Skip to main content Accessibility help
×
Hostname: page-component-5c6d5d7d68-txr5j Total loading time: 0 Render date: 2024-08-09T14:37:25.552Z Has data issue: false hasContentIssue false

References

Published online by Cambridge University Press:  06 January 2022

Alessandro Tomasiello
Affiliation:
Università degli Studi di Milano-Bicocca
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2022

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Green, M. B., Schwarz, J. H., and Witten, E., Superstring Theory, vol.1,2, Cambridge University Press, 1988.Google Scholar
Polchinski, J., String Theory. Cambridge Monographs on Mathematical Physics. Cambridge University Press, 1998.Google Scholar
Zwiebach, B., A First Course in String Theory. Cambridge University Press, 2004.Google Scholar
Becker, K., Becker, M., and Schwarz, J. H., String Theory and M-Theory: A Modern Introduction. Cambridge University Press, 2006.CrossRefGoogle Scholar
Kiritsis, E., String Theory in a Nutshell, vol. 21. Princeton University Press, 2019.Google Scholar
Ibáñez, L. and Uranga, A., String Theory and Particle Physics: An Introduction to String Phenomenology. Cambridge University Press, 2012.Google Scholar
Blumenhagen, R., Lüst, D., and Theisen, S., Basic Concepts of String Theory. Springer Science & Business Media, 2012.Google Scholar
West, P., Introduction to Strings and Branes. Cambridge University Press, 2012.CrossRefGoogle Scholar
Schomerus, V., A Primer on String Theory. Cambridge University Press, 2017.Google Scholar
Graña, M. and Triendl, H., String Theory Compactifications. Springer, 2017.Google Scholar
Polyakov, M., “Gauge fields and strings,” in Contemporary Concepts in Physics, vol. 3. Harwood Academic Publishers, 1987.Google Scholar
Kaluza, T., “Zum unitätsproblem der physik,” International Journal of Modern Physics 1921 (1921), 1803.08616.Google Scholar
Klein, O., “Quantentheorie und fünfdimensionale relativitätstheorie,” Zeitschrift für Physik 37 (1926), no. 12, 895906.Google Scholar
Plebanski, J. F., “On the separation of Einsteinian substructures,” Journal of Mathematical Physics 18 (1977) 25112520.Google Scholar
Capovilla, R., Dell, J., Jacobson, T., and Mason, L., “Self-dual 2-forms and gravity,” Classical and Quantum Gravity 8 (1991) 4157.Google Scholar
Gibbons, G. W., “Aspects of supergravity theories,” Lectures at San Feliu de Guixols, Spain, June 1984.Google Scholar
de Wit, B., Smit, D. J., and Hari Dass, N. D., “Residual supersymmetry of compactified d = 10 supergravity,” Nuclear Physics B283 (1987) 165.Google Scholar
Maldacena, J. M. and Núñez, C., “Supergravity description of field theories on curved manifolds and a no-go theorem,” International Journal of Modern Physics A16 (2001) 822855, hep-th/0007018.Google Scholar
Hawking, S. and Ellis, G., The Large Scale Structure of Space-Time, Cambridge University Press, 1975.Google Scholar
Wald, R. M., General Relativity. University of Chicago Press, 2010.Google Scholar
Dine, M. and Seiberg, N., “Is the superstring weakly coupled?,” Physics Letters 162B (1985) 299302.Google Scholar
Kachru, S., Kallosh, R., Linde, A., and Trivedi, S. P., “De Sitter vacua in string theory,” Physical Review D68 (2003) 046005, hep-th/0301240.Google Scholar
Susskind, L., “The anthropic landscape of string theory,” (2003), hep-th/ 0302219.Google Scholar
Vafa, C., “The string landscape and the swampland,” (2005), hep-th/ 0509212.Google Scholar
Goroff, M. H. and Sagnotti, A., “The ultraviolet behavior of Einstein gravity,” Nuclear Physics B266 (1986) 709736.Google Scholar
Sen, A. and Zwiebach, B., “A proof of local background independence of classical closed string field theory,” Nuclear Physics B414 (1994) 649714, hep-th/9307088.Google Scholar
Ketov, S. V., Quantum Nonlinear Sigma Models: From Quantum Field Theory to Supersymmetry, Conformal Field Theory, Black Holes and Strings. Springer, 2000.Google Scholar
Lindström, U.,Roček, M., von Unge, R., and Zabzine, M., “Generalized Kaehler manifolds and off-shell supersymmetry,” Communications in Mathematical Physics 269 (2007) 833849, hep-th/0512164.Google Scholar
Berkovits, N., “Super-Poincaré covariant quantization of the superstring,” Journal of High Energy Physics 04 (2000) 018, hep-th/0001035.CrossRefGoogle Scholar
Berkovits, N., “ICTP lectures on covariant quantization of the superstring,” ICTP Lecture Notes Series 13 (2003) 57107, hep-th/0209059.Google Scholar
Gross, D. J., Harvey, J. A., Martinec, E. J., and Rohm, R., “The heterotic string,” Physical Review Letters 54 (1985) 502505.Google Scholar
Dall’Agata, G., Inverso, G., and Trigiante, M., “Evidence for a family of SO(8) gauged supergravity theories,” Physical Review Letters 109 (2012) 201301, 1209.0760.Google Scholar
Schwarz, J. H., “Superstring theory,” Physics Reports 89 (1982) 223322.CrossRefGoogle Scholar
Grisaru, M. T., van de Ven, A. E. M., and Zanon, D., “Four loop beta function for the N = 1 and N = 2 supersymmetric nonlinear sigma model in two dimensions,” Physics Letters B173 (1986) 423428.Google Scholar
Duff, M. J., Liu, J. T., and Minasian, R., “Eleven-dimensional origin of string-string duality: a one loop test,” Nuclear Physics B452 (1995) 261282, hep-th/9506126.Google Scholar
Freed, D., Harvey, J. A., Minasian, R., and Moore, G. W., “Gravitational anomaly cancellation for M theory five-branes,” Advances in Theoretical and Mathematical Physics 2 (1998) 601618, hep-th/9803205.Google Scholar
Liu, J. T. and Minasian, R., “Higher-derivative couplings in string theory: dualities and the B-field,” Nuclear Physics B874 (2013) 413470, 1304.3137.Google Scholar
Peeters, K., Vanhove, P., and Westerberg, A., “Supersymmetric higher derivative actions in ten-dimensions and eleven-dimensions, the associated superalgebras and their formulation in superspace,” Classical and Quantum Gravity 18 (2001) 843890, hep-th/0010167.CrossRefGoogle Scholar
Policastro, G. and Tsimpis, D., “R4, purified,” Classical and Quantum Gravity 23 (2006) 47534780, hep-th/0603165.Google Scholar
Romans, L. J., “Massive N=2a supergravity in ten dimensions,” Physics Letters B169 (1986) 374.Google Scholar
Howe, P. S., Lambert, N., and West, P. C., “A new massive type IIA supergravity from compactification,” Physics Letters B 416 (1998) 303308, hep-th/9707139.CrossRefGoogle Scholar
Tsimpis, D., “Massive IIA supergravities,” Journal of High Energy Physics 10 (2005) 057, hep-th/0508214.Google Scholar
Stückelberg, E., “Die wechselwirkungskräfte in der elektrodynamik und in der feldtheorie der kräfte,” Helvetica physica acta 11 (1938) 225.Google Scholar
Nahm, W., “Supersymmetries and their representations,” Nuclear Physics B135 (1978) 149.Google Scholar
Green, M. B. and Schwarz, J. H., “Extended supergravity in ten-dimensions,” Physics Letters 122B (1983) 143147.Google Scholar
Schwarz, J. H. and West, P. C., “Symmetries and transformations of chiral N = 2 D = 10 supergravity,” Physics Letters 126B (1983) 301304.Google Scholar
Green, M. B. and Schwarz, J. H., “Anomaly cancellation in supersymmetric D=10 gauge theory and superstring theory,” Physics Letters 149B (1984) 117122.Google Scholar
Sen, A., “Covariant action for type IIB supergravity,” Journal of High Energy Physics 07 (2016) 017, 1511.08220.Google Scholar
Sen, A., “Self-dual forms: action, Hamiltonian and compactification,” Journal of Physics A53 (2020), no. 8, 084002, 1903.12196.Google Scholar
Green, M. B. and Gutperle, M., “Effects of D instantons,” Nuclear Physics B498 (1997) 195227, hep-th/9701093.Google Scholar
Dickey, L. A., Soliton Equations and Hamiltonian Systems. World Scientific, 2003.Google Scholar
Seiberg, N. and Witten, E., “Electric–magnetic duality, monopole condensation, and confinement in N = 2 supersymmetric Yang–Mills theory,” Nuclear Physics B426 (1994) 1952, hep-th/9407087.CrossRefGoogle Scholar
Coleman, S., Aspects of Symmetry: Selected Erice Lectures. Cambridge University Press, 1988.Google Scholar
Marino, M., Instantons and Large N: An Introduction to Non-Perturbative Methods in Quantum Field Theory. Cambridge University Press, 2015.Google Scholar
Kleinert, H., Path Integrals in Quantum Mechanics, Statistics, Polymer Physics, and Financial Markets. World Scientific, 2009.Google Scholar
Dorey, N., Hollowood, T. J., Khoze, V. V., and Mattis, M. P., “The calculus of many instantons,” Physics Reports 371 (2002) 231459, hep-th/0206063.Google Scholar
Nekrasov, N. A., “Seiberg–Witten prepotential from instanton counting,” Advances in Theoretical and Mathematical Physics 7 (2003), no. 5, 831864, hep-th/0206161.Google Scholar
Lichnerowicz, A., Problèmes globaux en mécanique relativiste, vol. 833. Hermann & cie, 1939.Google Scholar
Choquet-Bruhat, Y., Introduction to General Relativity, Black Holes, and Cosmology. Oxford University Press, 2014.Google Scholar
Polchinski, J., “Dirichlet–Branes and Ramond–Ramond charges,” Physical Review Letters 75 (1995) 47244727, hep-th/9510017.Google Scholar
Bergshoeff, E. and De Roo, M., “D-branes and T-duality,” Physics Letters B380 (1996) 265272, hep-th/9603123.CrossRefGoogle Scholar
Green, M. B., Hull, C. M., and Townsend, P. K., “D-brane Wess–Zumino actions, T-duality and the cosmological constant,” Physics Letters B382 (1996) 6572, hep-th/9604119.CrossRefGoogle Scholar
Sen, A., “NonBPS states and Branes in string theory,” in Supersymmetry in the Theories of Fields, Strings and Branes. Proceedings, Advanced School, Santiago de Compostela, Spain, July 26–31, 1999, pp. 187–234. 1999. hep-th/ 9904207. [,45(1999)].Google Scholar
Sen, A., “Tachyon condensation on the brane anti-brane system,” Journal of High Energy Physics 08 (1998) 012, hep-th/9805170.Google Scholar
Sen, A. and Zwiebach, B., “Tachyon condensation in string field theory,” Journal of High Energy Physics 03 (2000) 002, hep-th/9912249.CrossRefGoogle Scholar
Witten, E., “D-branes and K-theory,” Journal of High Energy Physics 12 (1998) 019, hep-th/9810188.CrossRefGoogle Scholar
Minasian, R. and Moore, G. W., “K-theory and Ramond–Ramond charge,” Journal of High Energy Physics 11 (1997) 002, hep-th/9710230.CrossRefGoogle Scholar
Aharony, O., Gubser, S. S., Maldacena, J. M., Ooguri, H., and Oz, Y., “Large N field theories, string theory and gravity,” Physics Reports 323 (2000) 183386, hep-th/9905111.Google Scholar
Ortín, T., Gravity and Strings. Cambridge University Press, 2004.Google Scholar
Gibbons, G. W., Horowitz, G. T., and Townsend, P. K., “Higher dimensional resolution of dilatonic black hole singularities,” Classical and Quantum Gravity 12 (1995) 297318, hep-th/9410073.Google Scholar
Cremmer, E., Julia, B., and Scherk, J., “Supergravity theory in 11 dimensions,” Physics Letters B76 (1978) 409412.CrossRefGoogle Scholar
Witten, E., “String theory dynamics in various dimensions,” Nuclear Physics B443 (1995) 85126, hep-th/9503124.Google Scholar
Bergshoeff, E., Sezgin, E., and Townsend, P., “Supermembranes and eleven-dimensional supergravity,” Physics Letters B189 (1987) 7578.Google Scholar
Bagger, J. and Lambert, N., “Modeling multiple M2’s,” Physical Review D75 (2007) 045020, hep-th/0611108.Google Scholar
Bagger, J. and Lambert, N., “Gauge symmetry and supersymmetry of multiple M2-Branes,” Physical Review D77 (2008) 065008, 0711.0955.Google Scholar
Gustavsson, A., “Algebraic structures on parallel M2-branes,” Nuclear Physics B 811 (2009) 6676 0709.1260.CrossRefGoogle Scholar
Aharony, O., Bergman, O., Jafferis, D. L., and Maldacena, J., “N = 6 superconformal Chern–Simons-matter theories, M2-branes and their gravity duals,” Journal of High Energy Physics 10 (2008) 091, 0806.1218.Google Scholar
Pasti, P., Sorokin, D. P., and Tonin, M., “Covariant action for a D = 11 five-brane with the chiral field,” Physics Letters B398 (1997) 4146, hep-th/ 9701037.Google Scholar
Harvey, J. A., Minasian, R., and Moore, G. W., “Nonabelian tensor multiplet anomalies,” Journal of High Energy Physics 09 (1998) 004, hep-th/ 9808060.Google Scholar
Henningson, M. and Skenderis, K., “The holographic Weyl anomaly,” Journal of High Energy Physics 07 (1998) 023, hep-th/9806087.CrossRefGoogle Scholar
Intriligator, K. A., “Anomaly matching and a Hopf–Wess–Zumino term in 6d, N = (2, 0) field theories,” Nuclear Physics B581 (2000) 257273, hep-th/ 0001205.CrossRefGoogle Scholar
Maxfield, T. and Sethi, S., “The conformal anomaly of M5-Branes,” Journal of High Energy Physics 06 (2012) 075, 1204.2002.CrossRefGoogle Scholar
Córdova, C., Dumitrescu, T. T., and Yin, X., “Higher derivative terms, toroidal compactification, and Weyl anomalies in six-dimensional (2, 0) theories,” Journal of High Energy Physics 10 (2019) 128, 1505.03850.CrossRefGoogle Scholar
Beem, C., Lemos, M., Rastelli, L., and van Rees, B. C., “The (2, 0) superconformal bootstrap,” Physical Review D93 (2016), no. 2, 025016, 1507.05637.Google Scholar
Lambert, N., Papageorgakis, C., and Schmidt-Sommerfeld, M., “Deconstructing (2,0) proposals,” Physical Review D88 (2013), no. 2, 026007, 1212.3337.Google Scholar
Saemann, C. and Schmidt, L., “Towards an M5-Brane model I: a 6d superconformal field theory,” Journal of Mathematical Physics 59 (2018), no. 4, 043502, 1712.06623.Google Scholar
Aharony, O., Jafferis, D., Tomasiello, A., and Zaffaroni, A., “Massive type IIA string theory cannot be strongly coupled,” Journal of High Energy Physics 1011 (2010) 047, 1007.2451.Google Scholar
Bergshoeff, E., Lozano, Y., and Ortín, T., “Massive branes,” Nuclear Physics B518 (1998) 363423, hep-th/9712115.Google Scholar
Sagnotti, A. and Tomaras, T. N., “Properties of eleven-dimensional supergravity,” 1982.Google Scholar
Bautier, K., Deser, S., Henneaux, M., and Seminara, D., “No cosmological D = 11 supergravity,” Physics Letters B406 (1997) 4953, hep-th/ 9704131.Google Scholar
Deser, S., “Uniqueness of D = 11 supergravity,” 1997, hep-th/9712064.Google Scholar
Tumanov, A. G. and West, P., “E11, Romans theory and higher level duality relations,” International Journal of Modern Physics A32 (2017), no. 05, 1750023, 1611.03369.Google Scholar
Hull, C. M., “Massive string theories from M-theory and F-theory,” Journal of High Energy Physics 11 (1998) 027, hep-th/9811021.Google Scholar
Chaemjumrus, N. and Hull, C. M., “Degenerations of K3, orientifolds and exotic Branes,Journal of High Energy Physics 10 (2019) 198, 1907.04040.Google Scholar
Guarino, A., Jafferis, D. L., and Varela, O., “String theory origin of dyonic N = 8 supergravity and its Chern–Simons duals,” Physical Review Letters 115 (2015), no. 9, 091601, 1504.08009.CrossRefGoogle ScholarPubMed
Jafferis, D. L. and Pufu, S. S., “Exact results for five-dimensional superconformal field theories with gravity duals,” Journal of High Energy Physics 05 (2014) 032, 1207.4359.Google Scholar
Cremonesi, S. and Tomasiello, A., “6d holographic anomaly match as a continuum limit,” Journal of High Energy Physics 05 (2016) 031, 1512.02225.Google Scholar
Buscher, T. H., “A symmetry of the string background field equations,” Physics Letters B194 (1987) 5962.CrossRefGoogle Scholar
Hori, K. and Vafa, C., “Mirror symmetry,2000, hep-th/0002222.Google Scholar
Hull, C. M., “Gravitational duality, branes and charges,” Nuclear Physics B509 (1998) 216251, hep-th/9705162.Google Scholar
Witten, E., “Bound states of strings and p-branes,” Nuclear Physics B460 (1996) 335350, hep-th/9510135.Google Scholar
Montonen, C. and Olive, D. I., “Magnetic Monopoles as Gauge Particles?Physics Letters B72 (1977) 117.Google Scholar
Schwarz, J. H., “An SL(2, Z) multiplet of type IIB superstrings,” Physics Letters B360 (1995) 1318, hep-th/9508143. [Erratum: Phys. Lett.B364,252(1995)].Google Scholar
Aspinwall, P. S., “Some relationships between dualities in string theory,” Nuclear Physics B – Proceedings Supplements 46 (1996) 3038, hep-th/ 9508154.Google Scholar
Sagnotti, A., “Open strings and their symmetry groups,” in NATO Advanced Summer Institute on Nonperturbative Quantum Field Theory (Cargese Summer Institute) Cargese, France, July 16–30, 1987, pp. 521–528. 1987. hep-th/0208020.Google Scholar
Horava, P., “Strings on world sheet orbifolds,” Nuclear Physics B327 (1989) 461484.Google Scholar
Dai, J., Leigh, R. G., and Polchinski, J., “New connections between string theories,” Modern Physics Letters A4 (1989) 20732083.Google Scholar
Angelantonj, C. and Sagnotti, A., “Open strings,” Physics Reports 371 (2002) 1150, hep-th/0204089.Google Scholar
Dabholkar, A., “Lectures on orientifolds and duality,” in High-Energy Physics and Cosmology. Proceedings, Summer School, Trieste, Italy, June 2–July 4, 1997, pp. 128–191. 1997. hep-th/9804208.Google Scholar
Witten, E., “Toroidal compactification without vector structure,” Journal of High Energy Physics 02 (1998) 006, hep-th/9712028.Google Scholar
Bergman, O., Gimon, E. G., and Sugimoto, S., “Orientifolds, RR torsion, and K theory,” Journal of High Energy Physics 05 (2001) 047, hep-th/0103183.Google Scholar
Horava, P. and Witten, E., “Heterotic and type I string dynamics from eleven dimensions,” Nuclear Physics B460 (1996) 506524, hep-th/9510209.CrossRefGoogle Scholar
Polchinski, J. and Witten, E., “Evidence for heterotic – type I string duality,” Nuclear Physics B460 (1996) 525540, hep-th/9510169.Google Scholar
Narain, K. S., “New heterotic string theories in uncompactified dimensions < 10,” Physics Letters 169B (1986) 4146.Google Scholar
Narain, K. S., Sarmadi, M. H., and Witten, E., “A note on toroidal compactification of heterotic string theory,” Nuclear Physics B279 (1987) 369379.CrossRefGoogle Scholar
Lawson, H. and Michelsohn, M., Spin Geometry, vol. 38. Princeton University Press 1989.Google Scholar
Bilal, A., Derendinger, J.-P., and Sfetsos, K., “(Weak) G2 holonomy from selfduality, flux and supersymmetry,” Nuclear Physics B628 (2002) 112132, hep-th/0111274.Google Scholar
Cappell, S., DeTurck, D., Gluck, H., and Miller, E. Y., “Cohomology of harmonic forms on riemannian manifolds with boundary,” in Forum Mathematicum, vol. 18, pp. 923931. 2006.Google Scholar
Griffiths, P. and Harris, J., Principles of Algebraic Geometry. Wiley-Interscience [John Wiley & Sons], 1978.Google Scholar
Wall, C. T. C., “Classification problems in differential topology. V,” Inventiones Mathematicae 1 (1966), no. 4, 355374.CrossRefGoogle Scholar
Giveon, A., Rabinovici, E., and Veneziano, G., “Duality in string background space,” Nuclear Physics B322 (1989) 167184.Google Scholar
Meissner, K. A. and Veneziano, G., “Symmetries of cosmological superstring vacua,” Physics Letters B267 (1991) 3336.Google Scholar
Sen, A., “O(d) × O(d) symmetry of the space of cosmological solutions in string theory, scale factor duality and two-dimensional black holes,” Physics Letters B271 (1991) 295300.Google Scholar
Giveon, A. and Rocek, M., “Generalized duality in curved string backgrounds,” Nuclear Physics B380 (1992) 128146, hep-th/9112070.Google Scholar
Giveon, A., Porrati, M., and Rabinovici, E., “Target space duality in string theory,” Physics Reports 244 (1994) 77202, hep-th/9401139.Google Scholar
Hassan, S., “Supersymmetry and the systematics of T-duality rotations in type II superstring theories,” Nuclear Physics B – Proceedings Supplements 102 (2001) 7782, hep-th/0103149.Google Scholar
Fidanza, S., Minasian, R., and Tomasiello, A., “Mirror symmetric SU(3)-structure manifolds with NS fluxes,” Communications in Mathematical Physics 254 (2005) 401423, hep-th/0311122.Google Scholar
Tong, D., “NS5-branes, T-duality and world sheet instantons,” Journal of High Energy Physics 0207 (2002) 013, hep-th/0204186.Google Scholar
Bouwknegt, P., Evslin, J., and Mathai, V., “On the topology and H flux of T dual manifolds,” Physical Review Letters 92 (2004) 181601, hep-th/0312052.Google Scholar
Kachru, S., Schulz, M. B., Tripathy, P. K., and Trivedi, S. P., “New supersymmetric string compactifications,” Journal of High Energy Physics 03 (2003) 061, hep-th/0211182.Google Scholar
Shelton, J., Taylor, W., and Wecht, B., “Nongeometric flux compactifications,” Journal of High Energy Physics 10 (2005) 085, hep-th/0508133.Google Scholar
Hull, C. M., “A geometry for non-geometric string backgrounds,” Journal of High Energy Physics 10 (2005) 065, hep-th/0406102.Google Scholar
Atiyah, M. F. and Singer, I. M., “The index of elliptic operators on compact manifolds,” Bulletin of the American Mathematical Society 69 (1963), no. 3, 422433.Google Scholar
Alvarez-Gaumé, L. and Witten, E., “Gravitational anomalies,” Nuclear Physics B234 (1984) 269.CrossRefGoogle Scholar
Kosmann, Y., “Dérivées de Lie des spineurs,” Annali di matematica pura ed applicata 91 (1971), no. 1, 317395.Google Scholar
Ziller, W., “Homogeneous Einstein metrics on spheres and projective spaces,” Mathematische Annalen D72 (1982) 351358.Google Scholar
Magnin, L., “Sur les algèbres de Lie nilpotentes de dimension ≤ 7,” Journal of Geometry and Physics 3 (1986), no. 1, 119144.Google Scholar
Morozov, V. V., “Classification of nilpotent Lie algebras of sixth order,” Izvestiya Vysshikh Uchebnykh Zavedenii. Matematika (1958), no. 4, 161–171.Google Scholar
Cavalcanti, G. R. and Gualtieri, M., “Generalized complex structures on nilmanifolds,” Journal of Symplectic Geometry 2 (2004), no. 3, 393410. math/0404451 (2004).Google Scholar
Graña, M., Minasian, R., Petrini, M., and Tomasiello, A., “A scan for new N = 1 vacua on twisted tori,” Journal of High Energy Physics 05 (2007) 031, hep-th/0609124.Google Scholar
Auslander, L., “An exposition of the structure of solvmanifolds. Part I: Algebraic theory,” Bulletin of the American Mathematical Society 79 (1973), no. 2, 227261.Google Scholar
Saito, M., “Sous-groups discrets des groups résolubles,” American Journal of Mathematics 83 (1961), no. 2, 369392.Google Scholar
Bock, C., “On low-dimensional solvmanifolds,” Asian Journal of Mathematics 20 (2016), no. 2, 199262, 0903.2926.Google Scholar
Andriot, D., Goi, E., Minasian, R., and Petrini, M., “Supersymmetry breaking branes on solvmanifolds and de Sitter vacua in string theory,” Journal of High Energy Physics 05 (2011) 028. 1003.3774.Google Scholar
Weinberg, S., Gravitation and Cosmology: Principles and Applications of the General Theory of Relativity. Wiley, 1972.Google Scholar
Marsden, J. and Weinstein, A., “Reduction of symplectic manifolds with symmetry,” Reports on Mathematical Physics 5 (1974), no. 1, 121130.Google Scholar
Gray, A. and Hervella, L., “The sixteen classes of almost Hermitian manifolds and their linear invariant,” Annali di Matematica Pura ed Applicata (IV) 123 (1980) 35.Google Scholar
Chiossi, S. and Salamon, S., “The intrinsic torsion of SU(3) and G2 structures,” International Conference on Differential Geometry held in honor of the 60th Birthday of A.M. Naveira. math/0202282.Google Scholar
Fernàndez, M. and Gray, A., “Riemannian manifolds with structure group g2,” Annali di matematica pura ed applicate 132 (1982), no. 1, 1945.Google Scholar
Berger, M., “Les espaces symétriques noncompacts,” Annales scientifiques de l’École Normale Supérieure 74 (1957) 85177.Google Scholar
Chi, Q.-S., Merkulov, S. A., and Schwachhöfer, L. J., “On the existence of infinite series of exotic holonomies,” Inventiones mathematicae 126 (1996), no. 2, 391411.Google Scholar
Bryant, R., “Recent advances in the theory of holonomy,” Asterisquesociete Mathematique de France 266 (2000) 351374, hep-th/0202208.Google Scholar
Hartshorne, R., Algebraic Geometry, vol. 52. Springer, 2013.Google Scholar
Harris, J., Algebraic Geometry: A First Course, vol. 133. Springer, 2013.Google Scholar
Olver, F. W., NIST Handbook of Mathematical Functions. Cambridge University Press, 2010.Google Scholar
Arnold, S. Gusein-Zade, and Varchenko, A., Singularities of Differentiable Maps, vol.2.Birkhäuser Boston, 2012.Google Scholar
Arnold, V. I., Goryunov, V. V., Lyashko, O., and Vasilev, V., Singularity Theory I, vol. 6. Springer Science & Business Media, 2012.Google Scholar
Mumford, D., Fogarty, J., and Kirwan, F., Geometric Invariant Theory, vol. 34. Springer, 1994.Google Scholar
Thomas, R. P., “Notes on GIT and symplectic reduction for bundles and varieties,” Surveys in Differential Geometry 10 (2005), no. 1, 221273, math/0512411.Google Scholar
Dolgachev, I., Lectures on Invariant Theory. Cambridge University Press, 2003.Google Scholar
Gompf, R. E., “A new construction of symplectic manifolds,” Annals of Mathematics (1995) 527595.Google Scholar
Candelas, P., Dale, A. M., Lutken, C. A., and Schimmrigk, R., “Complete intersection Calabi–Yau manifolds,” Nuclear Physics B298 (1988) 493.Google Scholar
Candelas, P., Lynker, M., and Schimmrigk, R., “Calabi–Yau manifolds in weighted P4,” Nuclear Physics B341 (1990) 383402.Google Scholar
Kreuzer, M. and Skarke, H., “Complete classification of reflexive polyhedra in four dimensions,” Advances in Theoretical and Mathematical Physics 4 (2002) 12091230, hep-th/0002240.Google Scholar
He, Y.-H., “Calabi–Yau spaces in the string landscape,” Oxford Research Encyclopedia of Physics, Oxford University Press, 2020 2006.16623.Google Scholar
Anderson, L. B., Apruzzi, F., Gao, X., Gray, J., and Lee, S.-J., “A new construction of Calabi–Yau manifolds: generalized CICYs,” Nuclear Physics B906 (2016) 441–496, 1507.03235.Google Scholar
Greene, B. R., Morrison, D. R., and Strominger, A., “Black hole condensation and the unification of string vacua,” Nuclear Physics B451 (1995) 109120, hep-th/9504145.Google Scholar
Aspinwall, P. S., “K3 surfaces and string duality,” in Theoretical Advanced Study Institute in Elementary Particle Physics (TASI 96), World Scientific, pp. 421–540. 1996. hep-th/9611137.Google Scholar
Kachru, S., Tripathy, A., and Zimet, M., “K3 metrics from little string theory,” 2018. 1810.10540.Google Scholar
Kachru, S., Tripathy, A., and Zimet, M., “K3 metrics,” 2020. 2006.02435.Google Scholar
Gibbons, G. W. and Hawking, S. W., “Gravitational multi-instantons,” Physics Letters 78B (1978) 430.Google Scholar
Katmadas, S. and Tomasiello, A., “Gauged supergravities from M-theory reductions,” Journal of High Energy Physics 04 (2018) 048, 1712.06608.Google Scholar
Franchetti, G., “Harmonic forms on ALF gravitational instantons,” Journal of High Energy Physics 12 (2014) 075, 1410.2864.Google Scholar
Hull, C. M. and Townsend, P. K., “Unity of superstring dualities,” Nuclear Physics B438 (1995) 109137, hep-th/9410167.Google Scholar
Atiyah, M. and Hitchin, N. J., “Low-energy scattering of nonabelian monopoles,” Physics Letters A107 (1985) 2125.Google Scholar
Gibbons, G. and Manton, N., “Classical and quantum dynamics of BPS monopoles,” Nuclear Physics B274 (1986) 183.Google Scholar
Hanany, A. and Pioline, B., “(Anti-)instantons and the Atiyah–Hitchin manifold,” Journal of High Energy Physics 0007 (2000) 001, hep-th/0005160.Google Scholar
Fujiki, A., “On primitive symplectic compact Kahler V-manifolds of dimension four,” Progress in Mathematics, Birkhauser 39 (1983) 71125.Google Scholar
Mukai, S., “Symplectic structure of the moduli space of sheaves on an abelian or K3 surface,” Inventiones mathematicae 77 (1984), no. 1, 101116.Google Scholar
Beauville, A., “Variétés Kähleriennes dont la première classe de Chern est nulle,” Journal of Differential Geometry 18 (1983), no. 4, 755782 (1984).Google Scholar
Gauntlett, J. P., Gibbons, G. W., Papadopoulos, G., and Townsend, P. K., “Hyper-Kähler manifolds and multiply intersecting branes,” Nuclear Physics B500 (1997) 133162, hep-th/9702202.Google Scholar
Bielawski, R. and Dancer, A., “The geometry and topology of toric hyper-Kähler manifolds,” Communications in Analysis and Geometry 8 (2000) 727759.Google Scholar
Hitchin, N. J., “Kählerian twistor spaces,” Proceedings of the London Mathematical Society 3 (1981), no. 1, 133150.Google Scholar
Boyer, C. and Galicki, K., Sasakian Geometry. Oxford University Press, 2008.Google Scholar
Bryant, R. L. and Salamon, S. M., “On the construction of some complete metrics with exceptional holonomy,” Duke Mathematical Journal 58 (1989), no. 3, 829850.Google Scholar
Gibbons, G. W., Page, D. N., and Pope, C. N., “Einstein metrics on S3, R3 and R4 bundles,” Communications in Mathematical Physics 127 (1990) 529.Google Scholar
Foscolo, L., Haskins, M., and Nordstörm, J., “Complete non-compact G2-manifolds from asymptotically conical Calabi–Yau 3-folds,” 2019. 1709.04904Google Scholar
Joyce, D. D., Compact Manifolds with Special Holonomy. Oxford University Press on Demand, 2000.Google Scholar
Joyce, D. and Karigiannis, S., “A new construction of compact torsion-free G2-manifolds by gluing families of Eguchi–Hanson spaces,” Journal of Differential Geometry 117 (2021) 255343.Google Scholar
Kovalev, A., “Twisted connected sums and special Riemannian holonomy,” Journal für die reine und angewandte Mathematik 565 (2003) 125160 math/ 0012189.Google Scholar
Corti, A., Haskins, M., Nordström, J., and Pacini, T., “G2-manifolds and associative submanifolds via semi-Fano 3-folds,” Duke Mathematical Journal 164 (2015), no. 10, 19712092, 1207.4470.CrossRefGoogle Scholar
Bär, C., “Real Killing spinors and holonomy,” Communications in Mathematical Physics 154 (1993), no. 3, 509521.Google Scholar
J. Figueroa-O’Farrill, M., Hackett-Jones, E., and Moutsopoulos, G., “The Killing superalgebra of ten-dimensional supergravity backgrounds,” Classical and Quantum Gravity 24 (2007) 32913308, hep-th/0703192.Google Scholar
de Medeiros, P., Figueroa-O’Farrill, J., and Santi, A., “Killing superalgebras for Lorentzian four-manifolds,” Journal of High Energy Physics 06 (2016) 106, 1605.00881.Google Scholar
Lu, H., Pope, C. N., and Rahmfeld, J., “A construction of Killing spinors on Sn,” Journal of Mathematical Physics 40 (1999) 45184526, hep-th/9805151.Google Scholar
Yau, S. S.-T., “Kohn–Rossi cohomology and its application to the complex Plateau problem. I,” Annals of Mathematics (2) 113 (1981) 67110.Google Scholar
Tian, G. and Yau, S.-T., “Kähler–Einstein Metrics on Complex Surfaces With c1 > 0 ,” Communications in Mathematical Physics 112 (1987) 175203.Google Scholar
Witten, E., “Search for a Realistic Kaluza–Klein Theory,” Nuclear Physics B186 (1981) 412.Google Scholar
Castellani, L., D’Auria, R., and Fre, P., “SU(3) × SU(2) × U(1) from D = 11 supergravity,” Nuclear Physics B239 (1984) 610652.Google Scholar
Castellani, L. and Romans, L. J., “N = 3 and N = 1 supersymmetry in a new class of solutions for d = 11 supergravity,” Nuclear Physics B238 (1984) 683.Google Scholar
D’Auria, R., Fre, P., and van Nieuwenhuizen, P., “N = 2 matter coupled supergravity from compactification on a coset G/H possessing an additional Killing vector,” Physics Letters 136B (1984) 347353.Google Scholar
Castellani, L., Romans, L. J., and Warner, N. P., “A classification of compactifying solutions for d = 11 supergravity,” Nuclear Physics B241 (1984) 429462.Google Scholar
Tian, G., “On Kähler–Einstein metrics on certain Kähler manifolds with c1 (m) > 0,” Inventiones mathematicae 89 (1987), no. 2, 225246.Google Scholar
Nadel, A. M., “Multiplier ideal sheaves and existence of Kähler–Einstein metrics of positive scalar curvature,” Proceedings of the National Academy of Sciences 86 (1989), no. 19, 72997300.Google Scholar
Futaki, A., Ono, H., and Wang, G., “Transverse Kahler geometry of Sasaki manifolds and toric Sasaki–Einstein manifolds,” Journal of Differential Geometry 83 (2009) 585636, math/0607586.Google Scholar
Gauntlett, J. P., Martelli, D., Sparks, J., and Waldram, D., “Sasaki–Einstein metrics on S2 × S3,” Advances in Theoretical and Mathematical Physics 8 (2004) 711734, hep-th/0403002.Google Scholar
Martelli, D. and Sparks, J., “Toric geometry, Sasaki–Einstein manifolds and a new infinite class of AdS/CFT duals,” Communications in Mathematical Physics 262 (2006) 5189, hep-th/0411238.Google Scholar
Conti, D., “Cohomogeneity one Einstein–Sasaki 5-manifolds,” Communications in Mathematical Physics 274 (2007), no. 3, 751774.Google Scholar
Cvetic, M., Lu, H., Page, D. N., and Pope, C. N., “New Einstein–Sasaki spaces in five and higher dimensions,” Physical Review Letters 95 (2005) 071101, hep-th/0504225.Google Scholar
Gauntlett, J. P., Martelli, D., Sparks, J. F., and Waldram, D., “A new infinite class of Sasaki–Einstein manifolds,” Advances in Theoretical and Mathematical Physics 8 (2006) 9871000, hep-th/0403038.Google Scholar
Martelli, D. and Sparks, J., “Notes on toric Sasaki–Einstein seven-manifolds and AdS4/CFT3,” Journal of High Energy Physics 11 (2008) 016, 0808.0904.Google Scholar
Gauntlett, J. P., Martelli, D., Sparks, J., and Waldram, D., “Supersymmetric AdS backgrounds in string and M-theory,” IRMA Lectures in Mathematics and Theoretical Physics 8 (2005) 217252 hep-th/0411194.Google Scholar
Chen, W., Lu, H., Pope, C. N., and Vazquez-Poritz, J. F., “A note on Einstein– Sasaki metrics in d ≥ 7,” Classical and Quantum Gravity 22 (2005) 3421– 3430, hep-th/0411218.Google Scholar
Tomasiello, A. and Zaffaroni, A., “Parameter spaces of massive IIA solutions,” Journal of High Energy Physics 1104 (2011) 067, 1010.4648.Google Scholar
Martelli, D., Sparks, J., and Yau, S.-T., “The geometric dual of a-maximisation for toric Sasaki–Einstein manifolds,” Communications in Mathematical Physics 268 (2006) 3965, hep-th/0503183.Google Scholar
Martelli, D., Sparks, J., and Yau, S.-T., “Sasaki–Einstein manifolds and volume minimisation,” Communications in Mathematical Physics 280 (2008) 611673, hep-th/0603021.Google Scholar
Sparks, J., “Sasaki–Einstein manifolds,” Surveys in Differential Geometry 16 (2011) 265324, 1004.2461.Google Scholar
Yau, S., “Open problems in geometry,” in Proceedings of Symposia in Pure Mathematics, vol. 54, pp. 128. 1993.Google Scholar
Tian, G., “Kähler-Einstein metrics with positive scalar curvature,” Inventiones mathematicae 130 (1997), no. 1, 137.Google Scholar
Chen, X.-X., Donaldson, S., and Sun, S., “Kähler–Einstein metrics and stability,” International Mathematics Research Notices 8 (2014) 21192125, 1210.7494.Google Scholar
Collins, T. C. and Székelyhidi, G., “Sasaki–Einstein metrics and K-stability,” Geometry & Topology 23 (2019) 13391413, 1512.07213.Google Scholar
Ilten, N. and Süß, H., “K-stability for Fano manifolds with torus action of complexity one,” Duke Mathematical Journal 166 (2017), no. 1, 177204, 1507.04442.CrossRefGoogle Scholar
Koerber, P., Lüst, D., and Tsimpis, D., “Type IIA AdS4 compactifications on cosets, interpolations and domain walls,” Journal of High Energy Physics 07 (2008) 017, 0804.0614.Google Scholar
Foscolo, L. and Haskins, M., “New G2 holonomy cones and exotic nearly Kaehler structures on the 6-sphere and the product of a pair of 3-spheres,” Annals of Mathematics 185 (2017) 59130, 1501.07838.Google Scholar
Gaiotto, D. and Tomasiello, A., “Perturbing gauge/gravity duals by a Romans mass,” Journal of High Energy Physics 01 (2010) p. 015. 0904.3959.Google Scholar
Kovalev, A., “Asymptotically cylindrical manifolds with holonomy spin(7).I,” 1309.5027 (2013).Google Scholar
Braun, A. P. and Schäfer-Nameki, S., “Spin(7)-manifolds as generalized connected sums and 3d N = 1 theories,” Journal of High Energy Physics 06 (2018) 103, 1803.10755.Google Scholar
Friedrich, T., Kath, I., Moroianu, A., and Semmelmann, U., “On nearly parallel”G2”-structures,” Journal of Geometry and Physics 23 (1997), no. 3–4, 259286.Google Scholar
Randall, L. and Sundrum, R., “A large mass hierarchy from a small extra dimension,” Physical Review Letters 83 (1999) 33703373, hep-ph/ 9905221.Google Scholar
Randall, L. and Sundrum, R., “An alternative to compactification,” Physical Review Letters 83 (1999) 46904693, hep-th/9906064.Google Scholar
ÓColgáin, E., Sheikh-Jabbari, M. M., Vázquez-Poritz, J. F., Yavartanoo, H., and Zhang, Z., “Warped Ricci-flat reductions,” Physical Review D90 (2014), no. 4, 045013, 1406.6354.Google Scholar
Douglas, M. R., “Effective potential and warp factor dynamics,” Journal of High Energy Physics 03 (2010) 071, 0911.3378.Google Scholar
Chavel, I., Eigenvalues in Riemannian Geometry. Academic Press, 1984.Google Scholar
Li, P. and Yau, S. T., “Estimates of eigenvalues of a compact Riemannian manifold,” in Geometry of the Laplace operator (Proc. Sympos. Pure Math., Univ. Hawaii, Honolulu, Hawaii, 1979), Proceedings of Symposia in Pure Mathematics, XXXVI, pp. 205239. American Mathematical Society, 1980.Google Scholar
Hinterbichler, K., Levin, J., and Zukowski, C., “Kaluza–Klein towers on general manifolds,” Physical Review D89 (2014), no. 8, 086007, 1310.6353.Google Scholar
Duff, M. J., Ferrara, S., Pope, C. N., and Stelle, K. S., “Massive Kaluza–Klein modes and effective theories of superstring moduli,” Nuclear Physics B333 (1990) 783.Google Scholar
Gabella, M., Martelli, D., Passias, A., and Sparks, J., “N = 2 supersymmetric AdS4 solutions of M-theory,” Communications in Mathematical Physics 325 (2014) 487525, 1207.3082.Google Scholar
Couzens, C., Lawrie, C., Martelli, D., Schafer-Nameki, S., and Wong, J.-M., “F-theory and AdS3/CFT2,” Journal of High Energy Physics 08 (2017) 043, 1705.04679.Google Scholar
Gran, U., Gutowski, J. B., and Papadopoulos, G., “On supersymmetric anti-de-Sitter, de-Sitter and Minkowski flux backgrounds,” Classical and Quantum Gravity 35 (2018), no. 6, 065016, 1607.00191.Google Scholar
Gauntlett, J. P., Mac Conamhna, O. A., Mateos, T., and Waldram, D., “AdS spacetimes from wrapped M5 branes,” Journal of High Energy Physics 0611 (2006) 053, hep-th/0605146.Google Scholar
Pilch, K., van Nieuwenhuizen, P., and Sohnius, M. F., “De Sitter superalgebras and supergravity,” Communications in Mathematical Physics 98 (1985) 105.Google Scholar
Lukierski, J. and Nowicki, A., “All possible de Sitter superalgebras and the presence of ghosts,” Physical Letters, 151B (1985) 382386.Google Scholar
Candelas, P., Horowitz, G. T., Strominger, A., and Witten, E., “Vacuum configurations for superstrings,” Nuclear Physics B258 (1985) 4674.Google Scholar
Donaldson, S. K., “Anti self-dual Yang–Mills connections over complex algebraic surfaces and stable vector bundles,” Proceedings of the London Mathematical Society 3 (1985), no. 1, 126.Google Scholar
Uhlenbeck, K. and Yau, S.-T., “On the existence of Hermitian-Yang–Mills connections in stable vector bundles,” Communications on Pure and Applied Mathematics 39 (1986), no. S1, S257S293.Google Scholar
Duff, M. J., Nilsson, B. E. W., and Pope, C. N., “Kaluza–Klein supergravity,” Physics Reports 130 (1986) 1142.Google Scholar
Denef, F., “Les Houches lectures on constructing string vacua,” Les Houches 87 (2008) 483610, 0803.1194.Google Scholar
Douglas, M. R. and Kachru, S., “Flux compactification,” Reviews of Modern Physics 79 (2007) 733796, hep-th/0610102.Google Scholar
Silverstein, E., “Simple de Sitter solutions,” Physical Review D77 (2008) 106006, 0712.1196.Google Scholar
Dong, X., Horn, B., Silverstein, E., and Torroba, G., “Micromanaging de Sitter holography,” Classical and Quantum Gravity 27 (2010) 245020, 1005.5403.Google Scholar
Hertzberg, M. P., Kachru, S., Taylor, W., and Tegmark, M., “Inflationary constraints on type IIA string theory,” Journal of High Energy Physics 12 (2007) 095. 0711.2512.Google Scholar
Flauger, R., Paban, S., Robbins, D., and Wrase, T., “Searching for slow-roll moduli inflation in massive type IIA supergravity with metric fluxes,” Physical Review D79 (2009) 086011, 0812.3886.Google Scholar
DeWolfe, O., Giryavets, A., Kachru, S., and Taylor, W., “Type IIA moduli stabilization,” Journal of High Energy Physics 07 (2005) 066, hep-th/ 0505160.Google Scholar
Gautason, F. F., Schillo, M., Van Riet, T., and Williams, M., “Remarks on scale separation in flux vacua,” Journal of High Energy Physics 03 (2016) 061, 1512.00457.Google Scholar
D’Auria, R., Ferrara, S., Trigiante, M., and Vaula, S., “Gauging the Heisenberg algebra of special quaternionic manifolds,” Physics Letters B610 (2005) 147151, hep-th/0410290.Google Scholar
Graña, M., Louis, J., and Waldram, D., “Hitchin functionals in N = 2 supergravity,” Journal of High Energy Physics 01 (2006) 008, hep-th/0505264.Google Scholar
Wess, J. and Bagger, J., Superspace and Supergravity, Princeton University Press, 1992.Google Scholar
Freedman, D. Z. and Van Proeyen, A., Supergravity. Cambridge University Press, 2012.Google Scholar
Volkov, D. V. and Akulov, V. P., “Is the neutrino a Goldstone particle?Physics Letters 46B (1973) 109110.Google Scholar
Ivanov, E. A. and Kapustnikov, A. A., “General relationship between linear and nonlinear realizations of supersymmetry,” Journal of Physics A11 (1978) 23752384.Google Scholar
Rocek, M., “Linearizing the Volkov–Akulov model,” Physical Review Letters 41 (1978) 451453.Google Scholar
Casalbuoni, R., De Curtis, S., Dominici, D., Feruglio, F., and Gatto, R., “Non-linear realization of supersymmetry algebra from supersymmetric constraint,” Physics Letters B220 (1989) 569575.Google Scholar
Komargodski, Z. and Seiberg, N., “From linear SUSY to constrained super-fields,” Journal of High Energy Physics 09 (2009) 066, 0907.2441.Google Scholar
Ferrara, S., Kallosh, R., and Van Proeyen, A., “On the supersymmetric completion of R + R2 gravity and cosmology,” Journal of High Energy Physics 11 (2013) 134, 1309.4052.Google Scholar
Antoniadis, I., Dudas, E., Ferrara, S., and Sagnotti, A., “The Volkov–Akulov– Starobinsky supergravity,” Physics Letters B733 (2014) 3235, 1403.3269.Google Scholar
Bergshoeff, E. A., Freedman, D. Z., Kallosh, R., and Van Proeyen, A., “Pure de Sitter Supergravity,” Physical Review D92 (2015), no. 8, 085040, 1507.08264.Google Scholar
Hasegawa, F. and Yamada, Y., “Component action of nilpotent multiplet coupled to matter in 4 dimensional N = 1 supergravity,” Journal of High Energy Physics 10 (2015) 106, 1507.08619.Google Scholar
Craps, B., Roose, F., Troost, W., and Van Proeyen, A., “What is special Kähler geometry?,” Nuclear Physics B503 (1997) 565613, hep-th/9703082.Google Scholar
Andrianopoli, L., Bertolini, M., Ceresole, A., D’Auria, R., Ferrara, S., Fré, P., and Magri, T., “N = 2 supergravity and N = 2 super-Yang–Mills theory on general scalar manifolds: symplectic covariance, gaugings and the momentum map,” Journal of Geometry and Physics 23 (1997) 111189, hep-th/ 9605032.Google Scholar
Freed, D. S., “Special Kähler manifolds,” Communications in Mathematical Physics 203 (May 1999) 3152.Google Scholar
Dall’Agata, G., D’Auria, R., Sommovigo, L., and Vaulà, S., “D = 4, N = 2 gauged supergravity in the presence of tensor multiplets,” Nuclear Physics B682 (2004) 243264, hep-th/0312210.Google Scholar
de Wit, B., Samtleben, H., and Trigiante, M., “On Lagrangians and gaugings of maximal supergravities,” Nuclear Physics B655 (2003) 93126, hep-th/0212239.Google Scholar
de Wit, B., Samtleben, H., and Trigiante, M., “Magnetic charges in local field theory,” Journal of High Energy Physics 09 (2005) 016, hep-th/0507289.Google Scholar
Samtleben, H., “Lectures on gauged supergravity and flux compactifications,” Classical and Quantum Gravity 25 (2008) 214002, 0808.4076.Google Scholar
Trigiante, M., “Gauged supergravities,” Physics Reports 680 (2017) 1175, 1609.09745.Google Scholar
Louis, J., Smyth, P., and Triendl, H., “Spontaneous N = 2 to N = 2 supersymmetry breaking in supergravity and type II string theory,” Journal of High Energy Physics 02 (2010) 103, 0911.5077.Google Scholar
Cecotti, S., Girardello, L., and Porrati, M., “Two into one won’t go,” Physics Letters 145B (1984) 6164.Google Scholar
Cassani, D. and Bilal, A., “Effective actions and N = 1 vacuum conditions from SU(3) × SU(3) compactifications,” Journal of High Energy Physics 09 (2007) 076, 0707.3125.Google Scholar
Stephani, H., Kramer, D., MacCallum, M., Hoenselaers, C., and Herlt, E., Exact Solutions of Einsteins Field Equations. Cambridge University Press, 2003.Google Scholar
Gillard, J., Gran, U., and Papadopoulos, G., “The spinorial geometry of supersymmetric backgrounds,” Classical and Quantum Gravity 22 (2005) 1033– 1076, hep-th/0410155.Google Scholar
Gran, U., Gutowski, J., and Papadopoulos, G., “Classification, geometry and applications of supersymmetric backgrounds,” Physics Reports 794 (2019) 187, 1808.07879.Google Scholar
Gibbons, G. and Hull, C., “A Bogomolny bound for general relativity and solitons in N = 2 supergravity,” Physics Letters B109 (1982) 190.Google Scholar
Tod, K., “All metrics admitting supercovariantly constant spinors,” Physics Letters B121 (1983) 241244.Google Scholar
Caldarelli, M. M. and Klemm, D., “Supersymmetry of anti-de Sitter black holes,” Nuclear Physics B545 (1999) 434460, hep-th/9808097.Google Scholar
Cacciatori, S. L., Klemm, D., Mansi, D. S., and Zorzan, E., “All timelike supersymmetric solutions of N = 2, D = 4 gauged supergravity coupled to abelian vector multiplets,” Journal of High Energy Physics 0805 (2008) 097, 0804.0009.Google Scholar
Meessen, P. and Ortín, T., “Supersymmetric solutions to gauged N = 2 d = 4 sugra: the full timelike shebang,” Nuclear Physics B863 (2012) 6589, 1204.0493.Google Scholar
Rosa, D. and Tomasiello, A., “Pure spinor equations to lift gauged supergravity,” Journal of High Energy Physics 1401 (2014) 176, 1305.5255.Google Scholar
Gran, U., Gutowski, J., and Papadopoulos, G., “Geometry of all supersymmetric four-dimensional N = 1 supergravity backgrounds,” Journal of High Energy Physics 06 (2008) 102, 0802.1779.Google Scholar
Gauntlett, J. P., Gutowski, J. B., Hull, C. M., Pakis, S., and Reall, H. S., “All supersymmetric solutions of minimal supergravity in five dimensions,” Classical and Quantum Gravity 20 (2003) 45874634, hep-th/0209114.Google Scholar
Gutowski, J. B., Martelli, D., and Reall, H. S., “All supersymmetric solutions of minimal supergravity in six dimensions,” Classical and Quantum Gravity 20 (2003) 50495078, hep-th/0306235.Google Scholar
Figueroa-O’Farrill, J. M. and Papadopoulos, G., “Maximally supersymmetric solutions of ten-dimensional and eleven-dimensional supergravities,” Journal of High Energy Physics 03 (2003) 048, hep-th/0211089.Google Scholar
Gran, U., Gutowski, J., Papadopoulos, G., and Roest, D., “N = 31 is not IIB,” Journal of High Energy Physics 02 (2007) 044, hep-th/0606049.Google Scholar
Gran, U., Gutowski, J., Papadopoulos, G., and Roest, D., “N=31, D=11,” Journal of High Energy Physics 02 (2007) 043, hep-th/0610331.Google Scholar
Bandos, I. A., de Azcarraga, J. A., and Varela, O., “On the absence of BPS preonic solutions in IIA and IIB supergravities,” Journal of High Energy Physics 09 (2006) 009, hep-th/0607060.Google Scholar
Figueroa-O’Farrill, J. and Hustler, N., “The homogeneity theorem for supergravity backgrounds,” Journal of High Energy Physics 10 (2012) 014, 1208.0553.Google Scholar
Gutowski, J. and Papadopoulos, G., “Index theory and dynamical symmetry enhancement of M-horizons,” Journal of High Energy Physics 05 (2013) 088, 1303.0869.Google Scholar
Cecotti, S., Ferrara, S., and Girardello, L., “Geometry of type II superstrings and the moduli of superconformal field theories,” International Journal of Modern Physics A4 (1989) 2475.Google Scholar
Ferrara, S. and Sabharwal, S., “Quaternionic manifolds for type II superstring vacua of Calabi–Yau spaces,” Nuclear Physics B332 (1990) 317332.Google Scholar
Bodner, M., Cadavid, A. C., and Ferrara, S., “(2, 2) vacuum configurations for type IIA superstrings: N = 2 supergravity Lagrangians and algebraic geometry,” Classical and Quantum Gravity 8 (1991) 789808.Google Scholar
Louis, J. and Micu, A., “Type II theories compactified on Calabi–Yau threefolds in the presence of background fluxes,” Nuclear Physics B635 (2002) 395431, hep-th/0202168.Google Scholar
Witten, E., “New issues in manifolds of SU(3) holonomy,” Nuclear Physics B268 (1986) 79.Google Scholar
Strominger, A., “Massless black holes and conifolds in string theory,” Nuclear Physics B451 (1995) 96108, hep-th/9504090.Google Scholar
Polchinski, J. and Strominger, A., “New vacua for type II string theory,” Physics Letters B388 (1996) 736742, hep-th/9510227.Google Scholar
Chuang, W.-Y., Kachru, S., and Tomasiello, A., “Complex/symplectic mirrors,” Communications in Mathematical Physics 274 (2007) 775794, hep-th/0510042.Google Scholar
Nemeschansky, D. and Sen, A., “Conformal invariance of supersymmetric σ models on Calabi–Yau manifolds,” Physics Letters B178 (1986) 365369.Google Scholar
Lerche, W., Vafa, C., and Warner, N. P., “Chiral rings in N = 2 superconformal theories,” Nuclear Physics B324 (1989) 427474.Google Scholar
Vafa, C. and Warner, N. P., “Catastrophes and the classification of conformal theories,” Physics Letters B218 (1989) 5158.Google Scholar
Witten, E., “Phases of N = 2 theories in two dimensions,” Nuclear Physics B403 (1993) 159222, hep-th/9301042.Google Scholar
Kapustin, A. and Tomasiello, A., “The general (2, 2) gauged sigma model with three-form flux,” Journal of High Energy Physics 11 (2007) 053, hep-th/0610210.Google Scholar
Gates, S. J., Grisaru, M. T., Rocek, M., and Siegel, W., “Superspace or one thousand and one lessons in supersymmetry,” Frontiers of Physics 58 (1983) 1548, hep-th/0108200.Google Scholar
Dixon, L. J., “Some world sheet properties of superstring compactifications, on orbifolds and otherwise,” in Proceedings, Summer Workshop in High-Energy Physics and Cosmology: Superstrings, Unified Theories and Cosmology: Trieste, Italy, June 29–August 7, 1987. World Scientific, pp. 6726, 1987.Google Scholar
Hori, K., Thomas, R., Katz, S., et al., Mirror Symmetry, vol. 1. American Mathematical Society, 2003.Google Scholar
Greene, B. R., “String theory on Calabi–Yau manifolds,” in Theoretical Advanced Study Institute in Elementary Particle Physics (TASI 96), World Scientific, 1997. hep-th/9702155.Google Scholar
Greene, B. R. and Plesser, M., “Duality in Calabi–Yau moduli space,” Nuclear Physics B338 (1990) 1537.Google Scholar
Candelas, P., De La Ossa, X. C., Green, P. S., and Parkes, L., “A pair of Calabi– Yau manifolds as an exactly soluble superconformal theory,” Nuclear Physics B359 (1991) 2174.Google Scholar
Morrison, D. R., “Picard–Fuchs equations and mirror maps for hypersurfaces,” hep-th/9111025. [AMS/IP Studies in Advanced Mathematics 9,185(1998)].Google Scholar
Harris, J., “Galois groups of enumerative problems,” Duke Mathematical Journal 46 (1979), no. 4, 685724.Google Scholar
Givental, A. B., “Equivariant Gromov-Witten invariants,” International Mathematics Research Notices 1996 (1996), no. 13, 613, alg-geom/9603021.Google Scholar
Lian, B. H., Liu, K., and Yau, S.-T., “Mirror principle I,” Asian Journal of Mathematics 1 (1997), no. 4, 729763.Google Scholar
Jockers, H., Kumar, V., Lapan, J. M., Morrison, D. R., and Romo, M., “Two-sphere partition functions and Gromov–Witten invariants,” Communications in Mathematical Physics 325 (2014) 11391170, 1208.6244.Google Scholar
Brown, J. D. and Teitelboim, C., “Neutralization of the cosmological constant by membrane creation,” Nuclear Physics B297 (1988) 787836.Google Scholar
Michelson, J., “Compactifications of type IIB strings to four dimensions with nontrivial classical potential,” Nuclear Physics B495 (1997) 127148, hep-th/9610151.Google Scholar
D’Auria, R., Ferrara, S., and Fre, P., “Special and quaternionic isometries: general couplings in N = 2 supergravity and the scalar potential,” Nuclear Physics B359 (1991) 705740.Google Scholar
Martucci, L., Rosseel, J., Van den Bleeken, D., and Van Proeyen, A., “Dirac actions for D-branes on backgrounds with fluxes,” Classical and Quantum Gravity 22 (2005) 27452764, hep-th/0504041.Google Scholar
Papadopoulos, G. and Townsend, P. K., “Intersecting M-branes,” Physics Letters B380 (1996) 273279, hep-th/9603087.Google Scholar
Tseytlin, A. A., “Harmonic superpositions of M-branes,” Nuclear Physics B475 (1996) 149163, hep-th/9604035.Google Scholar
Gauntlett, J. P., Kastor, D. A., and Traschen, J. H., “Overlapping branes in M theory,” Nuclear Physics B478 (1996) 544560, hep-th/9604179.Google Scholar
Itzhaki, N., Tseytlin, A. A., and Yankielowicz, S., “Supergravity solutions for branes localized within branes,” Physics Letters B432 (1998) 298304, hep-th/9803103.Google Scholar
Youm, D., “Partially localized intersecting BPS branes,” Nuclear Physics B556 (1999) 222246, hep-th/9902208.Google Scholar
Imamura, Y., “1/4 BPS solutions in massive IIA supergravity,” Progress of Theoretical Physics 106 (2001) 653670, hep-th/0105263.Google Scholar
Behrndt, K., Bergshoeff, E., and Janssen, B., “Intersecting D-branes in ten dimensions and six dimensions,” Physical Review D55 (1997) 37853792, hep-th/9604168.Google Scholar
Janssen, B., Meessen, P., and Ortín, T., “The D8-brane tied up: string and brane solutions in massive type IIA supergravity,” Physics Letters B453 (1999) 229– 236, hep-th/9901078.Google Scholar
Bershadsky, M., Vafa, C., and Sadov, V., “D-branes and topological field theories,” Nuclear Physics B463 (1996) 420434, hep-th/9511222.Google Scholar
Witten, E., “Topological quantum field theory,” Communications in Mathematical Physics 117 (1988) 353.Google Scholar
Festuccia, G. and Seiberg, N., “Rigid supersymmetric theories in curved superspace,” Journal of High Energy Physics 1106 (2011) 114, 1105.0689.Google Scholar
Dumitrescu, T. T., Festuccia, G., and Seiberg, N., “Exploring curved super-space,” Journal of High Energy Physics 1208 (2012) 141, 1205.1115.Google Scholar
Klare, C., Tomasiello, A., and Zaffaroni, A., “Supersymmetry on curved spaces and holography,” Journal of High Energy Physics 1208 (2012) 061, 1205.1062.Google Scholar
Cassani, D., Klare, C., Martelli, D., Tomasiello, A., and Zaffaroni, A., “Supersymmetry in Lorentzian curved spaces and holography,” Communications in Mathematical Physics 327 (2014) 577602, 1207.2181.Google Scholar
Triendl, H., “Supersymmetric branes on curved spaces and fluxes,” Journal of High Energy Physics 11 (2015) 025, 1509.02926.Google Scholar
McLean, R. C., “Deformations of calibrated submanifolds,” Communications in Analysis and Geometry 6 (1998), no. 4, 705747.Google Scholar
Mariño, M., Minasian, R., Moore, G. W., and Strominger, A., “Nonlinear instantons from supersymmetric “p”-branes,” Journal of High Energy Physics 01 (2000) 005, hep-th/9911206.Google Scholar
Witten, E., “BPS bound states of D0–D6 and D0–D8 systems in a b field,” Journal of High Energy Physics 2002 (April 2002) 012012.Google Scholar
Harvey, J. A. and Moore, G. W., “On the algebras of BPS states,” Communications in Mathematical Physics 197 (1998) 489519, hep-th/9609017.Google Scholar
Hitchin, N. J., “The self-duality equations on a Riemann surface,” Proceedings of the London Mathematical Society 3 (1987), no. 1, 59126.Google Scholar
Douglas, M. R., Fiol, B., and Romelsberger, C., “Stability and BPS branes,” Journal of High Energy Physics 09 (2005) 006, hep-th/0002037.Google Scholar
Douglas, M. R., “D-branes, categories and N = 1 supersymmetry,” Journal of Mathematical Physics 42 (2001) 28182843, hep-th/0011017.Google Scholar
Aspinwall, P. S. and Douglas, M. R., “D-brane stability and monodromy,” Journal of High Energy Physics 05 (2002) 031, hep-th/0110071.Google Scholar
Aspinwall, P. S., “D-branes on Calabi–Yau manifolds,” in Progress in String Theory. Proceedings, Summer School, TASI 2003, Boulder, USA, June 2–27, 2003, pp. 1152, World Scientific, 2004. hep-th/0403166.Google Scholar
Aspinwall, P., Bridgeland, T., Craw, A., et al., Dirichlet Branes and Mirror Symmetry, vol. 4. American Mathematical Society, 2009.Google Scholar
Witten, E. and Olive, D. I., “Supersymmetry algebras that include topological charges,” Physics Letters 78B (1978) 97101.Google Scholar
Cheung, Y.-K. E. and Yin, Z., “Anomalies, branes, and currents,” Nuclear Physics B517 (1998) 6991, hep-th/9710206.Google Scholar
Green, M. B., Harvey, J. A., and Moore, G. W., “I-brane inflow and anomalous couplings on D-branes,” Classical and Quantum Gravity 14 (1997) 4752, hep-th/9605033.Google Scholar
Recknagel, A. and Schomerus, V., “D-branes in Gepner models,” Nuclear Physics B531 (1998) 185225, hep-th/9712186.Google Scholar
Sharpe, E. R., “D-branes, derived categories, and Grothendieck groups,” Nuclear Physics B561 (1999) 433450, hep-th/9902116.Google Scholar
King, A. D., “Moduli of representations of finite dimensional algebras,” Quarterly Journal of Mathematics 45 (1994), no. 4, 515530.Google Scholar
Aspinwall, P. S. and Lawrence, A. E., “Derived categories and zero-brane stability,” Journal of High Energy Physics 08 (2001) 004, hep-th/0104147.Google Scholar
Denef, F., “Supergravity flows and D-brane stability,” Journal of High Energy Physics 08 (2000) 050, hep-th/0005049.Google Scholar
Lawlor, G., “The angle criterion,” Inventiones mathematicae 95 (1989), no. 2, 437446.Google Scholar
Joyce, D., “On counting special Lagrangian homology three spheres,” Contemporary Mathematics 314 (2002) 125151, hep-th/9907013.Google Scholar
Fukaya, K., “Morse homotopy, A category and Floer homologies,” in Proceeding of GARC Workshop on Geometry and Topology, Seoul National University 1993.Google Scholar
Fukaya, K., Oh, Y.-G., Ohta, H., and Ono, K., Lagrangian Intersection Floer Theory: Anomaly and Obstruction, Part II, vol. 2. American Mathematical Society, 2010.Google Scholar
Berkooz, M., Douglas, M. R., and Leigh, R. G., “Branes intersecting at angles,” Nuclear Physics B480 (1996) 265278, hep-th/9606139.Google Scholar
Kachru, S. and McGreevy, J., “Supersymmetric three cycles and supersymmetry breaking,” Physical Review D61 (2000) 026001, hep-th/9908135.Google Scholar
Strominger, A., Yau, S.-T., and Zaslow, E., “Mirror symmetry is T-duality,” Nuclear Physics B479 (1996) 243259, hep-th/9606040.Google Scholar
Gross, M., “Topological mirror symmetry,” Inventiones mathematicae 144 (1999), no. 1, 75137. math/9909015.Google Scholar
Morrison, D. R., “On the structure of supersymmetric T3 fibrations,” in Tropical Geometry and Mirror Symmetry, Contemporary Mathematics, vol. 527, American Mathematical Society, 2010, pp. 91112.Google Scholar
Strominger, A., “Superstrings with torsion,” Nuclear Physics B274 (1986) 253.Google Scholar
Hull, C. M., “Superstring compactifications with torsion and space-time super-symmetry,” in First Torino Meeting on Superunification and Extra Dimensions Turin, Italy, September 22–28, 1985, pp. 347–375. 1986.Google Scholar
Gauntlett, J. P., Martelli, D., and Waldram, D., “Superstrings with intrinsic torsion,” Physical Review D69 (2004) 086002, hep-th/0302158.Google Scholar
Sen, A., “Duality and orbifolds,” Nuclear Physics B474 (1996) 361378, hep-th/9604070.Google Scholar
Sen, A., “Stable nonBPS bound states of BPS D-branes,” Journal of High Energy Physics 08 (1998) 010, hep-th/9805019.Google Scholar
Goldstein, E. and Prokushkin, S., “Geometric model for complex non-Kaehler manifolds with SU(3) structure,” Communications in Mathematical Physics 251 (2004) 6578, hep-th/0212307.Google Scholar
Fu, J.-X. and Yau, S.-T., “The theory of superstring with flux on non-Kaehler manifolds and the complex Mongempère equation,” Journal of Differential Geometry 78 (2009). 369428 hep-th/0604063.Google Scholar
Becker, K., Becker, M., Fu, J.-X., Tseng, L.-S., and Yau, S.-T., “Anomaly cancellation and smooth non-Kaehler solutions in heterotic string theory,” Nuclear Physics B751 (2006) 108128, hep-th/0604137.Google Scholar
Garcia-Fernandez, M., “T-dual solutions of the Hull–Strominger system on non-Kähler threefolds,” Journal für die reine und angewandte Mathematik (Crelles Journal) 766 (2020) 137150.Google Scholar
Fino, A., Grantcharov, G., and Vezzoni, L., “Solutions to the Hull–Strominger system with torus symmetry,” 2019, 1901.10322.Google Scholar
Rocek, M., Schoutens, K., and Sevrin, A., “Off-shell WZW models in extended superspace,” Physics Letters B265 (1991) 303306.Google Scholar
Gates, J., Hull, S. J., C. M., and Roček, M., “Twisted multiplets and new supersymmetric nonlinear sigma models,” Nuclear Physics B248 (1984) 157.Google Scholar
Rocek, M. and Verlinde, E. P., “Duality, quotients, and currents,” Nuclear Physics B373 (1992) 630646, hep-th/9110053.Google Scholar
Buscher, T., Lindström, U., and Rocek, M., “New supersymmetric σ models with Wess–Zumino terms,” Physics Letters B202 (1988) 9498.Google Scholar
Vafa, C., “Evidence for F-theory,” Nuclear Physics B469 (1996) 403418, hep-th/9602022.Google Scholar
Morrison, D. R. and Vafa, C., “Compactifications of F theory on Calabi–Yau threefolds. 1,” Nuclear Physics B473 (1996) 7492, hep-th/9602114.Google Scholar
Morrison, D. R. and Vafa, C., “Compactifications of F theory on Calabi–Yau threefolds. 2,” Nuclear Physics B476 (1996) 437469, hep-th/9603161.Google Scholar
Weigand, T., “F-theory,” PoS TASI2017 (2018) 016, 1806.01854.Google Scholar
Greene, B. R., Shapere, A. D., Vafa, C., and Yau, S.-T., “Stringy cosmic strings and noncompact Calabi–Yau manifolds,” Nuclear Physics B337 (1990) 136.Google Scholar
Sen, A., “F-theory and orientifolds,” Nuclear Physics B475 (1996) 562578, hep-th/9605150.Google Scholar
Sen, A., “Orientifold limit of F theory vacua,” Physical Review D55 (1997) R7345R7349, hep-th/9702165.Google Scholar
Collinucci, A., Denef, F., and Esole, M., “D-brane deconstructions in IIB orientifolds,” Journal of High Energy Physics 02 (2009) 005, 0805.1573.Google Scholar
Polchinski, J. and Silverstein, E., “Dual purpose landscaping tools: small extra dimensions in AdS/CFT,” in Strings, Gauge Fields, and the Geometry Behind: The Legacy of Maximilian Kreuzer, A. Rebhan, L. Katzarkov, J. Knapp, R. Rashkov, and E. Scheidegger, eds., pp. 365–390. 2009. 0908.0756.Google Scholar
Aharony, O., Fayyazuddin, A., and Maldacena, J. M., “The large N limit of N = 2, N = 1 field theories from three-branes in F theory,” Journal of High Energy Physics 07 (1998) 013, hep-th/9806159.Google Scholar
García-Etxebarría, I. and Regalado, D., “N = 3 four dimensional field theories,” Journal of High Energy Physics 03 (2016) 083, 1512.06434.Google Scholar
Haghighat, B., Murthy, S., Vafa, C., and Vandoren, S., “F-theory, spinning black holes and multi-string branches,” Journal of High Energy Physics 01 (2016) 009, 1509.00455.Google Scholar
Kodaira, K., “On compact analytic surfaces: II,” Annals of Mathematics (1963) 563–626.Google Scholar
Néron, A., “Modèles minimaux des variétés abéliennes sur les corps locaux et globaux,” Publications Mathématiques de l’Institut des Hautes Études Scientifiques 21 (1964), no. 1, 5125.Google Scholar
Barth, W., Peters, C., and Van de Ven, A., Compact Complex Surfaces, vol.2. Springer, 2004.Google Scholar
de Boer, J., Dijkgraaf, R., Hori, K., et al., “Triples, fluxes, and strings,” Advances in Theoretical and Mathematical Physics 4 (2002) 9951186, hep-th/0103170.Google Scholar
Bhardwaj, L., Morrison, D. R., Tachikawa, Y., and Tomasiello, A., “The frozen phase of F-theory,” Journal of High Energy Physics 08 (2018) 138, 1805.09070.Google Scholar
Gaberdiel, M. R. and Zwiebach, B., “Exceptional groups from open strings,” Nuclear Physics B518 (1998) 151172, hep-th/9709013.Google Scholar
Bershadsky, M., Intriligator, K. A., Kachru, S., Morrison, D. R., Sadov, V., and Vafa, C., “Geometric singularities and enhanced gauge symmetries,” Nuclear Physics B481 (1996) 215252, hep-th/9605200.Google Scholar
Katz, S. H. and Vafa, C., “Matter from geometry,” Nuclear Physics B497 (1997) 146154, hep-th/9606086.Google Scholar
Grassi, A. and Morrison, D. R., “Anomalies and the Euler characteristic of elliptic Calabi–Yau threefolds,” Communications in Number Theory and Physics 6 (2012) 51127, 1109.0042.Google Scholar
Bertolini, M., Merkx, P. R., and Morrison, D. R., “On the global symmetries of 6D superconformal field theories,” Journal of High Energy Physics 07 (2016) 005, 1510.08056.Google Scholar
Aspinwall, P. S. and Morrison, D. R., “Point-like instantons on K3 orbifolds,” Nuclear Physics B503 (1997) 533564, hep-th/9705104.Google Scholar
Del Zotto, M., Heckman, J. J., Tomasiello, A., and Vafa, C., “6D conformal matter,” Journal of High Energy Physics 1502 (2015) 054, 1407.6359.Google Scholar
Heckman, J. J., Morrison, D. R., and Vafa, C., “On the classification of 6D SCFTs and generalized ADE orbifolds,” Journal of High Energy Physics 05 (2014) 028, 1312.5746.Google Scholar
Heckman, J. J., Morrison, D. R., Rudelius, T., and Vafa, C., “Atomic classification of 6D SCFTs,” Fortschritte der Physik 63 (2015) 468530, 1502.05405.Google Scholar
Heckman, J. J. and Rudelius, T., “Top down approach to 6D SCFTs,” Journal of Physics A52 (2019), no. 9, 093001, 1805.06467.Google Scholar
Townsend, P. K., “String – membrane duality in seven dimensions,” Physics Letters B354 (1995) 247255, hep-th/9504095.Google Scholar
Romans, L. J., “The F(4) gauged supergravity in six dimensions,” Nuclear Physics B269 (1986) 691.Google Scholar
D’Auria, R., Ferrara, S., and Vaula, S., “Matter coupled F(4) supergravity and the AdS6/CFT5 correspondence,” Journal of High Energy Physics 10 (2000) 013, hep-th/0006107.Google Scholar
Becker, K. and Becker, M., “M-theory on eight-manifolds,” Nuclear Physics B477 (1996) 155167, hep-th/9605053.Google Scholar
Dasgupta, K., Rajesh, G., and Sethi, S., “M theory, orientifolds and G-flux,” Journal of High Energy Physics 08 (1999) 023, hep-th/9908088.Google Scholar
Graña, M. and Polchinski, J., “Supersymmetric three-form flux perturbations on AdS5,” Physical Review D63 (2001) 026001, hep-th/0009211.Google Scholar
Giddings, S. B., Kachru, S., and Polchinski, J., “Hierarchies from fluxes in string compactifications,” Physical Review D66 (2002) 106006, hep-th/ 0105097.Google Scholar
Klebanov, I. R. and Strassler, M. J., “Supergravity and a confining gauge theory: duality cascades and χSB resolution of naked singularities,” Journal of High Energy Physics 08 (2000) 052, hep-th/0007191.Google Scholar
Martelli, D. and Sparks, J., “G-structures, fluxes and calibrations in M-theory,” Physical Review D68 (2003) 085014, hep-th/0306225.Google Scholar
Tsimpis, D., “M-theory on eight-manifolds revisited: N = 1 supersymmetry and generalized Spin(7) structures,” Journal of High Energy Physics 04 (2006) 027, hep-th/0511047.Google Scholar
Grimm, T. W. and Louis, J., “The effective action of N = 1 Calabi–Yau orientifolds,” Nuclear Physics B699 (2004) 387426, hep-th/0403067.Google Scholar
Graña, M., “Flux compactifications in string theory: a comprehensive review,” Physics Reports 423 (2006) 91158, hep-th/0509003.Google Scholar
Frey, A. R., Warped Strings: Selfdual Flux and Contemporary Compactifications. Ph.D. thesis, University of California, Santa Barbara, 2003. hep-th/0308156.Google Scholar
Giddings, S. B. and Maharana, A., “Dynamics of warped compactifications and the shape of the warped landscape,” Physical Review D73 (2006) 126003, hep-th/0507158.Google Scholar
Shiu, G., Torroba, G., Underwood, B., and Douglas, M. R., “Dynamics of warped flux compactifications,” Journal of High Energy Physics 06 (2008) 024, 0803.3068.Google Scholar
Gukov, S., Vafa, C., and Witten, E., “CFT’s from Calabi–Yau four-folds,” Nuclear Physics B584 (2000) 69108, hep-th/9906070.Google Scholar
Cremmer, E., Ferrara, S., Kounnas, C., and Nanopoulos, D. V., “Naturally vanishing cosmological constant in N = 1 supergravity,” Physics Letters 133B (1983) 61.Google Scholar
Ellis, J. R., Lahanas, A. B., Nanopoulos, D. V., and Tamvakis, K., “No-scale supersymmetric standard model,” Physics Letters 134B (1984) 429.Google Scholar
Frey, A. R. and Polchinski, J., “N = 3 warped compactifications,” Physical Review D65 (2002) 126009, hep-th/0201029.Google Scholar
Bergshoeff, E., Kallosh, R., Ortín, T., Roest, D., and Van Proeyen, A., “New formulations of D = 10 supersymmetry and D8–O8 domain walls,” Classical and Quantum Gravity 18 (2001) 33593382, hep-th/0103233.Google Scholar
Lüst, D. and Tsimpis, D., “Supersymmetric AdS4 compactifications of IIA supergravity,” Journal of High Energy Physics 02 (2005) 027, hep-th/0412250.Google Scholar
Gauntlett, J. P., Martelli, D., Sparks, J., and Waldram, D., “Supersymmetric AdS5 solutions of type IIB supergravity,” Classical and Quantum Gravity 23 (2006) 46934718, hep-th/0510125.Google Scholar
Koerber, P. and Tsimpis, D., “Supersymmetric sources, integrability and generalized structure compactifications,” Journal of High Energy Physics 08 (2007) 082. 0706.1244.Google Scholar
Legramandi, A., Martucci, L., and Tomasiello, A., “Timelike structures of ten-dimensional supersymmetry,” Journal of High Energy Physics 04 (2019) 109, 1810.08625.Google Scholar
Lüst, D., Marchesano, F., Martucci, L., and Tsimpis, D., “Generalized non-supersymmetric flux vacua,” Journal of High Energy Physics 11 (2008) 021, 0807.4540.Google Scholar
Coimbra, A., Minasian, R., Triendl, H., and Waldram, D., “Generalised geometry for string corrections,” Journal of High Energy Physics 11 (2014) 160, 1407.7542.Google Scholar
Tomasiello, A., “Generalized structures of ten-dimensional supersymmetric solutions,” Journal of High Energy Physics 1203 (2012) 073, 1109.2603.Google Scholar
Giusto, S., Martucci, L., Petrini, M., and Russo, R., “6D microstate geometries from 10D structures,” Nuclear Physics B876 (2013) 509555, 1306.1745.Google Scholar
Gautason, F. F., Junghans, D., and Zagermann, M., “Cosmological constant, near brane behavior and singularities,” Journal of High Energy Physics 1309 (2013) 123, 1301.5647.Google Scholar
Cribiori, N. and Junghans, D., “No classical (anti-)de Sitter solutions with O8-planes,” Physics Letters B793 (2019) 5458, 1902.08209.Google Scholar
Córdova, C., De Luca, G. B., and Tomasiello, A., “Classical de Sitter solutions of ten-dimensional supergravity,” Physical Review Letters 122 (2019), no. 9, 091601, 1812.04147.Google Scholar
Graña, M., Minasian, R., Petrini, M., and Tomasiello, A., “Generalized structures of N = 1 vacua,” Journal of High Energy Physics 11 (2005) 020, hep-th/0505212.Google Scholar
Minasian, R., Petrini, M., and Zaffaroni, A., “Gravity duals to deformed SYM theories and generalized complex geometry,” Journal of High Energy Physics 12 (2006) 055, hep-th/0606257.Google Scholar
Halmagyi, N. and Tomasiello, A., “Generalized Kaehler potentials from supergravity,” Communications in Mathematical Physics 291 (2009) 130, 0708.1032.Google Scholar
Martucci, L. and Smyth, P., “Supersymmetric D-branes and calibrations on general N = 1 backgrounds,” Journal of High Energy Physics 11 (2005) 048, hep-th/0507099.Google Scholar
Koerber, P. and Martucci, L., “D-branes on AdS flux compactifications,” Journal of High Energy Physics 0801 (2008) 047, 0710.5530.Google Scholar
Gutowski, J., Papadopoulos, G., and Townsend, P. K., “Supersymmetry and generalized calibrations,” Physical Review D60 (1999) 106006, hep-th/9905156.Google Scholar
Lüst, D., Patalong, P., and Tsimpis, D., “Generalized geometry, calibrations and supersymmetry in diverse dimensions,” Journal of High Energy Physics 1101 (2011) 063, 1010.5789.Google Scholar
Acharya, B. S., Aganagic, M., Hori, K., and Vafa, C., “Orientifolds, mirror symmetry and superpotentials,” (2002), hep-th/0202208.Google Scholar
Koerber, P. and Martucci, L., “From ten to four and back again: how to generalize the geometry,” Journal of High Energy Physics 08 (2007) 059, 0707.1038.Google Scholar
Benmachiche, I. and Grimm, T. W., “Generalized N = 1 orientifold compactifications and the Hitchin functionals,” Nuclear Physics B748 (2006) 200252, hep-th/0602241.Google Scholar
Ashmore, A., Strickland-Constable, C., Tennyson, D., and Waldram, D., “Generalising G2 geometry: involutivity, moment maps and moduli,” 1910.04795.Google Scholar
Graña, M., Louis, J., and Waldram, D., “SU(3) × SU(3) compactification and mirror duals of magnetic fluxes,” Journal of High Energy Physics 0704 (2007) 101, hep-th/0612237.Google Scholar
Cassani, D. and Kashani-Poor, A.-K., “Exploiting N = 2 in consistent coset reductions of type IIA,” Nuclear Physics B817 (2009) 2557, 0901.4251.Google Scholar
Cassani, D., Koerber, P., and Varela, O., “All homogeneous N = 2 M-theory truncations with supersymmetric AdS4 vacua,” Journal of High Energy Physics 11 (2012) 173, 1208.1262.Google Scholar
Kashani-Poor, A.-K., “Nearly Kaehler reduction,” Journal of High Energy Physics 11 (2007) 026, 0709.4482.Google Scholar
Gauntlett, J. P. and Varela, O., “Consistent Kaluza–Klein reductions for general supersymmetric AdS solutions,” Physical Review D76 (2007) 126007, 0707.2315.Google Scholar
Gauntlett, J. P., Kim, S., Varela, O., and Waldram, D., “Consistent supersymmetric Kaluza–Klein truncations with massive modes,” Journal of High Energy Physics 0904 (2009) 102, 0901.0676.Google Scholar
Cassani, D., Dall’Agata, G., and Faedo, A. F., “Type IIB supergravity on squashed Sasaki–Einstein manifolds,” Journal of High Energy Physics 05 (2010) 094, 1003.4283.Google Scholar
Aharony, O., Berkooz, M., Louis, J., and Micu, A., “Non-Abelian structures in compactifications of M-theory on seven-manifolds with SU(3) structure,” Journal of High Energy Physics 09 (2008) 108, 0806.1051.Google Scholar
Gurrieri, S., Louis, J., Micu, A., and Waldram, D., “Mirror symmetry in generalized Calabi–Yau compactifications,” Nuclear Physics B654 (2003) 61– 113, hep-th/0211102.Google Scholar
Tomasiello, A., “Topological mirror symmetry with fluxes,” Journal of High Energy Physics 06 (2005) 067, hep-th/0502148.Google Scholar
Eager, R., Schmude, J., and Tachikawa, Y., “Superconformal indices, Sasaki– Einstein manifolds, and cyclic homologies,” Advances in Theoretical and Mathematical Physics 18 (2014), no. 1, 129175, 1207.0573.Google Scholar
Katmadas, S. and Tomasiello, A., “AdS4 black holes from M-theory,” Journal of High Energy Physics 12 (2015) 111, 1509.00474.Google Scholar
Butti, A., Graña, M., Minasian, R., Petrini, M., and Zaffaroni, A., “The Baryonic branch of Klebanov–Strassler solution: a supersymmetric family of SU(3) structure backgrounds,” Journal of High Energy Physics 03 (2005) 069, hep-th/0412187.Google Scholar
Minasian, R., Petrini, M., and Zaffaroni, A., “New families of interpolating type IIB backgrounds,” Journal of High Energy Physics 04 (2010) 080, 0907.5147.Google Scholar
Maxfield, T., McOrist, J., Robbins, D., and Sethi, S., “New examples of flux vacua,” Journal of High Energy Physics 1312 (2013) 032, 1309.2577.Google Scholar
Martucci, L., Morales, J. F., and Ricci Pacifici, D., “Branes, U-folds and hyperelliptic fibrations,” Journal of High Energy Physics 01 (2013) 145, 1207.6120.Google Scholar
Braun, A. P., Fucito, F., and Morales, J. F., “U-folds as K3 fibrations,” Journal of High Energy Physics 10 (2013) 154, 1308.0553.Google Scholar
Candelas, P., Constantin, A., Damian, C., Larfors, M., and Morales, J. F., “Type IIB flux vacua from G-theory I,” Journal of High Energy Physics 02 (2015) 187, 1411.4785.Google Scholar
Candelas, P., Constantin, A., Damian, C., Larfors, M., and Morales, J. F., “Type IIB flux vacua from G-theory II,” Journal of High Energy Physics 02 (2015) 188, 1411.4786.Google Scholar
Macpherson, N. T. and Tomasiello, A., “Minimal flux Minkowski classification,” Journal of High Energy Physics 09 (2017) 126, 1612.06885.Google Scholar
Apruzzi, F., Geipel, J. C., Legramandi, A., Macpherson, N. T., and Zagermann, M., “Minkowski4 × S2 solutions of IIB supergravity,” Fortschritte der Physik 66 (2018), no. 3, 1800006, 1801.00800.Google Scholar
Legramandi, A. and Macpherson, N. T., “Mink4 × S2 solutions of 10 and 11 dimensional supergravity,” Journal of High Energy Physics 07 (2019) 134, 1811.11224.Google Scholar
Andriot, D., “New supersymmetric flux vacua with intermediate SU(2) structure,” Journal of High Energy Physics 08 (2008) 096, 0804.1769.Google Scholar
Andriot, D., “New supersymmetric vacua on solvmanifolds,” Journal of High Energy Physics 02 (2016) 112, 1507.00014.Google Scholar
Tomasiello, A., “Geometrical methods for string compactifications,” 2009, http://virgilio.mib.infn.it/˜atom/laces.pdf.Google Scholar
Andriolo, S., Shiu, G., Triendl, H., Van Riet, T., Venken, G., and Zoccarato, G., “Compact G2 holonomy spaces from SU(3)-structures,” Journal of High Energy Physics 03 (2019) 059, 1811.00063.Google Scholar
Brunner, I. and Hori, K., “Orientifolds and mirror symmetry,” Journal of High Energy Physics 11 (2004) 005, hep-th/0303135.Google Scholar
Nirenberg, L., “A complex Frobenius theorem,” in Seminar on Analytic Functions, Institute for Advanced Study, Princeton, pp. 172189. 1957.Google Scholar
Passias, A., Solard, G., and Tomasiello, A., “N = 2 supersymmetric AdS4 solutions of type IIB supergravity,” Journal of High Energy Physics 04 (2018) 005, 1709.09669.Google Scholar
Blåbäck, J., Janssen, B., Van Riet, T., and Vercnocke, B., “BPS domain walls from backreacted orientifolds,” Journal of High Energy Physics 05 (2014) 040, 1312.6125.Google Scholar
Legramandi, A. and Tomasiello, A., “Breaking supersymmetry with pure spinors,” Journal of High Energy Physics 11 (2020) 098, 1912.00001.Google Scholar
Hitchin, N., “Generalized Calabi–Yau manifolds,” Quarterly Journal of Mathematics Oxford Series 54 (2003) 281308, math.dg/0209099.Google Scholar
Gualtieri, M., “Generalized complex geometry,” math/0401221. Ph.D. thesis (advisor: Nigel Hitchin).Google Scholar
Koerber, P., “Lectures on generalized complex geometry for physicists,” Fortschritte der Physik 59 (2011) 169242, 1006.1536.Google Scholar
Tsimpis, D., “Generalized geometry lectures on type II backgrounds,” (2016), 1606.08674.Google Scholar
Babalic, E. M., Coman, I. A., and Lazaroiu, C. I., “Geometric algebra techniques in flux compactifications,” Advanced High Energy Physics 2016 (2016) 7292534, 1212.6766.Google Scholar
Cortés, V., Lazaroiu, C., and Shahbazi, C. S., “Spinors of real type as polyforms and the generalized Killing equation,” (2019), 1911.08658.Google Scholar
Graña, M., Minasian, R., Petrini, M., and Waldram, D., “T-duality, generalized geometry and non-geometric backgrounds,” Journal of High Energy Physics 04 (2009) 075, 0807.4527.Google Scholar
Hitchin, N. J., “The geometry of three-forms in six and seven dimensions,” Journal of Differential Geometry 55 (2000), no. 3, 547576, math.dg/0010054.Google Scholar
Tomasiello, A., “Reformulating supersymmetry with a generalized Dolbeault operator,” Journal of High Energy Physics 02 (2008) 010, 0704.2613 [hep-th].Google Scholar
Kosmann-Schwarzbach, Y., “Derived brackets,” Letters in Mathematical Physics 69 (2004), no. 1, 6187.Google Scholar
Lindström, U., Minasian, R., Tomasiello, A., and Zabzine, M., “Generalized complex manifolds and supersymmetry,” Communications in Mathematical Physics 257 (2005) 235256, hep-th/0405085.Google Scholar
Guttenberg, S., “Brackets, sigma models and integrability of generalized complex structures,” Journal of High Energy Physics 06 (2007) 004, hep-th/0609015.Google Scholar
Hitchin, N., “Instantons, Poisson structures and generalized Kaehler geometry,” Communications in Mathematical Physics 265 (2006) 131164, math/0503432.Google Scholar
Saracco, F. and Tomasiello, A., “Localized O6-plane solutions with Romans mass,” Journal of High Energy Physics 1207 (2012) 077, 1201.5378.Google Scholar
Jeschek, C. and Witt, F., “Generalised G2 structures and type IIB superstrings,” Journal of High Energy Physics 03 (2005) 053, hep-th/0412280.Google Scholar
Haack, M., Lüst, D., Martucci, L., and Tomasiello, A., “Domain walls from ten dimensions,” Journal of High Energy Physics 0910 (2009) 089, 0905.1582.Google Scholar
Dibitetto, G., Lo Monaco, G., Passias, A., Petri, N., and Tomasiello, A., “AdS3 solutions with exceptional supersymmetry,” Fortschritte der Physik 66 (2018), no. 10, 1800060, 1807.06602.Google Scholar
Passias, A. and Prins, D., “On AdS3 solutions of Type IIB,” Journal of High Energy Physics 05 (2020) 048, 1910.06326.Google Scholar
Prins, D. and Tsimpis, D., “IIB supergravity on manifolds with SU(4) structure and generalized geometry,” Journal of High Energy Physics 1307 (2013) 180, 1306.2543.Google Scholar
Rosa, D., “Generalized geometry of two-dimensional vacua,” Journal of High Energy Physics 07 (2014) 111, 1310.6357.Google Scholar
Prins, D. and Tsimpis, D., “IIA supergravity and M-theory on manifolds with SU(4) structure,” Physical Review D89 (2014) 064030, 1312.1692.Google Scholar
Passias, A., Prins, D., and Tomasiello, A., “A massive class of N = 2 AdS4 IIA solutions,” Journal of High Energy Physics 10 (2018) 071, 1805.03661.Google Scholar
Gauntlett, J. P. and Pakis, S., “The geometry of D = 11 Killing spinors,” Journal of High Energy Physics 04 (2003) 039, hep-th/0212008.Google Scholar
Gauntlett, J. P., Gutowski, J. B., and Pakis, S., “The geometry of D = 11 null Killing spinors,” Journal of High Energy Physics 12 (2003) 049, hep-th/0311112.Google Scholar
Kaste, P., Minasian, R., and Tomasiello, A., “Supersymmetric M-theory compactifications with fluxes on seven-manifolds and G-structures,” Journal of High Energy Physics 07 (2003) 004, hep-th/0303127.Google Scholar
Dall’Agata, G. and Prezas, N., “N = 1 geometries for M-theory and type IIA strings with fluxes,” Physical Review D69 (2004) 066004, hep-th/0311146.Google Scholar
Lukas, A. and Saffin, P. M., “M-theory compactification, fluxes and AdS4,” Physical Review D71 (2005) 046005, hep-th/0403235.Google Scholar
Cremmer, E. and Julia, B., “The SO(8) supergravity,” Nuclear Physics B159 (1979) 141.Google Scholar
de Wit, B. and Nicolai, H., “d = 11 supergravity with local SU(8) invariance,” Nuclear Physics B274 (1986) 363400.Google Scholar
Hull, C. M., “Generalised geometry for M-theory,” Journal of High Energy Physics 07 (2007) 079, hep-th/0701203.Google Scholar
Pires Pacheco, P. and Waldram, D., “M-theory, exceptional generalised geometry and superpotentials,” Journal of High Energy Physics 09 (2008) 123, 0804.1362.Google Scholar
Berman, D. S. and Perry, M. J., “Generalized geometry and M-theory,” Journal of High Energy Physics 06 (2011) 074, 1008.1763.Google Scholar
Graña, M., Louis, J., Sim, A., and Waldram, D., “E7(7) formulation of N = 2 backgrounds,” Journal of High Energy Physics 07 (2009) 104, 0904.2333.Google Scholar
Graña, M. and Orsi, F., “N = 1 vacua in exceptional generalized geometry,” Journal of High Energy Physics 08 (2011) 109, 1105.4855.Google Scholar
Graña, M. and Orsi, F., “N = 2 vacua in generalized geometry,” Journal of High Energy Physics 11 (2012) 052, 1207.3004.Google Scholar
Coimbra, A., Strickland-Constable, C., and Waldram, D., “Supersymmetric backgrounds and generalised special holonomy,” Classical and Quantum Gravity 33 (2016), no. 12, 125026, 1411.5721.Google Scholar
Baraglia, D., “Leibniz algebroids, twistings and exceptional generalized geometry,” Journal of Geometry and Physics 62 (2012) 903934, 1101.0856.Google Scholar
Cassani, D., de Felice, O., Petrini, M., Strickland-Constable, C., and Waldram, D., “Exceptional generalised geometry for massive IIA and consistent reductions,” Journal of High Energy Physics 08 (2016) 074, 1605.00563.Google Scholar
Coimbra, A., Strickland-Constable, C., and Waldram, D., “Supergravity as generalised geometry I: Type II theories,” Journal of High Energy Physics 11 (2011) 091, 1107.1733.Google Scholar
Coimbra, A., Strickland-Constable, C., and Waldram, D., “Ed(d) × R+ generalised geometry, connections and M theory,” Journal of High Energy Physics 02 (2014) 054, 1112.3989.Google Scholar
Coimbra, A., Strickland-Constable, C., and Waldram, D., “Supergravity as generalised geometry II: Ed(d) × R+ and M-theory,” Journal of High Energy Physics 03 (2014) 019, 1212.1586.Google Scholar
Coimbra, A. and Strickland-Constable, C., “Generalised structures for N = 1 AdS backgrounds,” Journal of High Energy Physics 11 (2016) 092, 1504.02465.Google Scholar
Ashmore, A. and Waldram, D., “Exceptional Calabi–Yau spaces: the geometry of N = 2 backgrounds with flux,” Fortschritte der Physik 65 (2017), no. 1, 1600109, 1510.00022.Google Scholar
Coimbra, A. and Strickland-Constable, C., “Supersymmetric backgrounds, the Killing superalgebra, and generalised special holonomy,” Journal of High Energy Physics 11 (2016) 063, 1606.09304.Google Scholar
Coimbra, A. and Strickland-Constable, C., “Supersymmetric AdS backgrounds and weak generalised holonomy,” (2017), 1710.04156.Google Scholar
Freund, P. G. O. and Rubin, M. A., “Dynamics of dimensional reduction,” Physics Letters B97 (1980) 233235.Google Scholar
Morrison, D. R. and Plesser, M. R., “Nonspherical horizons. 1.,” Advances in Theoretical and Mathematical Physics 3 (1999) 181, hep-th/9810201.Google Scholar
Gauntlett, J. P., “Branes, calibrations and supergravity,” Clay Mathematics Proceedings 3 (2004) 79126, hep-th/0305074.Google Scholar
Bryant, R. L., Chern, S. S., Gardner, R. B., Goldschmidt, H. L., and Griffiths, P. A., Exterior Differential Systems, vol.18ofMathematical Sciences Research Institute Publications. Springer-Verlag, 1991.Google Scholar
Beck, S., Gran, U., Gutowski, J., and Papadopoulos, G., “All Killing superalgebras for warped AdS backgrounds,” 1710.03713.Google Scholar
Sfetsos, K. and Thompson, D. C., “On non-abelian T-dual geometries with Ramond fluxes,” Nuclear Physics B846 (2011) 2142, 1012.1320.Google Scholar
Lozano, Y., ÓColgáin, E., Sfetsos, K., and Thompson, D. C., “Non-abelian T-duality, Ramond fields and coset geometries,” Journal of High Energy Physics 1106 (2011) 106, 1104.5196.Google Scholar
Itsios, G., Núñez, C., Sfetsos, K., and Thompson, D. C., “On non-abelian T-duality and new N = 1 backgrounds,” Physics Letters B721 (2013) 342346, 1212.4840.Google Scholar
Lozano, Y. and Núñez, C., “Field theory aspects of non-abelian T-duality and N = 2 linear quivers,” Journal of High Energy Physics 05 (2016) 107, 1603.04440.Google Scholar
Lozano, Y., ÓColgáin, E., Rodríguez-Gómez, D., and Sfetsos, K., “Supersymmetric AdS6 via T-duality,” Physical Review Letters 110 (2013) 231601, 1212.1043.Google Scholar
Scherk, J. and Schwarz, J. H., “How to get masses from extra dimensions,” Nuclear Physics B153 (1979) 6188.Google Scholar
Lee, K., Strickland-Constable, C., and Waldram, D., “Spheres, generalised parallelisability and consistent truncations,” Fortschritte der Physik 65 (2017), no. 10–11, 1700048, 1401.3360.Google Scholar
Aldazabal, G., Baron, W., Marques, D., and Nunez, C., “The effective action of double field theory,” Journal of High Energy Physics 11 (2011) 052, 1109.0290.Google Scholar
Geissbuhler, D., “Double field theory and N = 4 gauged supergravity,” Journal of High Energy Physics 11 (2011) 116, 1109.4280.Google Scholar
Hull, C. and Zwiebach, B., “Double field theory,” Journal of High Energy Physics 09 (2009) 099, 0904.4664.Google Scholar
Hohm, O. and Samtleben, H., “Consistent Kaluza–Klein truncations via exceptional field theory,” Journal of High Energy Physics 01 (2015) 131, 1410.8145.Google Scholar
Ciceri, F., Guarino, A., and Inverso, G., “The exceptional story of massive IIA supergravity,” Journal of High Energy Physics 08 (2016) 154, 1604.08602.Google Scholar
Malek, E., “Half-maximal supersymmetry from exceptional field theory,” Fortschritte der Physik 65 (2017), no. 10–11, 1700061, 1707.00714.Google Scholar
Malek, E., Samtleben, H., and Vall Camell, V., “Supersymmetric AdS7 and AdS6 vacua and their minimal consistent truncations from exceptional field theory,” Physics Letters B 786 (2018) 17111779 1808.05597.Google Scholar
Englert, F., “Spontaneous compactification of eleven-dimensional supergravity,” Physics Letters 119B (1982) 339.Google Scholar
Pope, C. N. and Warner, N. P., “An SU(4) invariant compactification of d = 11 supergravity on a stretched seven sphere,” Physics Letters 150B (1985) 352356.Google Scholar
Pope, C. N. and Warner, N. P., “Two new classes of compactifications of d = 11 supergravity,” Classical and Quantum Gravity 2 (1985) L1.Google Scholar
Romans, L. J., “New Compactifications of chiral N = 2 d = 10 supergravity,” Physics Letters 153B (1985) 392396.Google Scholar
Lüst, D. and Tsimpis, D., “Classes of AdS4 type IIA/IIB compactifications with SU(3)×SU(3) structure,” Journal of High Energy Physics 04 (2009) 111, 0901.4474.Google Scholar
Gaiotto, D. and Tomasiello, A., “The gauge dual of Romans mass,” Journal of High Energy Physics 01 (2010) 015, 0901.0969.Google Scholar
Córdova, C., De Luca, G., and Tomasiello, A., “AdS8 solutions in type II supergravity,” Journal of High Energy Physics 07 (2019) 127, 1811.06987.Google Scholar
Duff, M. J., Nilsson, B. E. W., and Pope, C. N., “The criterion for vacuum stability in Kaluza–Klein supergravity,” Physics Letters 139B (1984) 154158.Google Scholar
Forcella, D. and Zaffaroni, A., “Non-supersymmetric CS-matter theories with known AdS duals,” Advanced High Energy Physics 2011 (2011) 393645, 1103.0648.Google Scholar
Breitenlohner, P. and Freedman, D. Z., “Stability in gauged extended supergravity,” Annals of Physics 144 (1982) 249.Google Scholar
Rahman, R. and Taronna, M., “From higher spins to strings: a primer,” (2015), 1512.07932.Google Scholar
Page, D. N. and Pope, C. N., “Which compactifications of D = 11 supergravity are stable?Physics Letters 144B (1984) 346350.Google Scholar
Page, D. N. and Pope, C. N., “Stability analysis of compactifications of D = 11 supergravity with SU(3) X SU(2) X U(1) symmetry,” Physics Letters 145B (1984) 337341.Google Scholar
Guarino, A., Malek, E., and Samtleben, H., “Stable non-supersymmetric anti-de Sitter vacua of massive IIA supergravity,” Physical Review Letters 126 (2021), no. 6, 061601, 2011.06600.Google Scholar
Coleman, S. R., “The fate of the false vacuum. 1. Semiclassical theory,” Physical Review D15 (1977) 29292936.Google Scholar
Coleman, S. R. and De Luccia, F., “Gravitational effects on and of vacuum decay,” Physical Review D21 (1980) 3305.Google Scholar
Maldacena, J. M., Michelson, J., and Strominger, A., “Anti-de Sitter fragmentation,” Journal of High Energy Physics 02 (1999) 011, hep-th/9812073.Google Scholar
Apruzzi, F., Bruno De Luca, G., Gnecchi, A., Lo Monaco, G., and Tomasiello, A., “On AdS7 stability,” Journal of High Energy Physics 07 (2020) 033, 1912.13491.Google Scholar
Bena, I., Pilch, K., and Warner, N. P., “Brane-jet instabilities,” Journal of High Energy Physics 10 (2020) 091, 2003.02851.Google Scholar
Gibbons, G. W., Hull, C. M., and Warner, N. P., “The stability of gauged supergravity,” Nuclear Physics B218 (1983) 173.Google Scholar
Cvetic, M., Griffies, S., and Rey, S.-J., “Nonperturbative stability of supergravity and superstring vacua,” Nuclear Physics B389 (1993) 324, hep-th/ 9206004.Google Scholar
Witten, E., “Instability of the Kaluza–Klein vacuum,” Nuclear Physics B195 (1982) 481492.Google Scholar
Schon, R. and Yau, S.-T., “On the proof of the positive mass conjecture in general relativity,” Communications in Mathematical Physics 65 (1979) 4576.Google Scholar
Witten, E., “A simple proof of the positive energy theorem,” Communications in Mathematical Physics 80 (1981) 381.Google Scholar
Hertog, T., Horowitz, G. T., and Maeda, K., “Negative energy density in Calabi– Yau compactifications,” Journal of High Energy Physics 05 (2003) 060, hep-th/0304199.Google Scholar
Dai, X.-Z., “A positive mass theorem for spaces with asymptotic SUSY compactification,” Communications in Mathematical Physics 244 (2004) 335– 345, math/0308249.Google Scholar
García-Etxebarría, I., Montero, M., Sousa, K., and Valenzuela, I., “Nothing is certain in string compactifications,” Journal of High Energy Physics 12 (2020) 032, 2005.06494.Google Scholar
Brown, A. R. and Dahlen, A., “On ‘nothing’ as an infinitely negatively curved spacetime,” Physical Review D85 (2012) 104026, 1111.0301.Google Scholar
Horowitz, G. T., Orgera, J., and Polchinski, J., “Nonperturbative instability of AdS5 × S5/Zk ,” Physical Review D77 (2008) 024004, 0709.4262.Google Scholar
Ooguri, H. and Spodyneiko, L., “New Kaluza–Klein instantons and the decay of AdS vacua,” Physical Review D96 (2017), no. 2, 026016, 1703.03105.Google Scholar
’t Hooft, G., “Dimensional reduction in quantum gravity,” Conference Proceedings C930308 (1993) 284296, gr-qc/9310026.Google Scholar
Susskind, L., “The world as a hologram,” Journal of Mathematical Physics 36 (1995) 63776396, hep-th/9409089.Google Scholar
Maldacena, J. M., “The large N limit of superconformal field theories and supergravity,” Advances in Theoretical and Mathematical Physics 2 (1998) 231252, hep-th/9711200.Google Scholar
Gubser, S. S., Klebanov, I. R., and Polyakov, A. M., “Gauge theory correlators from noncritical string theory,” Physics Letters B428 (1998) 105114, hep-th/9802109.Google Scholar
Witten, E., “Anti-de Sitter space and holography,” Advances in Theoretical and Mathematical Physics 2 (1998) 253291, hep-th/9802150.Google Scholar
Apruzzi, F., Fazzi, M., Rosa, D., and Tomasiello, A., “All AdS7 solutions of type II supergravity,” Journal of High Energy Physics 1404 (2014) 064, 1309.2949.Google Scholar
Louis, J. and Lüst, S., “Supersymmetric AdS7 backgrounds in half-maximal supergravity and marginal operators of (1, 0) SCFTs,” Journal of High Energy Physics 10 (2015) 120, 1506.08040.Google Scholar
Córdova, C., Dumitrescu, T. T., and Intriligator, K., “Deformations of superconformal theories,” Journal of High Energy Physics 11 (2016) 135, 1602.01217.Google Scholar
Blåbäck, J., Danielsson, U. H., Junghans, D., Van Riet, T., Wrase, T., and Zagermann, M., “Smeared versus localised sources in flux compactifications,” Journal of High Energy Physics 12 (2010) 043, 1009.1877.Google Scholar
Blåbäck, J., Danielsson, U. H., Junghans, D., Van Riet, T., Wrase, T., and Zagermann, M., “The problematic backreaction of SUSY-breaking branes,” Journal of High Energy Physics 1108 (2011) 105, 1105.4879.Google Scholar
Bobev, N., Dibitetto, G., Gautason, F. F., and Truijen, B., “Holography, brane intersections and six-dimensional SCFTs,” Journal of High Energy Physics 02 (2017) 116, 1612.06324.Google Scholar
Gaiotto, D. and Witten, E., “Supersymmetric boundary conditions in N = 4 super Yang–Mills theory,” Journal of Statistical Physics 135 (2009) 789855, 0804.2902.Google Scholar
Hanany, A. and Zaffaroni, A., “Branes and six-dimensional supersymmetric theories,” Nuclear Physics B529 (1998) 180206, hep-th/9712145.Google Scholar
Gaiotto, D. and Tomasiello, A., “Holography for (1, 0) theories in six dimensions,” Journal of High Energy Physics 1412 (2014) 003, 1404.0711.Google Scholar
Bergman, O., Fazzi, M., Rodríguez-Gómez, D., and Tomasiello, A., “Charges and holography in 6d (1, 0) theories,” Journal of High Energy Physics 05 (2020) 138, 2002.04036.Google Scholar
Bah, I., Passias, A., and Tomasiello, A., “AdS5 compactifications with punctures in massive IIA supergravity,” Journal of High Energy Physics 11 (2017) 050, 1704.07389.Google Scholar
Apruzzi, F. and Fazzi, M., “AdS7/CFT6 with orientifolds,” Journal of High Energy Physics 01 (2018) 124, 1712.03235.Google Scholar
Nastase, H., Vaman, D., and van Nieuwenhuizen, P., “Consistent nonlinear KK reduction of 11-d supergravity on AdS7 × S4 and selfduality in odd dimensions,” Physics Letters B469 (1999) 96102, hep-th/9905075.Google Scholar
Pernici, M., Pilch, K., and van Nieuwenhuizen, P., “Gauged maximally extended supergravity in seven dimensions,” Physics Letters B143 (1984) 103.Google Scholar
Townsend, P. and van Nieuwenhuizen, P., “Gauged seven-dimensional super-gravity,” Physics Letters B125 (1983) 4146.Google Scholar
Passias, A., Rota, A., and Tomasiello, A., “Universal consistent truncation for 6d/7d gauge/gravity duals,” Journal of High Energy Physics 10 (2015) 187, 1506.05462.Google Scholar
De Luca, G. B., Gnecchi, A., Lo Monaco, G., and Tomasiello, A., “Holographic duals of 6d RG flows,” Journal of High Energy Physics 03 (2019) 035, 1810.10013.Google Scholar
Campos, V. L., Ferretti, G., Larsson, H., Martelli, D., and Nilsson, B. E. W., “A study of holographic renormalization group flows in D = 6 and D = 3,” Journal of High Energy Physics 06 (2000) 023, hep-th/0003151.Google Scholar
Apruzzi, F., Dibitetto, G., and Tizzano, L., “A new 6D fixed point from holography,” Journal of High Energy Physics 11 (2016) 126, 1603.06576.Google Scholar
Apruzzi, F., Fazzi, M., Passias, A., Rosa, D., and Tomasiello, A., “AdS6 solutions of type II supergravity,” Journal of High Energy Physics 1411 (2014) 099, 1406.0852.Google Scholar
Brandhuber, A. and Oz, Y., “The D4–D8 brane system and five-dimensional fixed points,” Physics Letters B460 (1999) 307312, hep-th/9905148.Google Scholar
Passias, A., “A note on supersymmetric AdS6 solutions of massive type IIA supergravity,” Journal of High Energy Physics 1301 (2013) 113, 1209.3267.Google Scholar
Ferrara, S., Kehagias, A., Partouche, H., and Zaffaroni, A., “Membranes and five-branes with lower supersymmetry and their AdS supergravity duals,” Physics Letters B431 (1998) 4248, hep-th/9803109.Google Scholar
Seiberg, N., “Five-dimensional SUSY field theories, nontrivial fixed points and string dynamics,” Physics Letters B388 (1996) 753–760, hep-th/ 9608111.Google Scholar
Morrison, D. R. and Seiberg, N., “Extremal transitions and five-dimensional supersymmetric field theories,” Nuclear Physics B483 (1997) 229247, hep-th/9609070.Google Scholar
Bergman, O. and Rodríguez-Gómez, D., “5D quivers and their AdS6 duals,” Journal of High Energy Physics 1207 (2012) 171, 1206.3503.Google Scholar
Cvetic, M., Lu, H., and Pope, C. N., “Gauged six-dimensional supergravity from massive type IIA,” Physical Review Letters 83 (1999) 52265229, hep-th/9906221.Google Scholar
Romans, L., “The F(4) gauged supergravity in six dimensions,” Nuclear Physics B269 (1986) 691.Google Scholar
Kim, H., Kim, N., and Suh, M., “Supersymmetric AdS6 solutions of type IIB Supergravity,” European Physical Journal C75 (2015), no. 10, 484, 1506.05480.Google Scholar
D’Hoker, E., Gutperle, M., Karch, A., and Uhlemann, C. F., “Warped AdS6 × S2 in type IIB supergravity I: local solutions,” Journal of High Energy Physics 08 (2016) 046, 1606.01254.Google Scholar
D’Hoker, E., Gutperle, M., and Uhlemann, C. F., “Warped AdS6 ×S2 in type IIB supergravity II: global solutions and five-brane webs,” Journal of High Energy Physics 05 (2017) 131, 1703.08186.Google Scholar
Lozano, Y., Macpherson, N. T., and Montero, J., “A N = 2 supersymmetric AdS4 solution in M-theory with purely magnetic flux,” Journal of High Energy Physics 10 (2015) 004, 1507.02660.Google Scholar
Lozano, Y., ÓColgáin, E., and Rodríguez-Gómez, D., “Hints of 5D fixed point theories from non-abelian T-duality,” Journal of High Energy Physics 1405 (2013) 009, 1311.4842.Google Scholar
Gutowski, J. and Papadopoulos, G., “On supersymmetric AdS6 solutions in 10 and 11 dimensions,” Journal of High Energy Physics 12 (2017) 009, 1702.06048.Google Scholar
D’Hoker, E., Gutperle, M., and Uhlemann, C. F., “Warped AdS6 ×S2 in type IIB supergravity III: global solutions with seven-branes,” Journal of High Energy Physics 11 (2017) 200, 1706.00433.Google Scholar
Uhlemann, C. F., “AdS6/CFT5 with O7-planes,” Journal of High Energy Physics 04 (2020) 113, 1912.09716.Google Scholar
Bergman, O., Rodríguez-Gómez, D., and Uhlemann, C. F., “Testing AdS6/CFT5 in type IIB with stringy operators,” Journal of High Energy Physics 08 (2018) 127, 1806.07898.Google Scholar
Chaney, A. and Uhlemann, C. F., “On minimal type IIB AdS6 solutions with commuting 7-branes,” Journal of High Energy Physics 12 (2018) 110, 1810.10592.Google Scholar
Chen, K., Gutperle, M., and Uhlemann, C. F., “Spin-2 operators in holographic 4d N = 2 SCFTs,” Journal of High Energy Physics 06 (2019) 139, 1903.07109.Google Scholar
Hong, J., Liu, J. T., and Mayerson, D. R., “Gauged six-dimensional supergravity from warped IIB reductions,” Journal of High Energy Physics 09 (2018) 140, 1808.04301.Google Scholar
Gauntlett, J. P., Martelli, D., Sparks, J., and Waldram, D., “Supersymmetric AdS5 solutions of M theory,” Classical and Quantum Gravity 21 (2004) 43354366, hep-th/0402153.Google Scholar
Lin, H., Lunin, O., and Maldacena, J. M., “Bubbling AdS space and 1/2 BPS geometries,” Journal of High Energy Physics 0410 (2004) 025, hep-th/0409174.Google Scholar
Bah, I., Beem, C., Bobev, N., and Wecht, B., “Four-dimensional SCFTs from M5-branes,” Journal of High Energy Physics 1206 (2012) 005, 1203.0303.Google Scholar
Gaiotto, D. and Maldacena, J., “The gravity duals of N = 2 superconformal field theories,” Journal of High Energy Physics 1210 (2012) 189, 0904.4466.Google Scholar
Bobev, N., Bomans, P., and Gautason, F. F., “Wrapped branes and punctured horizons,” Journal of High Energy Physics 06 (2020) 011, 1912.04779.Google Scholar
Bah, I., “AdS5 solutions from M5-branes on Riemann surface and D6-branes sources,” Journal of High Energy Physics 09 (2015) 163, 1501.06072.Google Scholar
Apruzzi, F., Fazzi, M., Passias, A., and Tomasiello, A., “Supersymmetric AdS5 solutions of massive IIA supergravity,” Journal of High Energy Physics 06 (2015) 195, 1502.06620.Google Scholar
Aharony, O., Berdichevsky, L., and Berkooz, M., “4D N = 2 superconformal linear quivers with type IIA duals,” Journal of High Energy Physics 1208 (2012) 131, 1206.5916.Google Scholar
Reid-Edwards, R. and Stefanski, B. j., “On Type IIA geometries dual to N = 2 SCFTs,” Nuclear Physics B849 (2011) 549572, 1011.0216.Google Scholar
Gaiotto, D., “N = 2 dualities,” Journal of High Energy Physics 1208 (2012) 034, 0904.2715.Google Scholar
Bah, I. and Bonetti, F., “Anomaly inflow, accidental symmetry, and spontaneous symmetry breaking,” Journal of High Energy Physics 01 (2020) 117, 1910.07549.Google Scholar
Douglas, M. R. and Moore, G. W., “D-branes, quivers, and ALE instantons,” (1996), hep-th/9603167.Google Scholar
Klebanov, I. R. and Witten, E., “Superconformal field theory on three-branes at a Calabi–Yau singularity,” Nuclear Physics B536 (1998) 199218, hep-th/9807080.Google Scholar
Hanany, A. and Kennaway, K. D., “Dimer models and toric diagrams,” (2005), hep-th/0503149.Google Scholar
Franco, S., Hanany, A., Kennaway, K. D., Vegh, D., and Wecht, B., “Brane dimers and quiver gauge theories,” Journal of High Energy Physics 01 (2006) 096, hep-th/0504110.Google Scholar
Aspinwall, P. S. and Morrison, D. R., “Quivers from matrix factorizations,” Communications in Mathematical Physics 313 (2012), no. 3, 607633, 1005.1042.Google Scholar
Fazzi, M. and Tomasiello, A., “Holography, matrix factorizations and K-stability,” Journal of High Energy Physics 05 (2020) 119, 1906.08272.Google Scholar
Leigh, R. G. and Strassler, M. J., “Exactly marginal operators and duality in four-dimensional N = 1 supersymmetric gauge theory,” Nuclear Physics B447 (1995) 95136, hep-th/9503121.Google Scholar
Benvenuti, S. and Hanany, A., “Conformal manifolds for the conifold and other toric field theories,” Journal of High Energy Physics 08 (2005) 024, hep-th/0502043.Google Scholar
Lunin, O. and Maldacena, J. M., “Deforming field theories with U(1) × U(1) global symmetry and their gravity duals,” Journal of High Energy Physics 0505 (2005) 033, hep-th/0502086.Google Scholar
Martucci, L., “D-branes on general N = 1 backgrounds: superpotentials and D-terms,” Journal of High Energy Physics 06 (2006) 033, hep-th/ 0602129.Google Scholar
Aharony, O., Kol, B., and Yankielowicz, S., “On exactly marginal deformations of N = 1 SYM and type IIB supergravity on AdS5 × S5,” Journal of High Energy Physics 06 (2002) 039, hep-th/0205090.Google Scholar
Gabella, M., Gauntlett, J. P., Palti, E., Sparks, J., and Waldram, D., “AdS5 solutions of Type IIB supergravity and generalized complex geometry,” Communications in Mathematical Physics 299 (2010) 365408, 0906.4109.Google Scholar
Couzens, C., “Supersymmetric AdS5 solutions of type IIB supergravity without D3-branes,” Journal of High Energy Physics 01 (2017) 041, 1609.05039.Google Scholar
Macpherson, N. T., Núñez, C., Pando Zayas, L. A., Rodgers, V. G. J., and Whiting, C. A., “Type IIB supergravity solutions with AdS5 from abelian and non-Abelian T dualities,” Journal of High Energy Physics 02 (2015) 040, 1410.2650.Google Scholar
Günaydin, M., Romans, L. J., and Warner, N. P., “Compact and noncompact gauged supergravity theories in five-dimensions,” Nuclear Physics B272 (1986) 598646.Google Scholar
Khavaev, A., Pilch, K., and Warner, N. P., “New vacua of gauged N = 8 supergravity in five dimensions,” Physics Letters B487 (2000) 1421, hep-th/9812035.Google Scholar
Cvetic, M., Lu, H., Pope, C. N., Sadrzadeh, A., and Tran, T. A., “Consistent SO(6) reduction of type IIB supergravity on S5,” Nuclear Physics B586 (2000) 275286, hep-th/0003103.Google Scholar
Pilch, K. and Warner, N. P., “N = 2 supersymmetric RG flows and the IIB dilaton,” Nuclear Physics B594 (2001) 209228, hep-th/0004063.Google Scholar
Baguet, A., Hohm, O., and Samtleben, H., “Consistent type IIB reductions to maximal 5D supergravity,” Physical Review D92 (2015), no. 6, 065004, 1506.01385.Google Scholar
Bobev, N., Fischbacher, T., Gautason, F. F., and Pilch, K., “A cornucopia of AdS5 vacua,Journal of High Energy Physics 07 (2020) 240, 2003.03979.Google Scholar
Krishnan, C., Mohan, V., and Ray, S., “Machine learning N = 8, D = 5 gauged supergravity,” Fortschritte der Physik 68 (2020), no. 5, 2000027, 2002.12927.Google Scholar
Pilch, K. and Warner, N. P., “A new supersymmetric compactification of chiral IIB supergravity,” Physics Letters B487 (2000) 2229, hep-th/0002192.Google Scholar
Acharya, B. S., Figueroa-O’Farrill, J. M., Hull, C. M., and Spence, B. J., “Branes at conical singularities and holography,” Advances in Theoretical and Mathematical Physics 2 (1999) 12491286, hep-th/9808014.Google Scholar
Acharya, B. S., Denef, F., Hofman, C., and Lambert, N., “Freund–Rubin revisited,” (2003), hep-th/0308046.Google Scholar
Nilsson, B. E. W. and Pope, C. N., “Hopf fibration of eleven-dimensional supergravity,” Classical and Quantum Gravity 1 (1984) 499.Google Scholar
Watamura, S., “Spontaneous compactification and CPN :SU(3)×SU(2)×U(1), sin2W), g3/g2 and SU(3) triplet chiral fermions in four dimensions,” Physics Letters B136 (1984) 245.Google Scholar
Sorokin, D. P., Tkach, V. I., and Volkov, D. V., “On the relationship between compactified vacua of d = 11 and d = 10 supergravities,” Physics Letters B161 (1985) 301306.Google Scholar
Jafferis, D. L. and Tomasiello, A., “A simple class of N = 3 gauge/gravity duals,” Journal of High Energy Physics 10 (2008) 101, 0808.0864.Google Scholar
Hanany, A. and Zaffaroni, A., “Tilings, Chern–Simons theories and M2 Branes,” Journal of High Energy Physics 10 (2008) 111, 0808.1244.Google Scholar
Aganagic, M., “A stringy origin of M2 brane Chern–Simons theories,” Nuclear Physics B835 (2010) 128, 0905.3415.Google Scholar
Imamura, Y. and Kimura, K., “On the moduli space of elliptic Maxwell– Chern–Simons theories,” Progress of Theoretical and Experimental Physics 120 (2008) 509523, 0806.3727.Google Scholar
Gaiotto, D. and Jafferis, D. L., “Notes on adding D6 branes wrapping RP3 in AdS4 × CP3,” Journal of High Energy Physics 11 (2012) 015, 0903.2175.Google Scholar
de Wit, B. and Nicolai, H., “The consistency of the S7 truncation in D = 11 Supergravity,” Nuclear Physics B281 (1987) 211.Google Scholar
de Wit, B. and Nicolai, H., “N = 8 supergravity,” Nuclear Physics B208 (1982) 323.Google Scholar
de Wit, B. and Nicolai, H., “Deformations of gauged SO(8) supergravity and supergravity in eleven dimensions,” Journal of High Energy Physics 05 (2013) 077, 1302.6219.Google Scholar
Warner, N. P., “Some new extrema of the scalar potential of gauged N = 8 supergravity,” Physics Letters 128B (1983) 169173.Google Scholar
Corrado, R., Pilch, K., and Warner, N. P., “An N = 2 supersymmetric membrane flow,” Nuclear Physics B629 (2002) 7496, hep-th/0107220.Google Scholar
Fischbacher, T., Pilch, K., and Warner, N. P., “New supersymmetric and stable, non-supersymmetric phases in supergravity and holographic field theory,” (2010), 1010.4910.Google Scholar
Comsa, I. M., Firsching, M., and Fischbacher, T., “SO(8) supergravity and the magic of machine learning,” Journal of High Energy Physics 08 (2019) 057, 1906.00207.Google Scholar
Bobev, N., Fischbacher, T., and Pilch, K., “Properties of the new N = 1 AdS4 vacuum of maximal supergravity,” Journal of High Energy Physics 01 (2020) 099, 1909.10969.Google Scholar
Behrndt, K., Cvetic, M., and Liu, T., “Classification of supersymmetric flux vacua in M-theory,” Nuclear Physics B749 (2006) 2568, hep-th/ 0512032.Google Scholar
Halmagyi, N., Pilch, K., and Warner, N. P., “On supersymmetric flux solutions of M-theory,” (2012), 1207.4325.Google Scholar
Pernici, M. and Sezgin, E., “Spontaneous compactification of seven-dimensional supergravity theories,” Classical and Quantum Gravity 2 (1985) 673.Google Scholar
Dimofte, T., Gaiotto, D., and Gukov, S., “Gauge theories labelled by three-manifolds,” Communications in Mathematical Physics 325 (2014) 367419, 1108.4389.Google Scholar
Bovy, J., Lust, D., and Tsimpis, D., “N = 1, 2 supersymmetric vacua of IIA supergravity and SU(2) structures,” Journal of High Energy Physics 08 (2005) 056, hep-th/0506160.Google Scholar
Caviezel, C., Koerber, P., Körs, S., Lüst, D., Tsimpis, D., and Zagermann, M., “The effective theory of type IIA AdS4 compactifications on nilmanifolds and cosets,” Classical and Quantum Gravity 26 (2009) 025014 0806.3458.Google Scholar
Behrndt, K. and Cvetic, M., “General N = 1 supersymmetric fluxes in massive type IIA string theory,” Nuclear Physics B708 (2005) 4571, hep-th/0407263.Google Scholar
Derendinger, J.-P., Kounnas, C., Petropoulos, P. M., and Zwirner, F., “Superpotentials in IIA compactifications with general fluxes,” Nuclear Physics B715 (2005) 211233, hep-th/0411276.Google Scholar
Villadoro, G. and Zwirner, F., “N = 1 effective potential from dual type-IIA D6/O6 orientifolds with general fluxes,” Journal of High Energy Physics 06 (2005) 047, hep-th/0503169.Google Scholar
Camara, P. G., Font, A., and Ibáñez, L. E., “Fluxes, moduli fixing and MSSM-like vacua in a simple IIA orientifold,” Journal of High Energy Physics 09 (2005) 013, hep-th/0506066.Google Scholar
Aldazabal, G. and Font, A., “A second look at N = 1 supersymmetric AdS4 vacua of type IIA supergravity,” Journal of High Energy Physics 02 (2008) 086, 0712.1021.Google Scholar
Guarino, A., Tarrio, J., and Varela, O., “Romans-mass-driven flows on the D2-brane,” Journal of High Energy Physics 08 (2016) 168, 1605.09254.Google Scholar
House, T. and Palti, E., “Effective action of (massive) IIA on manifolds with SU(3) structure,” Physical Review D72 (2005) 026004, hep-th/0505177.Google Scholar
Tomasiello, A., “New string vacua from twistor spaces,” Physical Review D78 (2008) 046007, 0712.1396.Google Scholar
Larfors, M., Lust, D., and Tsimpis, D., “Flux compactification on smooth, compact three-dimensional toric varieties,” Journal of High Energy Physics 07 (2010) 073, 1005.2194.Google Scholar
Acharya, B. S., Benini, F., and Valandro, R., “Fixing moduli in exact type IIA flux vacua,” Journal of High Energy Physics 02 (2007) 018, hep-th/0607223.Google Scholar
Marchesano, F., Palti, E., Quirant, J., and Tomasiello, A., “On supersymmetric AdS4 orientifold vacua,” Journal of High Energy Physics 08 (2020) 087, 2003.13578.Google Scholar
Rota, A. and Tomasiello, A., “AdS 4 compactifications of AdS 7 solutions in type II supergravity,” Journal of High Energy Physics 07 (2015) 076, 1502.06622.Google Scholar
Junghans, D., “O-plane backreaction and scale separation in type IIA flux vacua,” Fortschritte der Physik 68 (2020), no. 6, 2000040, 2003.06274.Google Scholar
McOrist, J. and Sethi, S., “M-theory and type IIA flux compactifications,” Journal of High Energy Physics 12 (2012) 122, 1208.0261.Google Scholar
Blumenhagen, R., Cvetic, M., Kachru, S., and Weigand, T., “D-brane instantons in type II orientifolds,” Annual Review of Nuclear and Particle Science 59 (2009) 269296, 0902.3251.Google Scholar
Guarino, A. and Varela, O., “Dyonic ISO(7) supergravity and the duality hierarchy,” Journal of High Energy Physics 02 (2016) 079, 1508.04432.Google Scholar
Guarino, A., Tarrio, J., and Varela, O., “Flowing to N = 3 Chern–Simons-matter theory,” Journal of High Energy Physics 03 (2020) 100, 1910.06866.Google Scholar
Bobev, N., Fischbacher, T., Gautason, F. F., and Pilch, K., “New AdS4 vacua in dyonic ISO(7) gauged supergravity,” Journal of High Energy Physics 02 (2021) 215, 2011.08542.Google Scholar
Varela, O., “AdS4 solutions of massive IIA from dyonic ISO(7) supergravity,” Journal of High Energy Physics 03 (2016) 071, 1509.07117.Google Scholar
Petrini, M. and Zaffaroni, A., “N = 2 solutions of massive type IIA and their Chern–Simons duals,” Journal of High Energy Physics 09 (2009) 107, 0904.4915.Google Scholar
Lüst, D. and Tsimpis, D., “New supersymmetric AdS4 type II vacua,” Journal of High Energy Physics 0909 (2009) 098, 0906.2561.Google Scholar
Bah, I., Passias, A., and Weck, P., “Holographic duals of five-dimensional SCFTs on a Riemann surface,” Journal of High Energy Physics 01 (2019) 058, 1807.06031.Google Scholar
Gallerati, A., Samtleben, H., and Trigiante, M., “The N ≥ 2 supersymmetric AdS vacua in maximal supergravity,” Journal of High Energy Physics 12 (2014) 174, 1410.0711.Google Scholar
Pang, Y. and Rong, J., “N = 3 solution in dyonic ISO(7) gauged maximal supergravity and its uplift to massive type IIA supergravity,” Physical Review D92 (2015), no. 8, 085037, 1508.05376.Google Scholar
De Luca, G. B., Lo Monaco, G., Macpherson, N. T., Tomasiello, A., and Varela, O., “The geometry of N = 3 AdS4 in massive IIA,” Journal of High Energy Physics 08 (2018) 133, 1805.04823.Google Scholar
Gaiotto, D. and Tomasiello, A., “Perturbing gauge/gravity duals by a Romans mass,” Journal of Physics A42 (2009) 465205, 0904.3959.Google Scholar
Macpherson, N. T., Montero, J., and Prins, D., “Mink3 × S3 solutions of type II supergravity,” Nuclear Physics B933 (2018) 185233, 1712.00851.Google Scholar
Fujita, M., Li, W., Ryu, S., and Takayanagi, T., “Fractional quantum hall effect via holography: Chern–Simons, edge states, and hierarchy,” Journal of High Energy Physics 06 (2009) 066, 0901.0924.Google Scholar
Pang, Y. and Rong, J., “Evidence for the holographic dual of N = 3 solution in massive type IIA,” Physical Review D93 (2016), no. 6, 065038, 1511.08223.Google Scholar
Fluder, M. and Sparks, J., “D2-brane Chern–Simons theories: F-maximization = a-maximization,” Journal of High Energy Physics 01 (2016) 048, 1507.05817.Google Scholar
Behrndt, K., Cvetic, M., and Gao, P., “General type IIB fluxes with SU(3) structures,” Nuclear Physics B721 (2005) 287308, hep-th/0502154.Google Scholar
Petrini, M., Solard, G., and Van Riet, T., “AdS vacua with scale separation from IIB supergravity,” Journal of High Energy Physics 1311 (2013) 010, 1308.1265.Google Scholar
Solard, G., “A method to find N = 1 AdS4 vacua in type IIB,” Journal of High Energy Physics 01 (2017) 042, 1610.04237.Google Scholar
Arav, I., Cheung, K. C. M., Gauntlett, J. P., Roberts, M. M., and Rosen, C., “Spatially modulated and supersymmetric mass deformations of N = 4 SYM,” Journal of High Energy Physics 11 (2020) 156, 2007.15095.Google Scholar
Núñez, C., Park, I. Y., Schvellinger, M., and Tran, T. A., “Supergravity duals of gauge theories from f(4) gauged supergravity in six dimensions,” Journal of High Energy Physics 4 (2001) 025.Google Scholar
D’Hoker, E., Estes, J., and Gutperle, M., “Exact half-BPS Type IIB interface solutions. I. Local solution and supersymmetric Janus,” Journal of High Energy Physics 0706 (2007) 021, 0705.0022.Google Scholar
Assel, B., Bachas, C., Estes, J., and Gomis, J., “Holographic duals of D = 3 N = 4 superconformal field theories,” Journal of High Energy Physics 1108 (2011) 087, 1106.4253.Google Scholar
Assel, B., Bachas, C., Estes, J., and Gomis, J., “IIB duals of D = 3 N = 4 circular quivers,” Journal of High Energy Physics 12 (2012) 044, 1210.2590.Google Scholar
Assel, B. and Tomasiello, A., “Holographic duals of 3D S-fold CFTs,” Journal of High Energy Physics 06 (2018) 019, 1804.06419.Google Scholar
Inverso, G., Samtleben, H., and Trigiante, M., “Type II supergravity origin of dyonic gaugings,” Physical Review D95 (2017), no. 6, 066020, 1612.05123.Google Scholar
Guarino, A. and Sterckx, C., “S-folds and (non-)supersymmetric Janus solutions,” Journal of High Energy Physics 12 (2019) 113, 1907.04177.Google Scholar
Guarino, A., Sterckx, C., and Trigiante, M., “N = 2 supersymmetric S-folds,” Journal of High Energy Physics 04 (2020) 050, 2002.03692.Google Scholar
Bobev, N., Gautason, F. F., Pilch, K., Suh, M., and van Muiden, J., “Holographic interfaces in N = 4 SYM: Janus and J-folds,” Journal of High Energy Physics 05 (2020) 134, 2003.09154.Google Scholar
Hanany, A. and Witten, E., “Type IIB superstrings, BPS monopoles, and three-dimensional gauge dynamics,” Nuclear Physics B492 (1997) 152190, hep-th/9611230.Google Scholar
Gaiotto, D. and Witten, E., “S-duality of boundary conditions In N = 4 Super Yang–Mills theory,” Advances in Theoretical and Mathematical Physics 13 (2009) 721, 0807.3720.Google Scholar
Garozzo, I., Lo Monaco, G., and Mekareeya, N., “The moduli spaces of S-fold CFTs,” Journal of High Energy Physics 01 (2019) 046, 1810.12323.Google Scholar
Garozzo, I., Lo Monaco, G., and Mekareeya, N., “Variations on S-fold CFTs,” Journal of High Energy Physics 03 (2019) 171, 1901.10493.Google Scholar
Kutasov, D., Maxfield, T., Melnikov, I., and Sethi, S., “Constraining de Sitter space in string theory,” Physical Review Letters 115 (2015), no. 7, 071305, 1504.00056.Google Scholar
Witten, E., “Nonperturbative superpotentials in string theory,” Nuclear Physics B474 (1996) 343360, hep-th/9604030.Google Scholar
Denef, F. and Douglas, M. R., “Distributions of flux vacua,” Journal of High Energy Physics 05 (2004) 072, hep-th/0404116.Google Scholar
Robbins, D. and Sethi, S., “A barren landscape?Physical Review D71 (2005) 046008, hep-th/0405011.Google Scholar
Denef, F., Douglas, M. R., and Florea, B., “Building a better racetrack,” Journal of High Energy Physics 06 (2004) 034, hep-th/0404257.Google Scholar
Goheer, N., Kleban, M., and Susskind, L., “The trouble with de Sitter space,” Journal of High Energy Physics 07 (2003) 056, hep-th/0212209.Google Scholar
Kachru, S., Pearson, J., and Verlinde, H. L., “Brane/flux annihilation and the string dual of a nonsupersymmetric field theory,” Journal of High Energy Physics 06 (2002) 021, hep-th/0112197.Google Scholar
Bachas, C., Douglas, M. R., and Schweigert, C., “Flux stabilization of D-branes,” Journal of High Energy Physics 05 (2000) 048, hep-th/ 0003037.Google Scholar
Myers, R. C., “Dielectric-branes,” Journal of High Energy Physics 12 (1999) 022, hep-th/9910053.Google Scholar
Balasubramanian, V. and Berglund, P., “Stringy corrections to Kähler potentials, SUSY breaking, and the cosmological constant problem,” Journal of High Energy Physics 11 (2004) 085, hep-th/0408054.Google Scholar
Balasubramanian, V., Berglund, P., Conlon, J. P., and Quevedo, F., “Systematics of moduli stabilisation in Calabi–Yau flux compactifications,” Journal of High Energy Physics 03 (2005) 007, hep-th/0502058.Google Scholar
Saltman, A. and Silverstein, E., “The scaling of the no scale potential and de Sitter model building,” Journal of High Energy Physics 11 (2004) 066, hep-th/0402135.Google Scholar
Burgess, C. P., Kallosh, R., and Quevedo, F., “De Sitter string vacua from supersymmetric D-terms,” Journal of High Energy Physics 10 (2003) 056, hep-th/0309187.Google Scholar
Choi, K., Falkowski, A., Nilles, H. P., and Olechowski, M., “Soft supersymmetry breaking in KKLT flux compactification,” Nuclear Physics B718 (2005) 113133, hep-th/0503216.Google Scholar
Villadoro, G. and Zwirner, F., “De-Sitter vacua via consistent D-terms,” Physical Review Letters 95 (2005) 231602, hep-th/0508167.Google Scholar
Parameswaran, S. L. and Westphal, A., “De Sitter string vacua from perturbative Kahler corrections and consistent D-terms,” Journal of High Energy Physics 10 (2006) 079, hep-th/0602253.Google Scholar
Westphal, A., “De Sitter string vacua from Kähler uplifting,” Journal of High Energy Physics 03 (2007) 102, hep-th/0611332.Google Scholar
Davidse, M., Saueressig, F., Theis, U., and Vandoren, S., “Membrane instantons and de Sitter vacua,” Journal of High Energy Physics 09 (2005) 065, hep-th/0506097.Google Scholar
Acharya, B. S., Bobkov, K., Kane, G. L., Kumar, P., and Shao, J., “Explaining the electroweak scale and stabilizing moduli in M theory,” Physical Review D76 (2007) 126010, hep-th/0701034.Google Scholar
Becker, M., Curio, G., and Krause, A., “De Sitter vacua from heterotic M-theory,” Nuclear Physics B693 (2004) 223260, hep-th/0403027.Google Scholar
Banks, T., “Landskepticism or why effective potentials don’t count string models,” 2004. hep-th/0412129.Google Scholar
Sethi, S., “Supersymmetry Breaking by Fluxes,” Journal of High Energy Physics 10 (2018) 022, 1709.03554.Google Scholar
Kachru, S. and Trivedi, S. P., “A comment on effective field theories of flux vacua,” Fortschritte der Physik 67 (2019), no. 1–2, 1800086, 1808.08971.Google Scholar
McGuirk, P., Shiu, G., and Sumitomo, Y., “Non-supersymmetric infrared perturbations to the warped deformed conifold,” Nuclear Physics B842 (2011) 383413, 0910.4581.Google Scholar
Bena, I., Graña, M., and Halmagyi, N., “On the existence of meta-stable vacua in Klebanov–Strassler,” Journal of High Energy Physics 09 (2010) 087, 0912.3519.Google Scholar
Bena, I., Giecold, G., Graña, M., Halmagyi, N., and Massai, S., “The backreaction of anti-D3 branes on the Klebanov–Strassler geometry,” Journal of High Energy Physics 06 (2013) 060, 1106.6165.Google Scholar
Blåbäck, J., Danielsson, U. H., and Van Riet, T., “Resolving anti-brane singularities through time-dependence,” Journal of High Energy Physics 02 (2013) 061, 1202.1132.Google Scholar
Michel, B., Mintun, E., Polchinski, J., Puhm, A., and Saad, P., “Remarks on brane and antibrane dynamics,” Journal of High Energy Physics 09 (2015) 021, 1412.5702.Google Scholar
Polchinski, J., “Brane/antibrane dynamics and KKLT stability,” (2015), 1509.05710.Google Scholar
Cohen-Maldonado, D., Diaz, J., van Riet, T., and Vercnocke, B., “Observations on fluxes near anti-branes,” Journal of High Energy Physics 01 (2016) 126, 1507.01022.Google Scholar
Emparan, R., Harmark, T., Niarchos, V., and Obers, N. A., “World-volume effective theory for higher-dimensional black holes,” Physical Review Letters 102 (2009) 191301, 0902.0427.Google Scholar
Armas, J., Nguyen, N., Niarchos, V., Obers, N. A., and Van Riet, T., “Meta-stable non-extremal anti-branes,” Physical Review Letters 122 (2019), no. 18, 181601, 1812.01067.Google Scholar
Bena, I., Dudas, E., Graña, M., and Lüst, S., “Uplifting runaways,” Fortschritte der Physik 67 (2019), no. 1–2, 1800100, 1809.06861.Google Scholar
Camara, P. G., Ibáñez, L. E., and Uranga, A. M., “Flux-induced SUSY-breaking soft terms on D7–D3 brane systems,” Nuclear Physics B708 (2005) 268316, hep-th/0408036.Google Scholar
Dymarsky, A. and Martucci, L., “D-brane non-perturbative effects and geometric deformations,” Journal of High Energy Physics 04 (2011) 061, 1012.4018.Google Scholar
Heidenreich, B., McAllister, L., and Torroba, G., “Dynamic SU(2) structure from seven-branes,” Journal of High Energy Physics 05 (2011) 110, 1011.3510.Google Scholar
Moritz, J., Retolaza, A., and Westphal, A., “Toward de Sitter space from ten dimensions,” Physical Review D97 (2018), no. 4, 046010, 1707.08678.Google Scholar
Gautason, F. F., Van Hemelryck, V., and Van Riet, T., “The tension between 10D supergravity and dS uplifts,” Fortschritte der Physik 67 (2019), no. 1–2, 1800091, 1810.08518.Google Scholar
Kachru, S., Kim, M., McAllister, L., and Zimet, M., “De Sitter vacua from ten dimensions,” (2019), 1908.04788.Google Scholar
Saltman, A. and Silverstein, E., “A new handle on de Sitter compactifications,” Journal of High Energy Physics 01 (2006) 139, hep-th/0411271.Google Scholar
Gur-Ari, G., “Brane inflation and moduli stabilization on twisted tori,” Journal of High Energy Physics 01 (2014) 179, 1310.6787.Google Scholar
Haque, S. S., Shiu, G., Underwood, B., and Van Riet, T., “Minimal simple de Sitter solutions,” Physical Review D79 (2009) 086005, 0810.5328.Google Scholar
Caviezel, C., Koerber, P., Körs, S., Lüst, D., Wrase, T., and Zagermann, M., “On the cosmology of type IIA compactifications on SU(3)-structure manifolds,” Journal of High Energy Physics 04 (2009) 010, 0812.3551.Google Scholar
Gibbons, G. W. and Hull, C. M., “De Sitter space from warped supergravity solutions,” (2001), hep-th/0111072.Google Scholar
Danielsson, U. H., Haque, S. S., Shiu, G., and Van Riet, T., “Towards classical de Sitter solutions in string theory,” Journal of High Energy Physics 09 (2009) 114, 0907.2041.Google Scholar
Danielsson, U. H., Koerber, P., and Van Riet, T., “Universal de Sitter solutions at tree-level,” Journal of High Energy Physics 05 (2010) 090, 1003.3590.Google Scholar
Danielsson, U. H., Haque, S., Koerber, P., Shiu, G., Van Riet, T., and Wrase, T., “De Sitter hunting in a classical landscape,” Fortschritte der Physik 59 (2011) 897933, 1103.4858.Google Scholar
Andriot, D., Marconnet, P., and Wrase, T., “New de Sitter solutions of 10D type IIB supergravity,” Journal of High Energy Physics 08 (2020) 076, 2005.12930.Google Scholar
Córdova, C., De Luca, G. B., and Tomasiello, A., “New de Sitter solutions in ten dimensions and orientifold singularities,” Journal of High Energy Physics 08 (2020) 093, 1911.04498.Google Scholar
Silverstein, E., “(A)dS backgrounds from asymmetric orientifolds,” Clay Mathematics Proceedings 1 (2002) 179, hep-th/0106209.Google Scholar
Harribey, S. and Tsimpis, D., “One-loop bosonic string and De Sitter space,” Nuclear Physics B 948 (2019) 114768, 1810.02236.Google Scholar
de Carlos, B., Guarino, A., and Moreno, J. M., “Flux moduli stabilisation, supergravity algebras and no-go theorems,” Journal of High Energy Physics 01 (2010) 012, 0907.5580.Google Scholar
Blåbäck, J., Danielsson, U., and Dibitetto, G., “Fully stable dS vacua from generalised fluxes,” Journal of High Energy Physics 08 (2013) 054, 1301.7073.Google Scholar
Souères, B. and Tsimpis, D., “De Sitter space from dilatino condensates in (massive) IIA,” Physical Review D97 (2018), no. 4, 046005, 1712.07169.Google Scholar
Terrisse, R. and Tsimpis, D., “Consistent truncation with dilatino condensation on nearly Kähler and Calabi–Yau manifolds,” Journal of High Energy Physics 02 (2019) 088, 1810.06344.Google Scholar
Brennan, T. D., Carta, F., and Vafa, C., “The string landscape, the swampland, and the missing corner,” PoS TASI2017 (2017) 015, 1711.00864.Google Scholar
Palti, E., “The swampland: introduction and review,” Fortschritte der Physik 67 (2019), no. 6, 1900037, 1903.06239.Google Scholar
Susskind, L., “Trouble for remnants,” (1995), hep-th/9501106.Google Scholar
Banks, T. and Seiberg, N., “Symmetries and strings in field theory and gravity,” Physical Review D83 (2011) 084019, 1011.5120.Google Scholar
Banks, T., Johnson, M., and Shomer, A., “A note on gauge theories coupled to gravity,” Journal of High Energy Physics 0609 (2006) 049, hep-th/0606277.Google Scholar
Harlow, D. and Ooguri, H., “Symmetries in quantum field theory and quantum gravity,” Communications in Mathematical Physics 383 (2021) no. 3, 1669– 1804, 1810.05338.Google Scholar
Arkani-Hamed, N., Motl, L., Nicolis, A., and Vafa, C., “The string landscape, black holes and gravity as the weakest force,” Journal of High Energy Physics 06 (2007) 060, hep-th/0601001.Google Scholar
Grimm, T. W., Palti, E., and Valenzuela, I., “Infinite distances in field space and massless towers of states,” Journal of High Energy Physics 08 (2018) 143, 1802.08264.Google Scholar
Cheung, C. and Remmen, G. N., “Naturalness and the weak gravity conjecture,” Physical Review Letters 113 (2014) 051601, 1402.2287.Google Scholar
Palti, E., “The weak gravity conjecture and scalar fields,” Journal of High Energy Physics 08 (2017) 034, 1705.04328.Google Scholar
Heidenreich, B., Reece, M., and Rudelius, T., “Sharpening the weak gravity conjecture with dimensional reduction,” Journal of High Energy Physics 02 (2016) 140, 1509.06374.Google Scholar
Ooguri, H. and Vafa, C., “Non-supersymmetric AdS and the swampland,” Advances in Theoretical and Mathematical Physics 21 (2017) 17871801, 1610.01533.Google Scholar
Freivogel, B. and Kleban, M., “Vacua morghulis,” (2016), 1610.04564.Google Scholar
Ooguri, H. and Vafa, C., “On the geometry of the string landscape and the swampland,” Nuclear Physics B766 (2007) 2133, hep-th/0605264.Google Scholar
Harlow, D., “Wormholes, emergent gauge fields, and the weak gravity conjecture,” Journal of High Energy Physics 01 (2016) 122, 1510.07911.Google Scholar
Heidenreich, B., Reece, M., and Rudelius, T., “The weak gravity conjecture and emergence from an ultraviolet cutoff,” European Physical Journal C78 (2018), no. 4, 337, 1712.01868.Google Scholar
Lüst, D., Palti, E., and Vafa, C., “AdS and the swampland,” Physics Letters B797 (2019) 134867, 1906.05225.Google Scholar
Danielsson, U. H. and Van Riet, T., “What if string theory has no de Sitter vacua?International Journal of Modern Physics D27 (2018), no. 12, 1830007, 1804.01120.Google Scholar
Obied, G., Ooguri, H., Spodyneiko, L., and Vafa, C., “De Sitter space and the swampland,” (2018), 1806.08362.Google Scholar
Dvali, G. and Gomez, C., “Quantum exclusion of positive cosmological constant?Annalen der Physik 528 (2016) 6873.Google Scholar
Denef, F., Hebecker, A., and Wrase, T., “De Sitter swampland conjecture and the Higgs potential,” Physical Review D98 (2018), no. 8, 086004, 1807.06581.Google Scholar
Ooguri, H., Palti, E., Shiu, G., and Vafa, C., “Distance and de Sitter conjectures on the swampland,” Physics Letters B788 (2019) 180184, 1810.05506.Google Scholar
Garg, S. K. and Krishnan, C., “Bounds on slow roll and the de Sitter swampland,” Journal of High Energy Physics 11 (2019) 075, 1807.05193.Google Scholar
Wetterich, C., “Cosmology and the fate of dilatation symmetry,” Nuclear Physics B302 (1988) 668696, 1711.03844.Google Scholar
Ratra, B. and Peebles, P. J. E., “Cosmological consequences of a rolling homogeneous scalar field,” Physical Review D37 (1988) 3406.Google Scholar
Cicoli, M., De Alwis, S., Maharana, A., Muia, F., and Quevedo, F., “De Sitter vs quintessence in string theory,” Fortschritte der Physik 67 (2019), no. 1–2, 1800079, 1808.08967.Google Scholar
Banerjee, S., Danielsson, U., Dibitetto, G., Giri, S., and Schillo, M., “Emergent de Sitter cosmology from decaying AdS,” Physical Review Letters 121 (2018), no. 26, 261301, 1807.01570.Google Scholar
Heckman, J. J., Lawrie, C., Lin, L., and Zoccarato, G., “F-theory and dark energy,” Fortschritte der Physik 67 (2019), no. 10, 1900057, 1811.01959.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • References
  • Alessandro Tomasiello, Università degli Studi di Milano-Bicocca
  • Book: Geometry of String Theory Compactifications
  • Online publication: 06 January 2022
  • Chapter DOI: https://doi.org/10.1017/9781108635745.016
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • References
  • Alessandro Tomasiello, Università degli Studi di Milano-Bicocca
  • Book: Geometry of String Theory Compactifications
  • Online publication: 06 January 2022
  • Chapter DOI: https://doi.org/10.1017/9781108635745.016
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • References
  • Alessandro Tomasiello, Università degli Studi di Milano-Bicocca
  • Book: Geometry of String Theory Compactifications
  • Online publication: 06 January 2022
  • Chapter DOI: https://doi.org/10.1017/9781108635745.016
Available formats
×