oligomers occurs by a mechanism distinct from that for dopamine D1-D2 receptor hetero-oligomers, Mol. Pharmacol. 75, 843–854.CrossRefGoogle ScholarPubMed
Fiorentini, C., Busi, C., Gorruso, E., Gotti, C., Spano, P., and Missale, C. (2008) Reciprocal regulation of dopamine D1 and D3 receptor function and trafficking by heterodimerization, Mol. Pharmacol. 74, 59–69.CrossRefGoogle ScholarPubMed
Marcellino, D., Ferre, S., Casado, V., Cortes, A., Le, F. B., Mazzola, C., Drago, F., Saur, O., Stark, H., Soriano, A., Barnes, C., Goldberg, S. R., Lluis, C., Fuxe, K., and Franco, R. (2008) Identification of dopamine D1-D3 receptor heteromers. Indications for a role of synergistic D1-D3 receptor interactions in the striatum, J. Biol. Chem. 283, 26016–26025.CrossRefGoogle ScholarPubMed
McIntire, W. E., MacCleery, G., and Garrison, J. C. (2001) The G protein β subunit is a determinant in the coupling of Gs to the β1-adrenergic and A2a adenosine receptors, J. Biol. Chem. 276, 15801–15809.CrossRefGoogle Scholar
Hwang, J. I., Choi, S., Fraser, I. D., Chang, M. S., and Simon, M. I. (2005) Silencing the expression of multiple Gbeta-subunits eliminates signaling mediated by all four families of G proteins, Proc. Natl. Acad. Sci. U. S. A 102, 9493–9498.CrossRefGoogle ScholarPubMed
Wang, Q., Jolly, J. P., Surmeier, J. D., Mullah, B. M., Lidow, M. S., Bergson, C. M., and Robishaw, J. D. (2001) Differential dependence of the D1 and D5 dopamine receptors on the G protein gamma 7 subunit for activation of adenylylcyclase, J. Biol. Chem. 276, 39386–39393.CrossRefGoogle Scholar
Schwindinger, W. F., Betz, K. S., Giger, K. E., Sabol, A., Bronson, S. K., and Robishaw, J. D. (2003) Loss of G protein gamma 7 alters behavior and reduces striatal alphaolf level and cAMP production, J. Biol. Chem. 278, 6575–6579.CrossRefGoogle Scholar
Pierre, S., Eschenhagen, T., Geisslinger, G., and Scholich, K. (2009) Capturing adenylyl cyclases as potential drug targets, Nat. Rev. Drug Discov. 8, 321–335.CrossRefGoogle ScholarPubMed
Wu, Z. L., Thomas, S. A., Villacres, E. C., Xia, Z., Simmons, M. L., Chavkin, C., Palmiter, R. D., and Storm, D. R. (1995) Altered behavior and long-term potentiation in type I adenylyl cyclase mutant mice, Proc. Natl. Acad. Sci. U. S. A 92, 220–224.CrossRefGoogle ScholarPubMed
Schaefer, M. L., Wong, S. T., Wozniak, D. F., Muglia, L. M., Liauw, J. A., Zhuo, M., Nardi, A., Hartman, R. E., Vogt, S. K., Luedke, C. E., Storm, D. R., and Muglia, L. J. (2000) Altered stress-induced anxiety in adenylyl cyclase type VIII-deficient mice, J Neurosci 20, 4809–4820.CrossRefGoogle ScholarPubMed
Wong, S. T., Athos, J., Figueroa, X. A., Pineda, V. V., Scheafer, M. L., Chavkin, C. C., Muglia, L. J., and Storm, D. R. (1999) Calcium-stimulated adenylyl cyclase activity is critical for hippocampus-dependent long-term memory and late phase LTP, Neuron 23, 787–798.CrossRefGoogle ScholarPubMed
Li, S., Lee, M. L., Bruchas, M. R., Chan, G. C., Storm, D. R., and Chavkin, C. (2006) Calmodulin-stimulated adenylyl cyclase gene deletion affects morphine responses, Mol. Pharmacol. 70, 1742–1749.CrossRefGoogle ScholarPubMed
Yoshimura, M., Wu, P. H., Hoffman, P. L., and Tabakoff, B. (2000) Overexpression of type 7 adenylyl cyclase in the mouse brain enhances acute and chronic actions of morphine, Mol. Pharmacol. 58, 1011–1016.CrossRefGoogle ScholarPubMed
Yan, L., Vatner, D. E., O' Connor, J. P., Ivessa, A., Ge, H., Chen, W., Hirotani, S., Ishikawa, Y., Sadoshima, J., and Vatner, S. F. (2007) Type 5 adenylyl cyclase disruption increases longevity and protects against stress, Cell 130, 247–258.CrossRefGoogle ScholarPubMed
Zahniser, N. R., Simosky, J. K., Mayfield, R. D., Negri, C. A., Hanania, T., Larson, G. A., Kelly, M. A., Grandy, D. K., Rubinstein, M., Low, M. J., and Fredholm, B. B. (2000) Functional uncoupling of adenosine A2A receptors and reduced response to caffeine in mice lacking dopamine D2 receptors, J. Neurosci. 5949–5957.CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×